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Zeta measures and Thermodynamic Formalism
for temperature zero

Artur O. Lopes* and Jairo K. Mengue**

Abstract. We address the analysis of the following problem: given a real Hölder
potential f defined on the Bernoulli space and μ f its equilibrium state, it is known that
this shift-invariant probability can be weakly approximated by probabilities in periodic
orbits associated to certain zeta functions.
Given a Hölder function f > 0 and a value s such that 0 < s < 1, we can associate a
shift-invariant probability νs such that for each continuous function k we have

∫
k dνs =

∑∞
n=1

∑
x∈Fixn

es f n(x)−n P( f ) kn(x)
n∑∞

n=1
∑

x∈Fixn
es f n(x)−n P( f )

,

where P( f ) is the pressure of f , Fixn is the set of solutions of σ n(x) = x , for any
n ∈ N, and f n(x) = f (x)+ f (σ (x))+ ∙ ∙ ∙ + f (σ n−1(x)).
We call νs a zeta probability for f and s, because it can be obtained in a natural way
from the dynamical zeta-functions. From the work of W. Parry and M. Pollicott it is
known that νs → μ f , when s → 1. We consider for each value c the potential c f and
the corresponding equilibrium state μc f . What happens with νs when c goes to infinity
and s goes to one? This question is related to the problem of how to approximate
the maximizing probability for f by probabilities on periodic orbits. We study this
question and also present here the deviation function I and Large Deviation Principle
for this limit c → ∞, s → 1. We will make an assumption: for some fixed L we have
limc→∞, s→1 c(1 − s) = L > 0. We do not assume here the maximizing probability
for f is unique in order to get the L.D.P.
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1 Introduction

We denote by X = {1, . . . , d}N the Bernoulli space with d symbols. This is a
compact metric space when one considers the usual metric

d(x, y) = dθ (x, y) = θ N , x1 = y1, . . . , xN−1 = yN−1, xN 6= yN ,

with θ fixed 0 < θ < 1.
The results we will derive here are also true for shifts of finite type, but in

order to simplify the notation, we will consider here in our proofs just case of
the full Bernoulli space X .

We consider the Borel σ−algebra over X and denote byM the set of invariant
probabilities for the shift. Fθ denotes the set of real Lipschitz functions over X .
There is no big difference between Hölder and Lipschitz in this case (see page
16 in [16]).

Here we work with a strictly positive function f in Fθ . We denote respectively

β( f ) := sup
ν∈M

∫
f dν,

Mmax( f ) :=
{
ν ∈ M :

∫
f dν = β(f )

}
,

h f := sup
{
hν : ν ∈ Mmax(f )

}
.

A probability μ∞ which f -integral attains the maximum value Mmax( f ) will
be called a f -maximizing probability. We refer the reader to [2, 3, 6, 9, 10, 11]
for general properties of such probabilities.

As usual, given a real continuous function k over X , and x ∈ X , the number
kn(x) denotes k(x)+ k(σ (x))+ k(σ 2(x))+ ∙ ∙ ∙ + k(σ n−1(x)).

We denote by Fixn the set of solutions x to the equation σ n(x) = x and P( f )
is the pressure for f .

We address the reader to [15, 16] for general properties of Thermodynamic
Formalism, zeta functions and the procedure of approximating Gibbs states by
probabilities with support on periodic orbits.

Following [15, 16] (see also the last section) we consider probabilities μc,s

in M such that for any continuous function k : X → R

∫
k dμc,s =

∑∞
n=1

∑
x∈Fixn

ec s f n(x)−n P(c f ) kn(x)
n∑∞

n=1

∑
x∈Fixn

ec s f n(x)−n P(c f )
,

where c > 0, s ∈ (0, 1).
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The above expression is well defined because P(cs f − P(c f )) < 0, and
appear naturally when we work with the zeta function

ζ(s, z) = exp




∞∑

n=1

1

n

∑

x∈Fixn

ec s f n(x)−n P(c f )+zkn(x)



 .

Following W. Parry and M. Pollicott [16] it is known that when c is fixed and
s → 1, one gets that μc,s weakly converges to the Gibbs state for c f . We prove
this here (see Lemma 16), but we will be really interested in analyzing μc,s ,
when s → 1 and c → ∞. Such limit is the maximizing probability μ∞, when
this is unique in Mmax( f ) (see next theorem).

In order to simplify the notation k will also represent the characteristic func-
tion of a general cylinder which will be also called k.

In the present setting, a Large Deviation Principle should be the identification
of a function I : X → R, which is non-negative, lower semi-continuous and
such that, for any cylinder k ⊂ X , we have

lim
c→∞, s→1

1

c
log(μc,s(k)) = − inf

x∈k
I (x).

We point out that we will need same care in the way we consider the limits
s → 1 and c → ∞. We will assume that in the above limit the values c and s
are related by some constrains (which are in a certain sense natural).

A general reference for Large Deviation properties and theorems is [8].
We point out that

P(c f ) = cβ( f )+ εc,

where εc decreases to h f when c → ∞ (which was defined above) [7].
In Thermodynamic Formalism and Statistical Mechanics c = 1

T , where T is
temperature. In this sense, to analyze the limit behavior of Gibbs states μc f

when c → ∞, corresponds to analyze a system under temperature zero for the
potential f (see also [12]).

It is known that there exists certain Lipschitz potentials f such that the se-
quence μc f does not converge to any probability when c → ∞ [5]. We will not
assume the maximizing probability is unique for the potential f in order to get
the L.D.P.

Definition 1. We define the function I (x) in the periodic points x ∈ PER by:

I (x) := nx

(
β( f )−

f nx (x)

nx

)
,

where nx is the minimum period of x , and f > 0 is Lipschitz.
We need some properties of I . We show in section 2.
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Lemma 2.
inf

x∈PER
I (x) = 0.

The next result is not a surprise:

Theorem 3. Suppose f > 0 is Lipschitz. When c → ∞ and s → 1, any ac-
cumulation point of μc,s is in Mmax( f ). Moreover, if g : X → R is a continu-
ous function c j → ∞ and s j → 1 are such that there exist

lim
j→∞

μc j ,s j (g),

then this limit is
∫

gdμ for some accumulation point μ of μc,s in the weak*
topology.

In particular, if μ∞ is unique, then for any continuous g : X → R

lim
c→∞,s→1

∫
g dμc,s =

∫
gdμ∞.

The main result of our paper is a Large Deviation Principle for μc,s :

Theorem 4. Suppose f > 0 is Lipschitz. Then, for any fixed L > 0 (it is
allowed L = ∞), and for all cylinder k ⊂ X

lim
c(1−s)→L

1

c
log(μc,s(k)) = − inf

x∈k, x∈Per
I (x).

The same is true if we have:

lim inf
c→∞, s→1

c(1 − s) = L > 0.

We going to extend I (which was defined just for periodic orbits) to Ĩ , de-
fined on the all set X , which preserve the infimum of I in each cylinder, and,
which is also lower semi-continuous and non-negative (see sections 4 and 5).

Finally, we can get the following result:

Corollary 5. Suppose f > 0 is Lipschitz. Then, there is a Large Deviation
Principle with deviation function Ĩ : for fixed L > 0, and for any cylinder k ⊂ X

lim
c(1−s)→L

1

c
logμc,s(k) = − inf

x∈k
Ĩ (x),

where Ĩ is lower semi-continuous and non-negative.
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The same is true if we have:

lim inf
c→∞, s→1

c(1 − s) = L > 0.

In [2] it is assumed that the maximizing probability μ∞ is unique. The
equilibrium probabilities μc f for the real Lipschitz potential c f converge to
μ∞ and it is presented in [2] a L.D.P. for such setting (a different deviation
function). The deviation function IBLT in that paper is lower semi-continuous
but can attains the value ∞ in some periodic points. Under the assumption
limc→∞, s→1 c(1 − s) = L > 0, we can show that the deviation rates in cylin-
ders described here by I are different from the ones in [2] which are described
by IBLT . This is described in section 5 Proposition 15. Finally, Proposition 17
in section 6 shows that if c(1 − s) → 0 with a certain speed, then μc,s have a
L.D.P., but the deviation function is IBLT (not I ). We want to present a suffi-
cient analytic estimate that allows one to find sc as a function of c in such way
this happens.

In the last section we also study the invariant probabilities πc,N and ηc,N

given respectively by

∫
kdπc,N =

∑N
n=1

∑
x∈Fixn

ec f n(x)−n P(c f ) kn(x)
n∑N

n=1

∑
x∈Fixn

ec f n(x)−n P(c f )
,

and ∫
kdηc,N =

∑N
n=1

∑
x∈Fixn

ec f n(x) kn(x)
n∑N

n=1

∑
x∈Fixn

ec f n(x)
,

where c > 0, N ∈ N.
We show that when N → ∞ these probabilities converge weakly to μc f and

when c, N → ∞ they satisfies a result analogous to Theorem 3, with small
modifications on the proof. Also, if N/c → 0, then πc,N have a L.D.P. which
the same deviation function Ĩ above.

We point out that it follows from the methods we describe in this paper the
following property: given f, fλ ∈ Fθ , such that fλ → f uniformly when
λ → ∞, suppose there exist the weak∗ limit

lim
j→∞

πc j ,N j , fλ j
= ν,

c j , N j , fλ j → ∞, then ν is a maximizing measure for f . Moreover, if we take
first N → ∞ and after c j , λ j → ∞, then we get: any weak∗ accumulation point
of of μcλ fλ is a maximizing probability for f .
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In particular given f one can consider for each m a fm approximation which
depend just on the first m coordinates as in Proposition 1.3 [16]. We point out
that for each fm the eigenvalues, eigenvectors, pressure, etc. can be obtained via
the classical Perron Theorem for positive matrices [16, 17].

In the same way, if when c j , λ j → ∞, s j → 1, there exists the limit

lim
j→∞

μc j fλ j ,s j = ν,

then ν is maximizing for f .
This work is part of the thesis dissertation of the second author in Prog. Pos-

Grad. Mat. – UFRGS.

2 Proof of Lemma 2

We want to show that
inf

x∈PER
I (x) = 0.

We will need the following lemma ([1, 13]):

Lemma 6. Given a Borel measurable set A, a continuous f : X → R, and an
ergodic probability ν, with ν(A) > 0, there exists p ∈ A such that for all ε > 0,
there exists an integer N > 0 which satisfies σ N (p) ∈ A and

∣
∣
∣
∣
∣

N−1∑

i=0

f (σ i (p))− N
∫

f dν

∣
∣
∣
∣
∣
< ε.

The set of such p ∈ A has full measure.

Now we will present the proof of Lemma 2.

Proof. Mmax( f ) is a compact convex set which contains at least one ergodic
probability ν.

Then,

β( f ) =
∫

f dν and I (x) = | f nx (x)− nx

∫
f dν|.

It is enough to show that for any ε > 0, there exists x ∈ PER such that

I (x) = | f nx (x)− nx

∫
f dν| < ε.
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As f ∈ Fθ , there exists a constant C > 0 such that for any x, y ∈ X :

| f (x)− f (y)| < Cd(x, y).

We fix j such that

Cθ j θ

1 − θ
< ε/2.

There exists a cylinder k j of size j such that ν(k j ) > 0. Using the last lemma
with A = k j we are able to get a point p ∈ k j and an integer N > 0 such that
σ N (p) ∈ k j and ∣

∣
∣
∣
∣

N−1∑

i=0

f (σ i (p))− N
∫

f dν

∣
∣
∣
∣
∣
< ε/2.

It follows that p is of the form p = p1 . . . pN p1 . . . p j . . .. Now if we con-
sider the periodic point x given by repeating successively the word

x = p1 . . . pN ,

then we get
∣
∣
∣
∣
∣

N−1∑

i=0

f (σ i (p))−
N−1∑

i=0

f (σ i (x))

∣
∣
∣
∣
∣
≤

N−1∑

i=0

∣
∣ f (σ i (p))− f (σ i (x))

∣
∣

≤ C(dθ (p, x)+ ∙ ∙ ∙ + dθ (σ
N−1(p), σ N−1(x)))

≤ C(θ N+ j + ∙ ∙ ∙ + θ j )

< Cθ j (1 + θ + . . .)

= Cθ j θ

1 − θ
< ε/2.

It follows that

I (x) =

∣
∣
∣
∣
∣

nx −1∑

i=0

f (σ i (x))− nx

∫
f dν

∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣

N−1∑

i=0

f (σ i (x))− N
∫

f dν

∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣

N−1∑

i=0

f (σ i (p))−
N−1∑

i=0

f (σ i (x))

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

N−1∑

i=0

f (σ i (p))− N
∫

f dν

∣
∣
∣
∣
∣

≤ ε.

�
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3 Proof of Theorem 3

We begin with an auxiliary lemma:

Lemma 7. Suppose f > 0 is Lipschitz. Then,

lim inf
c→∞,s→1

μc,s( f ) ≥ β( f ). (1)

Proof. We write
P(c f ) = cβ( f )+ εc,

where εc decrease to h f when c → ∞ [7].

Fix ε > 0. We define

An =
{

x ∈ Fixn :
f n(x)

n
< β( f )− ε

}
,

Bn =
{

x ∈ Fixn :
f n(x)

n
≥ β( f )− ε

}
.

It follows that for c >> 0:

∞∑

n=1

∑

x∈An

ecs f n−n P(c f ) ≤
∞∑

n=1

∑

x∈An

ecsn(β( f )−ε)−ncβ( f )−nεc

=
∞∑

n=1

∑

x∈An

enc(s−1)β( f )−ncsε−nεc

≤
∞∑

n=1

∑

x∈An

e−ncsε

≤
∞∑

n=1

e−ncsε+n log(d)

=
e−csε+log(d)

1 − e−csε+log(d)
,

and, with a similar reasoning,

∞∑

n=1

∑

x∈An

ecs f n−n P(c f ) f n

n
≤

e−csε+log(d)

1 − e−csε+log(d)
(β( f )− ε) .
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By the other side, by lemma 2, there exists a periodic point x such that:

I (x) = nx

(
β( f )−

f nx (x)

nx

)
< ε/2.

Therefore,

∞∑

n=1

∑

x∈Bn

ecs f n−n P(c f ) ≥ ecs f nx (x)−nx P(c f )

= ecs f nx (x)−nx cβ( f )−nx εc (2)

= e
−csnx

(
β( f )− f nx (x)

nx

)
+c(s−1)nxβ( f )−nx εc (3)

= e−cs I (x)+c(s−1)nxβ( f )−nx εc (4)

≥ e−csε/2+c(s−1)nxβ( f )−nx εc ,

and, with a similar reasoning,

∞∑

n=1

∑

x∈Bn

ecs f n−n P(c f ) f n

n
≥ e−csε/2+c(s−1)nxβ( f )−nx εc (β( f )− ε) .

It follows that
∑∞

n=1

∑
x∈An

ecs f n−n P(c f ) f n

n∑∞
n=1

∑
x∈Bn

ecs f n−n P(c f ) f n

n

≤
e−csε+log(d)

1 − e−csε+log(d)

1

e−csε/2+c(s−1)nxβ( f )−nx εc

=
e−csε+log(d)+csε/2−c(s−1)nxβ( f )+nx εc

1 − e−csε+log(d)

=
e−c(sε/2+(s−1)nxβ( f ))+log(d)+nx εc

1 − e−csε+log(d)

s→1,c→∞
→ 0.

Finally, in the same way

lim
c→∞,s→1

∑∞
n=1

∑
x∈An

ecs f n−n P(c f )

∑∞
n=1

∑
x∈Bn

ecs f n−n P(c f )
= 0.

It follows that

lim inf
c→∞,s→1

∑∞
n=1

∑
x∈Fixn

ecs f n−n P(c f ) f n

n∑∞
n=1

∑
x∈Fixn

ecs f n−n P(c f )
= lim inf

c→∞,s→1

∑∞
n=1

∑
x∈Bn

ecs f n−n P(c f ) f n

n∑∞
n=1

∑
x∈Bn

ecs f n−n P(c f )

≥ β( f )− ε.
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As we consider a general ε > 0, then we get

lim inf
c→∞,s→1

∑∞
n=1

∑
x∈Fixn

ecs f n−n P(c f ) f n

n∑∞
n=1

∑
x∈Fixn

ecs f n−n P(c f )
≥ β( f ). �

Now we can show the proof of Theorem 3.

Proof. Suppose μ is an accumulation point of μc,s . Then, μ is a σ−invariant
probability and by last lemma

μ( f ) ≥ β( f ),

and from this follows that μ ∈ Mmax( f ).

Now we fix a continuous function g and sequences c j → ∞ and s j → 1, such
that there exists

lim
j→∞

μc j ,s j (g).

By the diagonal Cantor argument, there exists a subsequence { ji }, such that
there exists

μ(k) := lim
i→∞

μc ji ,s ji
(k),

for any cylinder k.
We will show that for any h, there exists the limit

lim
i→∞

μc ji ,s ji
(h).

Given ε > 0, as X is compact, there exists functions k1 and k2, that can be
written as linear combinations of characteristic functions of cylinders, such that
for all x ∈ X

k1(x) ≤ h(x) ≤ k2(x) ≤ k1(x)+ ε.

It follows that

lim sup
i→∞

μc ji ,s ji
(h) ≤ lim

i→∞
μc ji ,s ji

(k2) ≤ lim
i→∞

μc ji ,s ji
(k1)+ ε

≤ lim inf
i→∞

μc ji ,s ji
(h)+ ε.

Therefore

lim inf
i→∞

μc ji ,s ji
(h) = lim sup

i→∞
μc ji ,s ji

(h).
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It follows that for any continuous function h there exists the limit

μ(h) := lim
i→∞

μc ji ,s ji
(h).

Therefore, μ is an accumulation point of the μc,s . Moreover,

lim
j→∞

μc j ,s j (g) = lim
i→∞

μc ji ,s ji
(g) = μ(g). �

4 Proof of Theorem 4

We will show that: for any fixed L > 0 (it can be that L = ∞), and any cylinder k

lim
c(1−s)→L

1

c
log(μc,s(k)) = − inf

x∈k, x∈PER
I (x).

Remark. As we point out in the introduction we have to consider c → ∞ and
s → 1. The hypothesis c(1 − s) → L can be understood as a constraint on the
speed such that simultaneously c → ∞ and s → 1: that is, c(1 − s) → L .

The proof presented here also covers the case where we assume

lim inf
c→∞,s→1

c(1 − s) = L > 0,

and, it is not really necessary that c(1 − s) → L .

Now we will present the proof of Theorem 4.

Proof. Remember that we denote a cylinder k and the indicator function of
this set also by k.

It is enough to show that for any fixed cylinder k

lim
c(1−s)→L

1

c
log

∞∑

n=1

∑

y∈Fixn

ecs f n(y)−n P(c f ) k
n(y)

n
= − inf

x∈k, x∈PER
I (x),

because, by taking k = X , we will get

lim
c(1−s)→L

1

c
log

∞∑

n=1

∑

y∈Fixn

ecs f n−n P(c f ) = − inf
x∈PER

I (x) = 0.

First we will show the lower (large deviation) inequality

lim inf
c(1−s)→L

1

c
log

∞∑

n=1

∑

y∈Fixn

ecs f n−n P(c f ) k
n

n
≥ − inf

x∈k , x∈PER
I (x),
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(for this part it is just enough to assume c → ∞ and s → 1).
Consider a generic point x ∈ k which is part of a periodic orbit {x, . . . ,

σ (nx −1)x}. Therefore,

∞∑

n=1

∑

y∈Fixn

ecs f n(y)−n P(c f ) k
n(y)

n
≥

∑

{x,...,σ (nx −1)x}

ecs f nx −nx P(c f ) k
nx

nx

≥ ecs f nx (x)−nx P(c f )knx (x)

≥ ecs f nx (x)−nx P(c f )

= e−cs I (x)+nx c(s−1)β( f )−nx εc (by (2), (3), (4)).

From this follows that

lim inf
c(1−s)→L

1

c
log

∞∑

n=1

∑

y∈Fixn

ecs f n−n P(c f ) k
n

n

≥ lim inf
c(1−s)→L

1

c
log

(
e−cs I (x)+nx c(s−1)β( f )−nx εc

)

≥ lim inf
c(1−s)→L

−s I (x)+ nx(s − 1)β( f )−
nxεc

c

= −I (x).

As we take x as a generic periodic point in k we finally get

lim inf
c(1−s)→L

1

c
log

∞∑

n=1

∑

y∈Fixn

ecs f n−n P(c f ) k
n

n
≥ − inf

x∈k, x∈PER
I (x).

Now we will show the upper (large deviation) inequality

lim sup
c(1−s)→L

1

c
log

∞∑

n=1

∑

y∈Fixn

ecs f n−n P(c f ) k
n

n
≤ − inf

x∈k, x∈PER
I (x).

We will denote the value inf x∈k, x∈PER I (x) by I .
Consider a fixed δ > 0. As f > 0 and f is continuous, there exists a

constant | f |− > 0 such that f > | f |−. As c(1 − s) → L > 0 (or just
considering lim inf c(1 − s) = L) there exists ψ > 0 such that for c big enough
c(1 − s) > 2ψ . As εc = P(c f ) − cβ( f ) decrease to h f , we can also suppose
that c is such that εcδ < h f + ψ | f |−. Therefore, there exists c0 such that
for c ≥ c0

c(1 − s)| f |− + h f > h f + 2ψ | f |− > εc0δ + ψ | f |−.
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The conclusion is that for such c ≥ c0:
∞∑

n=1

∑

y∈Fixn

ecs f n−n P(c f ) k
n(y)

n
=

∞∑

n=1

∑

y∈Fixn

ec f n(y)+c(s−1) f n(y)−cn(β( f ))−nεc
kn(y)

n

≤
∞∑

n=1

∑

y∈Fixn

e
−cn

(
β( f )− f n (y)

n

)
−c(1−s)n| f |−−nh f kn(y)

n

≤
∞∑

n=1

∑

y∈Fixn

e
−cn

(
β( f )− f n (y)

n

)
((1−δ)+δ)−c(1−s)n| f |−−nh f kn(y)

n

≤
∞∑

n=1

∑

y∈Fixn

e
−cI (1−δ)−cn

(
β( f )− f n (y)

n

)
δ−c(1−s)n| f |−−nh f kn(y)

n

≤ e−cI (1−δ)
∞∑

n=1

∑

y∈Fixn

e
−ncδ

(
β( f )− f n (y)

n

)
−nεc0δ−nψ | f |−

≤ e−cI (1−δ)
∞∑

n=1

∑

y∈Fixn

e
−nc0δ

(
β( f )− f n (y)

n

)
−nεc0δ−nψ | f |−

≤ e−cI (1−δ)
∞∑

n=1

∑

y∈Fixn

ec0δ f n(y)−n P(c0δ f )−nψ | f |− .

As

P (c0δ f − P(c0δ f )− ψ | f |−) = −ψ | f |− < 0,

the series
∞∑

n=1

∑

y∈Fixn

ec0δ f n(y)−n P(c0δ f )−nψ | f |−

converges to a constant T < ∞ ([16] cap 5). It follows that

lim sup
c(1−s)→L



1

c
log

∞∑

n=1

∑

y∈Fixn

ecs f n−n P(c f ) k
n

n





≤ lim sup
c(1−s)→L

1

c
log

(
e−cI (1−δ)T

)

= −I (1 − δ).

Now taking δ → 0, we get the upper bound inequality. �
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5 The function I and its extension Ĩ

For a periodic point x we denote nx its minimum period.

Remember that for x ∈ PER the function I (x) is given by

I (x) := nx

(
β( f )−

f nx (x)

nx

)
= nxβ( f )− f nx (x).

We will show that I can be extended in a finite way to a function Ĩ defined
the all Bernoulli space X . This Ĩ is non-negative, lower semi-continuous and
such that the infimum of I and Ĩ are the same in each cylinder set. This function
Ĩ will be a deviation function for the family μc,s and will be different from the
deviation function described in [2] (which did not consider zeta measures).

By definition Ĩ : X → R ∪ {∞} is lower semi-continuous if for any x ∈ X
and sequence xm → x we have

lim inf
m→∞

Ĩ (xm) ≥ Ĩ (x).

Definition 8. We define Ĩ : X → R ∪ {∞} by

Ĩ (x) = lim
ε→0

(inf{I (y) : d(y, x) ≤ ε}) .

As I ≥ 0, and

ε1 ≤ ε2 ⇒ inf
{

I (y) : d(y, x) ≤ ε1
}

≥ inf
{

I (y) : d(y, x) ≤ ε2
}
,

we have that Ĩ is well defined.

Lemma 9. Suppose x ∈ PER and I (x) 6= 0. Then

lim
ε→0

(inf{I (y) : 0 < d(y, x) ≤ ε}) = +∞.

As a consequence we have:

I (x) = Ĩ (x), x ∈ PER .
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Proof. Suppose x ∈ PER and I (x) 6= 0. Let

Y j :=
{

y ∈ PER : y 6= x and d(x, y) ≤ θ j
}
.

We only need to show that

lim
j→∞

inf
y∈Y j

I (y) = +∞.

Let
Y −

j :=
{

y ∈ Y j : ny ≤ j
}

and Y +
j :=

{
y ∈ Y j : ny > j

}
.

We are going to show that

lim
j→∞

inf
y∈Y −

j

I (y) = lim
j→∞

inf
y∈Y +

j

I (y) = ∞.

Suppose first that y ∈ Y −
j . By hypothesis f ∈ Fθ , then there exists C > 0

such that

f ny (y) = f (y)+ f (σ (y))+ f (σ 2(y))+ ∙ ∙ ∙ + f (σ ny−1(y))

≤ ( f (x)+ Cθ j )+ ( f (σ (x))+ Cθ j−1)+ ∙ ∙ ∙ + ( f (σ ny−1(x))+ Cθ j−ny+1)

≤ f ny (x)+ C
θ

1 − θ
.

We write ny = a(y)nx + b(y), 0 ≤ b(y) < nx . Then

I (y) = nyβ( f )− f ny (y) ≥ nyβ( f )− f ny (x)− C
θ

1 − θ

= (a(y)nx + b(y))β( f )− f a(y)nx +b(y)(x)− C
θ

1 − θ

= a(y)(nxβ( f )− f nx (x))+ b(y)β( f )− f b(y)(x)− C
θ

1 − θ

≥ a(y)I (x)− nx | f |∞ − C
θ

1 − θ

= a(y)I (x)− C1,

where C1 not change with y and j . Then

lim
j→∞

inf
y∈Y −

j

I (y) ≥ lim
j→∞

inf
y∈Y −

j

a(y)I (x)− C1 = ∞,
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because
lim
j→∞

inf
{
ny : y ∈ Y −

j

}
= ∞.

Now suppose that y ∈ Y +
j . Then ny = j + i, i > 0, and we write

y := y1 . . . y j y j+1 . . . y j+i ,

and define
z := y j+1 . . . y j+i .

Then,

f i (σ j (y)) = f (σ j (y))+ f (σ j+1(y))+ ∙ ∙ ∙ + f (σ j+i−1(y))

≤ ( f (z)+ Cθ i )+ ( f (σ (z))+ Cθ i−1)+ ∙ ∙ ∙ + ( f (σ i−1(z))+ Cθ)

≤ f i (z)+ C
θ

1 − θ
,

and, also

f j (y) = f (y)+ f (σ (y))+ f (σ 2(y))+ ∙ ∙ ∙ + f (σ j−1(y))

≤ ( f (x)+ Cθ j )+ ( f (σ (x))+ Cθ j−1)+ ∙ ∙ ∙ + ( f (σ j−1(x))+ Cθ)

≤ f j (x)+ C
θ

1 − θ
.

So

f j+i (y) = f j (y)+ f i (σ j (y)) ≤ f j (x)+ f i (z)+ 2C
θ

1 − θ
.

We write j = a( j)nx + b( j), 0 ≤ b( j) < nx . Then

I (y) = ( j + i)β( f )− f j+i (y)

≥ ( j + i)β( f )− f j (x)− f i (z)− 2C
θ

1 − θ

≥ iβ( f )− f i (z)+ jβ( f )− f j (x)− 2C
θ

1 − θ

≥ I (z)+ (a( j)nx + b( j))β( f )− f a( j)nx +b( j)(x)− 2C
θ

1 − θ

≥ a( j)nxβ( f )+ b( j)β( f )− a( j) f nx (x)− f b( j)(x)− 2C
θ

1 − θ
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≥ a( j)I (x)− nx | f |∞ − 2C
θ

1 − θ

= a( j)I (x)− C1,

where C1 not change with y and j . Then, finally

lim
j→∞

inf
y∈Y +

j

I (y) ≥ lim
j→∞

a(t)I (x)− C1 = ∞. �

Corollary 10. Given x ∈ PER, then there is a cylinder k such that x ∈ k and
inf y∈Per ∩k I (y) = I (x).

Proof. If I (x) = 0 there is nothing to prove.

If I (x) 6= 0, then we can use the lemma. �

Corollary 11. Let x ∈ PER. Then, the following are equivalent:

i) I (x) = 0

ii) μx given by μx(g) = gnx (x)
nn

is in Mmax( f )

iii) x ∈ supp(μ∞), for some μ∞ ∈ Mmax( f ).

Proof. It is easy that i) ↔ ii), and ii) → iii). We are going to prove that: not
true i) → not true iii).

Suppose I (x) 6= 0. By the corollary above there is a cylinder k, such that
x ∈ k and inf y∈Per ∩k I (y) = I (x) 6= 0. We are going to prove that if
μ∞ ∈ Mmax, then μ∞(k) = 0 (this show that x /∈ supp(μ∞)). We remark
that we can suppose μ∞ ∈ Mmax is ergodic.

To prove that μ∞(k) = 0, we have to prove that if μ∞(k) 6= 0, then

inf
y∈Per ∩k

I (y) = I (x) = 0.

But, this is false.
We remark that if μ∞(k) 6= 0, then the same ideas in proof of lemma 2, that

is inf x∈PER I (x) = 0, can be used to prove that inf y∈Per ∩k I (y) = I (x) = 0. �

Corollary 12. Let f ∈ Fθ . Suppose there is a unique μ∞ in Mmax( f ). Then
μ∞ has support in a periodic orbit, or there are no periodic points in the sup-
port of μ∞.
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Proof. If there is a x ∈ PER such that x ∈ supp(μ∞), then
(
iii) → ii)

)

μx ∈ Mmax( f ), so μ∞ = μx . �

Lemma 13. The function Ĩ : X → R ∪ {∞} is non-negative, lower semi-
continuous and for all cylinder k

inf
k∩X

Ĩ = inf
k∩PER

I.

Proof. It is trivial that Ĩ ≥ 0. Suppose x and {xm} in X are such that xm → x .
If Ĩ (x) = 0 there is nothing to prove. Suppose Ĩ (x) > 0. Take δ > 0 such that
Ĩ (x) > δ. By definition of Ĩ (x), there exists ε > 0 such that for all y ∈ PER
with d(x, y) < ε, we have that I (y) > δ. If m is large enough d(xm, x) < ε/2.
It follows that for large m

inf{I (y) : d(y, xm) ≤ ε/2} ≥ inf{I (y) : d(y, x) ≤ ε} ≥ δ.

Therefore, Ĩ (xm) ≥ δ, and finally

lim inf
m→∞

Ĩ (xm) ≥ δ.

As we take any δ < Ĩ (x), we have that

lim inf
m→∞

Ĩ (xm) ≥ Ĩ (x),

and this shows that Ĩ is lower semi-continuous. Now, for a fixed cylinder k,
we will show that:

inf
k∩X

Ĩ = inf
k∩PER

I.

We know that for any y ∈ k ∩ PER

Ĩ (y) = I (y),

then
inf
k∩X

Ĩ ≤ inf
k∩PER

Ĩ = inf
k∩PER

I.

We have to show that
inf
k∩X

Ĩ ≥ inf
k∩PER

I.

Consider xm a sequence of elements in k ∩ X such that Ĩ (xm) → infk∩X Ĩ .
Denote by x ∈ k ∩ X an accumulation point of {xm}. Then, as Ĩ is lower
semi-continuous

Ĩ (x) ≤ lim inf
m→∞

Ĩ (xm),
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that is,
Ĩ (x) = inf

k∩X
Ĩ .

From the definition Ĩ (x), there exists {ym} in k ∩ PER such that ym → x
and I (ym) → Ĩ (x). It follows that

inf
k∩X

Ĩ = Ĩ (x) ≥ inf
k∩PER

I. �

From this lemma and theorem 4 it follows that

Corollary 14. The probabilitiesμc,s satisfies a Large Deviation Principle with
deviation function Ĩ : for fixed L > 0, and for any cylinder k ⊂ X

lim
c(1−s)→L

1

c
logμc,s(k) = − inf

x∈k
Ĩ (x),

where Ĩ is lower semi-continuous and non-negative. The same is true if we have:

lim inf
c→∞, s→1

c(1 − s) = L > 0.

The equilibrium measures μc f for c f converge to μ∞ (when μ∞ ∈ Mmax( f )
is unique). According to [2] they satisfy a L.D.P. with deviation function IBLT :

That is, when μ∞ ∈ Mmax( f ) is unique, for any cylinder k ⊂ X = {0, 1}N

lim
c→∞

1

c
log(μc f (k)) = − inf

x∈k
IBLT (x).

The deviation function IBLT is non-negative, lower semi-continuous but is
finite only in the pre-images of points in the support of the maximizing proba-
bility.

We will show that:

Proposition 15. Suppose μ∞ is the unique maximizing probability for f as
above. Then, there exists a cylinder k such that

inf
x∈k

Ĩ 6= inf
x∈k

IBLT .

Proof. We fix a periodic point x such that IBLT (x) = ∞, and for each m we
consider the cylinder km = [x1 . . . xm]. We know that

Ĩ (x) = I (x) < ∞ and IBLT (x) = ∞.

As, for each m
inf

km∩X
Ĩ ≤ Ĩ (x),

we just have to show that:
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Claim. There exists m such that infkm∩X IBLT > Ĩ (x).

The proof will be by contradiction. Suppose that for any m, we have that
infkm∩X IBLT ≤ Ĩ (x). Then, for each m denote xm ∈ (km ∩ X) a point which
realizes infkm∩X IBLT . Therefore, we get a sequence xm → x , such that

lim inf
m→∞

IBLT (xm) ≤ Ĩ (x) < IBLT (x),

and this is in contradiction with the fact that IBLT is lower semi-continuous
[2]. �

6 The case c(1 − s) → 0

In the previous sections, under the condition c(1 − s) → L > 0, we get a L.D.P.
with deviation function Ĩ 6= IBLT .

This raises the question: what happens if c(1 − s) → 0? We will show here
that the final conclusion is quite different in this case. We have that:

Lemma 16. For each continuous function k : X → R

lim
s→1

μc,s(k) = μc f (k),

where μc f is the invariant equilibrium state for c f .

From this lemma, it is not surprise that:

Proposition 17. Suppose that μ∞ ∈ Mmax( f ) is unique and X = {0, 1}N. If
c(1 − s) → 0 fast enough, then for all cylinder k

lim
c(1−s)→0

1

c
log(μc,s(k)) = lim

c→∞

1

c
log(μc f (k)) = − inf

x∈k
IBLT (x),

where μc f is the invariant equilibrium state for c f .

We will need some results presented in [16].

Lemma 18. Consider g0 a real Lipschitz potential in Fθ .

a) If P(g0) < 0, then, for g close by g0 (in the Lipschitz norm)

∞∑

n=1

1

n
|
∑

Fixn

egn(x) | < ∞.
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b) If P(g0) = 0 then, for g close by g0 (in the Lipschitz norm)

∞∑

n=1

1

n

∣
∣
∣
∣
∣
∣

∑

x∈Fixn

egn(x) − en P(g)

∣
∣
∣
∣
∣
∣
< ∞.

Proof. For a) see page 80, Theo. 5.4 [16] and for b) see page 81 Theo. 5.5 (ii)
[16]. Note that for a real g we have the spectral radius ρ(Lg) = eP(g). �

Note that for s ∈ (0, 1) we have P(cs f − P(c f )) < 0, therefore, for any
k ∈ Fθ fixed

(s, z) →
∞∑

n=1

1

n

∑

Fixn

ecs f n+zkn−P(c f )n,

is analytic for s ∈ (0, 1) and |z| small (in a small neighborhood that depends of
s and c). When convenient z will be real.

From this the function

ζ(s, z) = exp




∞∑

n=1

1

n

∑

Fixn

ecs f n+zkn−P(c f )n



 ,

is not zero at z = 0, and is analytic for s ∈ (0, 1) and |z| small (in this small
neighborhood that depends on s and c). Therefore:

Proposition 19. If we denote the partial derivative of ζ in the variable z by
ζ2, then

ζ2(s, 0)

ζ(s, 0)
=

∞∑

n=1

∑

x∈Fixn

ecs f n−n P(c f ) k
n

n

is analytic for s ∈ (0, 1).

Moreover:

Proposition 20. For each real value c:

i) the function

α(s, z) = exp




∞∑

n=1

1

n








∑

Fixn

ecs f n+zkn−P(c f )n



 − en P(cs f +zk−P(c f ))







 ,

is analytic for s ∈ (0, 1] and z in a small neighborhood that depends
on s and c.
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ii) For s ∈ (0, 1) and z in a small neighborhood that depends on s and c

α(s, z) = ζ(s, z)
(
1 − eP(cs f +zk−P(c f ))

)
.

Proof. For ii) we just have to use

∞∑

n=1

1

n
zn = − log(1 − z), |z| < 1

Therefore, for s ∈ (0, 1) we have P(cs f + zk − P(c f )) < 0, for z in a small
neighborhood that depends on s and c. In particular, eP(cs f +zk−P(c f )) < 1 and
we can write

log
(
1 − eP(cs f +zk−P(c f ))

)
= −

∞∑

n=1

1

n
en P(cs f +zk−P(c f )).

It follows that:

α(s, z) = exp




∞∑

n=1

1

n








∑

F I Xn

ecs f n+zkn−P(c f )n



 − en P(cs f +zk−P(c f ))









= exp




∞∑

n=1

1

n

∑

Fixn

ecs f n+zkn−P(c f )n



 exp

(

−
∞∑

n=1

1

n
en P(cs f +zk−P(c f ))

)

= ζ(s, z) elog(1−eP(cs f +zk−P(c f ))

= ζ(s, z)
(
1 − eP(cs f +zk−P(c f ))

)
.

Now we prove i).
When s ∈ (0, 1), we just have to use ii) and the fact that P is analytic. When

s = 1 we have to use the previous lemma (b) and the fact that exp is analytic.�

As α(s, 0) 6= 0, we can calculate α2(s,0)
α(s,0) . Then we get:

Lemma 21. The function α2(s,0)
α(s,0) is analytic for s ∈ (0, 1] and z in a small

neighborhood that depends on s and c.
For s ∈ (0, 1)

α2(s, 0)

α(s, 0)
=
ζ2(s, 0)

ζ(s, 0)
−

eP(cs f )−P(c f )

1 − eP(cs f )−P(c f )

∫
kdμcs f .
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Proof. We remark that ∂P(cs f +zk)
∂z

∣
∣
∣
z=0

=
∫

kdμcs f (see [16] page 60).

For s ∈ (0, 1) we have

α(s, z) = ζ(s, z)
(
1 − eP(cs f +zk−P(c f ))

)
,

then

α2(s, 0)

α(s, 0)
=

ζ2(s, 0)(1 − eP(cs f )−P(c f ))− ζ(s, 0)eP(cs f )−P(c f ) ∂P(cs f +zk)
∂z

∣
∣
∣
z=0

ζ(s, 0)(1 − eP(cs f )−P(c f ))

=
ζ2(s, 0)

ζ(s, 0)
−

eP(cs f )−P(c f )

1 − eP(cs f )−P(c f )

∂P(cs f + zk)

∂z

∣
∣
∣
∣
z=0

=
ζ2(s, 0)

ζ(s, 0)
−

eP(cs f )−P(c f )

1 − eP(cs f )−P(c f )

∫
kdμcs f .

�

Now we will show the proof of Lemma 16.

Proof. Fix a cylinder k. We know that

∞∑

n=1

∑

x∈Fixn

ecs f n−n P(c f ) k
n

n
=
ζ2(s, 0)

ζ(s, 0)
=
α2(s, 0)

α(s, 0)
+

eP(cs f )−P(c f )

1 − eP(cs f )−P(c f )

∫
kdμcs f .

This means

1 − eP(cs f )−P(c f )

eP(cs f )−P(c f )

∞∑

n=1

∑

x∈Fixn

ecs f n−n P(c f ) k
n

n

=
1 − eP(cs f )−P(c f )

eP(cs f )−P(c f )

α2(s, 0)

α(s, 0)
+

∫
kdμcs f .

We can also consider the same reasoning for k ≡ 1. Now, taking the quotient
we get

μc,s(k) =

1 − eP(cs f )−P(c f )

eP(cs f )−P(c f )

α2(s, 0)

α(s, 0)
+

∫
kdμcs f

1 − eP(cs f )−P(c f )

eP(cs f )−P(c f )

β2(s, 0)

β(s, 0)
+ 1

, (5)

where β represents the function α when k ≡ 1.
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It is known that for fixed c, the value
∫

kdμcs f depends in a continuous way
on s (it’s the derivative in z = 0 of P(c s f + z k). Then when we take s → 1
on (5) we have

lim
s→1

μc,s(k) = μc f (k).

Now, when g : X → R is continuous, we approximate by functions that can be
written as linear combinations of characteristic functions of cylinders and repeat
the argument on proof of Theorem 3. So

g → lim
s→1

μc,s(g)

is a measure and have the same value that μc f on cylinders. Then

lim
s→1

μc,s(g) = μc f (g). �

Now we will show the proof of Proposition 17.

Proof. We just have to investigate cylinders k such that μ∞(k) = 0. Consider
a enumeration k1, k2, . . . of all cylinders such that μ∞(k) = 0. We begin with a
fixed ki with this property and denote this by k.

For fixed c, the value
∫

kdμcs f depends in a continuous way on s. In par-
ticular, as μcs f are Gibbs states and therefore positive in open sets, then∫

kdμc s f > 0 for each s. It follows that

Ac = inf
s∈[1/2,1]

∫
kdμc s f > 0.

As for each fixed c, (with the notation of the proof above)

β2(s, 0)

β(s, 0)
and

α2(s, 0)

α(s, 0)

are analytic on s = 1, and, as for each fixed c

1 − eP(cs f )−P(c f )

eP(cs f )−P(c f )

s→1
→ 0,

then, we can find for each c, a value si
c (remark that i is the index of the cylin-

der k = ki fixed) such that c(1 − si
c) → 0, and if si

c < s < 1:

a) −1/2 <
1 − eP(cs f )−P(c f )

eP(cs f )−P(c f )

β2(s, 0)

β(s, 0)
< 1/2;
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b) −

∫
kdμcs f

2
≤ −Ac/2 <

1 − eP(cs f )−P(c f )

eP(cs f )−P(c f )

α2(s, 0)

α(s, 0)
< Ac/2 ≤

∫
kdμcs f

2
.

It follows from (5) above that for each c and si
c < s < 1:

−
∫

kdμcs f

2 +
∫

kdμcs f

3/2
≤ μc,s(k) ≤

∫
kdμcs f

2 +
∫

kdμcs f

1/2
.

This means
∫

kdμcs f

3
≤ μc,s(k) ≤ 3

∫
kdμcs f .

The conclusion is

lim
(c→∞, si

c<s<1)

1

c
log(μc,s(k)) = lim

(c→∞, si
c<s<1)

1

sc
log(μc,s(k))

= lim
(c→∞, si

c<s<1)

1

sc
log(μcs f (k))

= − inf
x∈k

IBLT (x).

We remember that in this argument k is fixed. For each ki we have a associa-
tion c → si

c described above. Consider now the association c → sc, where for
each integer n > 0:

c ∈ [n, n + 1) ⇒ sc = sup
i∈{1,...,n}

si
c < 1.

Then for each cylinder ki we have that c > i ⇒ si
c < sc, so has above

lim
c→∞, sc<s<1

1

c
log(μc,s(k)) = lim

c→∞, s j
c<s<1

1

c
log(μc,s(k))

= − inf
x∈k

IBLT (x).

�

7 About the measures πc,N and ηc,N

There are other ways to approximate μc f and μ∞: we can use, for example, the
measures πc,N and ηc,N , c ∈ R and N ∈ N, given by

πc,N (k) =

∑N
n=1

∑
x∈Fixn

ec f n(x)−n P(c f ) kn(x)
n∑N

n=1

∑
x∈Fixn

ec f n(x)−n P(c f )
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and

ηc,N (k) =

∑N
n=1

∑
x∈Fixn

ec f n(x) kn(x)
n∑N

n=1

∑
x∈Fixn

ec f n(x)
.

We will prove:

Lemma 22. For fixed c and continuous g : X → R:

lim
N→∞

πc,N (g) = lim
N→∞

ηc,N (g) = μc f (g),

where μc f is the Gibbs state for c f .

After that we will analyze what happens when c → ∞, simultaneously, with
N → ∞. We prove that:

Theorem 23. When c, N → ∞ any accumulation point of πc,N (or ηc,N ) is
in Mmax( f ). Moreover, if g : X → R is a continuous function, c j → ∞ and
N j → ∞, are such that there exist

lim
j→∞

πc j ,N j (g),

then, this limit is
∫

gdμ for some accumulation point μ of πc,N in the weak*
topology. (the same happens for ηc,N ).

In particular, if μ∞ is unique in Mmax( f ), then for any continuous g : X → R

lim
c,N→∞

πc,N (g) = lim
c,N→∞

ηc,N (g) =
∫

gdμ∞.

We also study this result for πc,N in order to get a L.D.P..

Theorem 24. Suppose f is Lipschitz. Then for all cylinder k ⊂ X

lim
N
c →0

1

c
log(πc,N (k)) = − inf

x∈k, x∈Per
I (x) = − inf

x∈k
Ĩ (x).

We point out that we take c, N → ∞.

We start with the proof of Lemma 22:
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Proof. By Lemma 21 the function

α2(s, 0)

α(s, 0)
=

∞∑

n=1








∑

Fixn

ecs f n−n P(c f ) k
n

n



 − en P(cs f )−n P(c f )
∫

kdμcs f





is analytic on s = 1.

Then:

−∞ <
α2(1, 0)

α(1, 0)
=

∞∑

n=1








∑

Fixn

ec f n−n P(c f ) k
n

n



 −
∫

kdμc f



 < ∞.

So 


∑

Fixn

ec f n−n P(c f ) k
n

n



 n→∞
→

∫
kdμc f . (6)

Then, ∑
Fixn

ec f n−n P(c f ) kn

n∑
Fixn

ec f n−n P(c f )

n→∞
→

∫
kdμc f ,

and ∑
Fixn

ec f n kn

n∑
Fixn

ec f n

n→∞
→

∫
kdμc f .

Now we use the following well known result:

“Let an and bn sequences of real numbers ≥ 0. Suppose that an
bn

→ L , and there
is ε > 0 such that an > ε and bn > ε, n >> 0 .

Then
∑N

n=1 an
∑N

n=1 bn
goes to L when N → ∞.”

We have then (using (6) in order to get the > ε property) that for k > 0 (or,
cylinder sets):

lim
N→∞

πc,N (k) = lim
N→∞

∑N
n=1

∑
Fixn

ec f n−n P(c f ) kn

n∑N
n=1

∑
Fixn

ec f n−n P(c f )
=

∫
kdμc f ,

and

lim
N→∞

ηc,N (k) = lim
N→∞

∑N
n=1

∑
Fixn

ec f n kn

n∑N
n=1

∑
Fixn

ec f n
=

∫
kdμc f .

When g : X → R is continuous, we use aproximation arguments. �
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Now we prove the Theorem 23:

Proof. We start with πc,N . Using the same arguments that we used in Theo-
rem 3 we only need prove that

lim inf
c,N→∞

πc,N ( f ) ≥ β( f ).

We will use the same notations and ideas that Lemma 7, so for fixed ε > 0 we
only need prove that:

∑N
n=1

∑
x∈An

ec f n−n P(c f )

∑N
n=1

∑
x∈Bn

ec f n−n P(c f )

c,N→∞
→ 0.

Now:
N∑

n=1

∑

x∈An

ec f n−n P(c f ) ≤
N∑

n=1

∑

x∈An

ecn(β( f )−ε)−ncβ( f )−nεc

=
N∑

n=1

∑

x∈An

e−ncε−nεc

≤
N∑

n=1

e−ncε+n log(d)

≤
e−cε+log(d)

1 − e−cε+log(d)
.

On the other hand, by lemma 2, there exists a periodic point x such that:

I (x) = nx

(
β( f )−

f nx (x)

nx

)
< ε/2.

Therefore,

N∑

n=1

∑

x∈Bn

ec f n−n P(c f ) ≥ ecf nx (x)−nx P(c f )

= e−cI (x)−nx εc

≥ e−cε/2−nx εc .

It follows that
∑N

n=1

∑
x∈An

ec f n−n P(c f )

∑N
n=1

∑
x∈Bn

ec f n−n P(c f )
≤

e−cε+log(d)

e−cε/2−nx εc

1

1 − e−cε+log(d)
→ 0.
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Now we consider ηc,N :
In the same way as above, using the same notations and ideas of Lemma 7,

we only need prove that for ε > 0 fixed:
∑N

n=1

∑
x∈An

ec f n

∑N
n=1

∑
x∈Bn

ec f n

c,N→∞
→ 0.

We have

N∑

n=1

∑

x∈An

ec f n
≤

N∑

n=1

∑

x∈An

ecn(β( f )−ε) ≤
N∑

n=1

ecn(β( f )−ε)+n log(d)

= ec(β( f )−ε)+log(d) e
cN (β( f )−ε)+N log(d) − 1

ec(β( f )−ε)+log(d) − 1
.

By the other side, there exists a periodic point x such that:

f nx (x)

nx
> β( f )− ε/2.

Therefore,

N∑

n=1

∑

x∈Bn

ec f n
≥

[N/nx ]∑

j=1

ecj f nx (x) ≥
[N/nx ]∑

j=1

ecjnx (β( f )−ε/2)

≥ ecnx (β( f )−ε/2) e
c[N/nx ]nx (β( f )−ε/2) − 1

ecnx (β( f )−ε/2) − 1
.

It follows that

∑N
n=1

∑
x∈An

ec f n

∑N
n=1

∑
x∈Bn

ec f n
≤

ec(β( f )−ε)+log(d) e
cN (β( f )−ε)+N log(d) − 1

ec(β( f )−ε)+log(d) − 1

ecnx (β( f )−ε/2)
ec[N/nx ]nx (β( f )−ε/2) − 1

ecnx (β( f )−ε/2) − 1

=
ecN (β( f )−ε)+N log(d) − 1

ec[N/nx ]nx (β( f )−ε/2) − 1

ec(β( f )−ε)+log(d)

ec(β( f )−ε)+log(d) − 1

×
ecnx (β( f )−ε/2) − 1

ecnx (β( f )−ε/2)
.

Now, we have:

lim
c,N→∞

ecnx (β( f )−ε/2) − 1

ecnx (β( f )−ε/2)
= 1 and lim

c,N→∞

ec(β( f )−ε)+log(d)

ec(β( f )−ε)+log(d) − 1
= 1.
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By the other side,

lim
c,N→∞

ecN (β( f )−ε)+N log(d) − 1

ecN (β( f )−ε)
= 1 and lim

c,N→∞

ec[N/nx ]nx (β( f )−ε/2) − 1

ecN (β( f )−ε/2)
= 1.

Then

lim
c,N→∞

ecN (β( f )−ε)+N log(d) − 1

ec[N/nx ]nx (β( f )−ε/2) − 1
= lim

c,N→∞

ecN (β( f )−ε)

ecN (β( f )−ε/2)
= 0.

So we have
∑N

n=1

∑
x∈An

ec f n

∑N
n=1

∑
x∈Bn

ec f n

c,N→∞
→ 0.

Now, given g, c j → ∞ and N j → ∞, such that exist lim j→∞ πc j ,N j (g), we
repeat the proof for μc,s and obtain an accumulation point π∞ such that

lim
j→∞

πc j ,N j (g) = π∞(g).

The same is true for ηc,N . �

Now we prove the Theorem 24:

Proof. We just repeat the ideas used in the proof of Theorem 4. We only need
to prove that

lim
N/c→0

1

c
log




N∑

n=1

∑

x∈Fixn

ec f n−n P(c f ) k
n

n



 = − inf
x∈k, x∈Per

I (x).

First we will show the lower inequality:

lim inf
N/c→0

1

c
log




N∑

n=1

∑

x∈Fixn

ec f n−n P(c f ) k
n

n



 ≥ − inf
x∈k, x∈Per

I (x).

Consider a generic point x ∈ k which is part of a periodic orbit {x, . . . ,
σ nx −1x}. For N >> 1 we use that:

N∑

n=1

∑

x∈Fixn

ec f n−n P(c f ) k
n

n
≥

∑

{x,...,σ (nx −1)x}

ecf nx −nx P(c f ) k
nx

nx

= ecf nx (x)−nx P(c f )knx (x) ≥ ecf nx (x)−nx P(c f ) = e−cI (x)−nx εc .
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From this follows that

lim inf
c,N→∞

1

c
log




N∑

n=1

∑

x∈Fixn

ec f n−n P(c f ) k
n

n



 ≥ −I (x).

Now we will show the upper inequality

lim sup
N/c→0

1

c
log




N∑

n=1

∑

x∈Fixn

ec f n−n P(c f ) k
n

n



 ≤ − inf
x∈k, x∈PER

I (x).

We will denote the value inf x∈k, x∈PER I (x) by I . Then:

N∑

n=1

∑

x∈Fixn

ec f n−n P(c f ) k
n

n
≤

N∑

n=1

∑

x∈Fixn

e
−cn

(
β( f )− f n

n

)
−nεc kn

n

≤
N∑

n=1

∑

x∈Fixn

e−cI−nεc
kn

n
≤

N∑

n=1

e−cI−nεc+n log(d)

= e−cI e−εc+log(d) e
−Nεc+N log(d) − 1

e−εc+log(d) − 1
.

It follows that

lim sup
N/c→0

1

c
log




N∑

n=1

∑

x∈Fixn

ec f n−n P(c f ) k
n

n



 ≤ −I −
−Nεc + N log(d)

c
= −I.

�
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