The Group of Units of the Integral Group Ring $\mathbb{Z}D_4^*$

CÉSAR POLCINO MILIES

Introduction and Notation. The study of the multiplicative group of a group ring started in 1940 with a well-known paper due to G. Higman [3]. Many results on this topic have been published in recent years; however, few examples have been computed.

Recently, Hughes and Pearson [4] studied the group of units of the integral group ring $\mathbb{Z}S_3$, where S_3 is the symmetric group on three symbols. Using similar methods we study here the group of units of the integral group ring $\mathbb{Z}D_4$ where D_4 stands for the Dihedral Group of eight elements; i.e. the group with two generators a and b and relations:

$$a^4 = b^2 = baba = 1$$

For an arbitrary group G we introduce the following notation: $U(\mathbb{Z}G)$ will stand for the group of units of the group ring ZG. The elements of the form $\pm g$, with g in G, are the *trivial units* of $\mathbb{Z}G$.

The homomorphism $\varepsilon: \mathbb{Z}G \longrightarrow \mathbb{Z}$ such that $\varepsilon(g) = 1$ for every g in G is called the *augmentation function*. We denote by $V(\mathbb{Z}G)$ the normal subgroup of units $u \in \mathbb{Z}G$ such that $\varepsilon(u) = 1$. An element u in $V(\mathbb{Z}G)$ is called a *normalized unit*. Finally, an automorphism θ of $\mathbb{Z}G$ is said to be *normalized* if $\varepsilon \circ \theta(g) = 1$ for all g in G.

The following questions were raised in [4]:

- (a) Is every unit of finite order in $\mathbb{Z}G$ conjugate to a trivial unit?
- (b) What are the maximal finite subgroups of $U(\mathbb{Z}G)$?
- (c) Is every normalized automorphism of $\mathbb{Z}G$ the product of an inner automorphism and an automorphism of G?

^{*}Recebido pela SBM em 12 de setembro de 1974.

We answer these questions in connection to this particular case. A brief communication of these results was published in [6].

1. The Group of Units. It is well-known that there exists an isomorphism:

$$\phi: \mathbb{Q}D_4 \longrightarrow \mathbb{Q} \oplus \mathbb{Q} \oplus \mathbb{Q} \oplus \mathbb{Q} \oplus M_2(\mathbb{Q})$$

where $M_2(\mathbb{Q})$ stands for the full ring of 2×2 matrices over the field of rational numbers, such that:

$$\phi(a) = \begin{pmatrix} 1, & 1, & -1, & -1, & \begin{vmatrix} 0 & -1 \\ 1 & & 0 \end{vmatrix} \end{pmatrix}$$

$$\phi(b) = \begin{pmatrix} 1, & -1, & 1, & -1, & \begin{vmatrix} 0 & 1 \\ 1 & & 0 \end{vmatrix} \end{pmatrix}$$

Consider D_4 as a \mathbb{Q} -basis of $\mathbb{Q}D_4$ and the canonical basis of the direct sum. Regarding ϕ as a \mathbb{Q} -isomorphism, we readily see that its matrix with respect to these bases is:

From the expression of A^{-1} it follows that an element

$$\chi = \left(x_1, x_2, x_3, x_4, \left| \begin{array}{c} x_5 & x_6 \\ x_7 & x_8 \end{array} \right| \right) \in \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus M_2(\mathbb{Z})$$

belongs to $\phi(\mathbb{Z}D_4)$ if and only if:

(3)
$$x_1 + x_2 + x_3 + x_4 + 2x_5 + 2x_8 \equiv 0 \pmod{8}$$

and seven other congruence equations obtained from the rows of A^{-1} are satisfied.

Reducing this system we see that it is equivalent to the following:

(i)
$$x_1 + x_2 + x_3 + x_4 + 2x_5 + 2x_8 \equiv 0 \pmod{8}$$

(ii)
$$x_2 + x_3 + 2x_8 \equiv 0 \pmod{4}$$

(4) (iii)
$$x_3 - x_4 - x_5 - x_6 - x_7 + x_8 \equiv 0 \pmod{4}$$

(iv)
$$x_4 + x_5 + x_7 \equiv 0 \pmod{2}$$

$$(v) x_5 + x_8 \equiv 0 \pmod{2}$$

$$(vi) x_6 + x_7 \equiv 0 \pmod{2}$$

If we also want χ to belong to $\phi(U(\mathbb{Z}D_4))$ we see that we must have $x_i = \pm 1$, i = 1, 2, 3, 4 and $x_5x_8 - x_6x_7 = \pm 1$.

An elementary computation shows that given a matrix $X = \begin{bmatrix} x_5 & x_6 \\ x_7 & x_8 \end{bmatrix}$ in $GL(2,\mathbb{Z})$ verifying equations (v) and (vi) of (4) there exist x_i , i=1,2,3,4 such that $X=(x_1,x_2,x_3,x_4,X)\in\phi(U(\mathbb{Z}D_4))$ if and only if one of the following conditions also holds:

(5) (i)
$$x_8 \equiv 1 \pmod{2}$$
; $x_5 + x_6 + x_7 - x_8 \equiv 0 \pmod{4}$; $x_5 + x_8 \equiv 2 \pmod{4}$

(ii)
$$x_8 \equiv 1 \pmod{2}$$
; $x_5 + x_6 + x_7 - x_8 \equiv 2 \pmod{4}$; $x_5 + x_8 \equiv 0 \pmod{4}$

(iii)
$$x_8 \equiv 0 \pmod{2}$$
; $x_5 + x_8 \equiv 0 \pmod{4}$

We shall note by Ω the subgroup of $GL(2,\mathbb{Z})$ formed by those matrices verifying conditions (v) and (vi) of (4) and any one of the conditions in (5). For any element $X \in \Omega$ the same computation shows that there exist exactly two elements in $\phi(U(\mathbb{Z}D_4))$ whose last component is X. In fact, if $\delta = \pm 1$ and X is in Ω we have:

(6) If (i) of (5) holds, then
$$\chi = (\delta, \delta, \delta, \delta, X) \in \phi(U(\mathbb{Z}D_4))$$
.
If (ii) of (5) holds, then $\chi = (\delta, \delta, -\delta, -\delta, X) \in \phi(U(\mathbb{Z}D_4))$.

Finally, if (iii) of (5) holds, we must consider two cases:

(a) If
$$x_5 + x_6 + x_7 - x_8 \equiv 0 \pmod{4}$$
 also holds, then
$$\chi = (\delta, \delta, -\delta, -\delta, X) \in \phi(U(\mathbb{Z}D_4)).$$

(b) If
$$x_5 + x_6 + x_7 - x_8 \equiv 2 \pmod{4}$$
 holds, then
$$\chi = (\delta, -\delta, \delta, -\delta, X) \in \phi(U(\mathbb{Z}D_4)).$$

If $\alpha \in U(\mathbb{Z}D_4)$ is such that $\phi(\alpha) = (x_1, x_2, x_3, x_4, X)$, it is easy to see that:

$$\varepsilon(\alpha) = x_1.$$

Hence, for any $X \in \Omega$ there exists only one element in $\phi(V(\mathbb{Z}D_4))$ whose last component is X. Thus:

(8)
$$V(\mathbb{Z}D_4) \simeq \Omega$$
 and $U(\mathbb{Z}D_4) \simeq \{\pm 1\} \times \Omega$.

Now we collect some information about Ω . First it can be shown that

$$[GL(2,\mathbb{Z}):\Omega]=6.$$

Actually:

$$w_{1} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}, \quad w_{2} = \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix}, \quad w_{3} = \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix},$$

$$w_{4} = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}, \quad w_{5} = \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix}, \quad w_{6} = \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix},$$

is a complete set of representatives of the left cosets of Ω in $GL(2, \mathbb{Z})$.

We shall show that the elements of finite order in Ω can only have orders equal to 2 or 4. It is easy to see that an element of finite order in $GL(2, \mathbb{Z})$ can only have order equal to 2, 3, 4 or 6. The result will then follow from:

PROPOSITION 1. Let G be a finite p-group. Then a normalized unit of finite order in $U(\mathbb{Z}G)$ has order a power of p.

PROOF. Let α be a normalized unit of finite order in $\mathbb{Z}G$ and let J_p be the field with exactly p elements.

The natural homomorphism $\psi \colon \mathbb{Z} \to J_p$ can be extended in the usual way to a homomorphism $\psi^* \colon U(\mathbb{Z}G) \to U(J_pG)$ which carries $\langle \alpha \rangle$, the finite subgroup generated by α , onto a subgroup of units of J_pG .

Now, if an element $x = \sum_i x_i g_i \in U(\mathbb{Z}G)$ belongs to $Ker(\psi^*)$ and g_1 stands for the identity element in G, then $x_1 = 1$.

Since every element in $\langle \alpha \rangle$ is of finite order, and Berman [1] has shown that an element of finite order in an integral group ring other than \pm 1 must be such that $x_1 = 0$, it follows that $\langle \alpha \rangle$ is isomorphic to its image in $V(J_pG)$.

Finally, if G is a p-group, then:

$$V(J_pG) = \{ v \in J_pG \mid \varepsilon(v) = 1 \}$$

and a direct computation shows that:

$$|V(J_pG)| = p^{|G|-1},$$

thus every element has order a power of p.

2. The Conjugacy Problem. To give a negative answer to question (a) we shall study the conjugacy classes of elements of order 2 in $U(\mathbb{Z}D_4)$.

It is known that there are three such classes in $GL(2, \mathbb{Z})$. One of them is the class with one element $C_0 = \{-I\}$. The other two are:

$$C_1 = \left\{ X = \begin{vmatrix} a & b \\ c & -a \end{vmatrix} \mid a^2 + bc = 1; \ a \text{ odd}; \ b, \ c \text{ even} \right\}$$

$$C_2 = \left\{ X = \begin{vmatrix} a & b \\ c & -a \end{vmatrix} \mid a^2 + bc = 1; \ X \notin C_1 \right\}$$

(See [4]).

PROPOSITION 2. There are five conjugacy classes of elements of order 2 in Ω .

PROOF. First, we shall see that an element $Y \in \Omega \cap C_1$ is conjugate either to $X_1 = \begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix}$ or to $Y_1 = \begin{vmatrix} 1 & 4 \\ 0 & -1 \end{vmatrix}$ in Ω .

In fact, there exists $u \in GL(2, \mathbb{Z})$ such that $uYu^{-1} = X_1$. Since $u = w_i\alpha$ for some α in Ω and some i = 1, ..., 6, we have:

(9)
$$\alpha Y \alpha^{-1} = w_i^{-1} X_1 w_i.$$

If i=1 then $u \in \Omega$ and we are done. If $i=3,\ldots,6$ we see that $w_i^{-1}X_1w_i$ is not in Ω and equation (9) is impossible. Finally, $w_2^{-1}X_1w_2=Y_1$ and it is easy to see that X_1 and Y_1 are not conjugate in Ω .

It can be shown in the same way that an element $Y \in \Omega \cap C_2$ is conjugate either to $X_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ or to $Y_2 = \begin{bmatrix} -2 & -3 \\ 1 & 3 \end{bmatrix}$ in Ω . These two elements are not conjugate in this group.

COROLLARY. Not every normalized unit of finite order is conjugate to an element in D_4 .

PROOF. Let π be the natural projection of the direct sum onto $M_2(\mathbb{Q})$. The elements of order two in D_4 are: a^2 , b, a^2b , a^3b . But: $\pi \circ \phi(a^2) = -I$; $\pi \circ \phi(b)$, $\pi \circ \phi(a^2b) \in X_1\Omega$; $\pi \circ \phi(ab)$, $\pi \circ \phi(a^3b) \in X_2\Omega$.

Thus the elements α in $V(\mathbb{Z}D_4)$ such that $\pi \circ \phi(\alpha)$ belongs either to $Y_1\Omega$ or to $Y_2\Omega$ are normalized units of order two and they are not conjugate to an element in D_4 .

3. The Maximal Subgroups. After the preceding results, in order to answer question (b) we need only to study the maximal finite subgroups of Ω .

It follows from well-known results about the finite subgroups of $GL(2, \mathbb{Z})$ (see [5] Chapter IX § 14) and Proposition 1, that any maximal subgroup of Ω is conjugate in $GL(2, \mathbb{Z})$ to the subgroup D_4^* of Ω generated by

$$A = \begin{vmatrix} 0 & -1 \\ 1 & 0 \end{vmatrix}$$
 and $B = \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix}$.

Let Γ be such a subgroup and let $V \in GL(2, \mathbb{Z})$ be a matrix such that

(10)
$$\Gamma^V = V \Gamma V^{-1} = D_A^*.$$

Then, we can choose generators X, Y of Γ such that

$$(11) X^V = A, Y^V = B.$$

Since $Y \in C_2$, it is conjugate in Ω either to $X_2 = B$ or to Y_2 .

Suppose first that there exists U in Ω such that

$$(12) Y^U = B$$

From (11) and (12) it follows easily that

$$U^{-1}V \in Z(B) = \{+I, +B\}$$

the centralizer of B in $GL(2, \mathbb{Z})$, thus

$$(13) V = \pm U or V = \pm UB.$$

In both cases Γ and D_4^* are conjugate in Ω .

Now, if there exists U in Ω such that

$$(14) Y^U = Y_2$$

it can be seen in a similar way that

$$VU^{-1}W^{-1} \in Z(B),$$

where $W = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \in \mathbf{GL}(2, \mathbb{Z})$ is such that $Y_2^W = B$. Thus we obtain:

$$(15) V = \pm WU or V = \pm BWU.$$

In the first case we have:

(16)
$$X^{U} = W^{-1}AW = \begin{vmatrix} -2 & -5 \\ 1 & 2 \end{vmatrix} = A'$$

and in the second case we have:

(17)
$$X^{U} = W^{-1}B^{-1}ABW = \begin{vmatrix} 2 & 5 \\ -1 & -2 \end{vmatrix} = A^{\prime 3},$$

which are both in Ω . Collecting the information above we state:

PROPOSITION 3. A maximal finite subgroup Γ of Ω is conjugate to one of the following subgroups: $D_4^* = \langle A, B \rangle$, $D_4' = \langle A', Y_2 \rangle$.

4. The Normalized Automorphisms. Let $\psi: \mathbb{Z}D_4 \longrightarrow \mathbb{Z}D_4$ be the function defined on the generators of D_4 by:

(18)
$$\psi(a) = 2a - a^3 - b + ab + a^2b - a^3b, \psi(b) = a - a^3 + ab + a^2b - a^3b.$$

since $\psi(a)^4 = \psi(b)^2 = \psi(b)\psi(a)\psi(b)\psi(a) = 1$, ψ can be extended in an obvious way to D_4 and linearly to a morphism of $\mathbb{Z}D_4$.

Computing the matrix associated to ψ in the basis of $\mathbb{Z}D_4$ given by the elements in D_4 it is easy to prove that ψ is actually an automorphism.

Suppose that ψ is the product of an automorphism of D_4 by an inner automorphism γ_u defined by $\gamma_u = uxu^{-1}$, $\forall x \in \mathbb{Z}D_4$, with $u \in V(\mathbb{Z}D_4)$. Let $f: V(\mathbb{Z}D_4) \to \Omega$ be the isomorphism in (8), and $\gamma_U: \Omega \to \Omega$ the inner automorphism defined by U = f(u). Then we have a commutative diagram:

Therefore:

$$\gamma_U(D_4^*) = f \circ \psi(D_4).$$

Finally: $f \circ \psi(a) = A'$ and $f \circ \psi(b) = Y_2$.

So in (19) we would have $\gamma_U(D_4^*) = D_4'$ contradicting proposition 3.

The example above shows that the answer to question c is negative.

References

- [1] S. D. BERMAN, On the equation $x^m = 1$ in an integral group ring, Ukran, Mat. Z., (1955) 253-261.
- [2] J. A. COHN and D. LIVINGSTONE, On the structure of group algebras 1, Can. J. of Math., 17, 4, (1965), 583-593.
- [3] G. HIGMAN, *The units of group rings*, Proc. London Math. Soc., 2, 4, (1940), 231-248.
- [4] I. HUGHES and K. R. PEARSON, The group of units of the integral group ring $\mathbb{Z}S_3$, Can. Math. Bull., 15, 4, (1972), 529-534.
- [5] M. NEWMAN, Integral Matrices, Academic Press, New York, 1972.
- [6] C. POLCINO, On the nilpotency of the group of units of group rings, Anais. Acad. Brasileira de Ciências, to appear.

Instituto de Matemática e Estatística Universidade de São Paulo São Paulo - BRASIL