‘'The Group of Units of the Integral Group Ring ZDy*

CESAR POLCINO MILIES

Introduction and Notation. The study of the multiplicative group of a
group ring started in 1940 with a well-known paper due to G. Higman [3].
Many results on this topic have been published in recent years; however,
few examples have been computed.

Recently, Hughes and Pearson [4] studied the group of units of the integral
group ring ZS5 , where S5 is the symmetric group on three symbols. Using
similar methods we study here the group of units of the integral group
ring ZD, where D, stands for the Dihedral Group of eight elements:
ie. the group with two generators a and b and relations:

a* = b? = baba = 1
For an arbitrary group G we introduce the following notation: U(ZG)
will stand for the group of units of the group ring ZG. The elements of
the form + g, with g in G, are the trivial units of ZG.
The homomorphism &: ZG — Z such that &(g) = 1 for every ¢ in G is
called the augmentation function. We denote by V(ZG) the normal sub-
group of units u € ZG such that &(u) = 1. An element u in V(ZG) is called
a normalized unit. Finally, an automorphism 6 of ZG is said to be nor-
malized if €. 0(g) = 1 for all g in G.
The following questions were raised in [4]:
(a) Is every unit of finite order in ZG conjugate to a trivial unit?

(b) What are the maximal finite subgroups of U(ZG)?

(c) Is every normalized automorphism of ZG the product of an inner
automorphism and an automorphism of G?

*Recebido pela SBM em 12 de setembro de 1974.
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We answer these questions in connection to this particular case. A brief
communication of these results was published in [6].

1. The Group of Units. It is well-known that there exists an isomorphism:
1) $:QD, - Q0 Qe Qe Q@ M(Q)

where M,(Q) stands for the full ring of 2 x 2 matrices over the field of
rational numbers, such that:

0
¢(a)=<1a L, -1 -1 ‘1 OD

¢(b)=<1, St i 1)

Pl s
Consider D, as a Q-basis of @D, and the canonical basis of the direct
sum. Regarding ¢ as a Q-isomorphism, we readily see that its matrix
with respect to these bases is:

2

D 200 ©O% I R . R | Y.l k1. 2. 8.0 2
1.1 1:1-1-1-1-1 1 1-1-1 0-2 2 0
1o el wdiideed bivd Byl 2 Bnll—2
bl 3=t Yok 30 AT o e T 0
A5 g popsgogior @ WIS SRR Pl OB gob
(0} Kl Ul i G D 0, i ey [ eoio, A R 0 0.
01 0-110-10 1-1 1-1 .0-2-2 0
1. 0-1. 6.8 1T 0-1 1-1-1 1.2 0. 0-2
From the expression of 47! it follows that an element
x=<x1,xz,x3,x4, by j:)eZ@Z@Z@Z@Mz(Z)

belongs to ¢(ZD,) if and only if:
3) X1 4+ X2 + X3 + X4 + 2x5 + 2xg =0 (mod 8)

and seven other congruence equations obtained from the rows of Wit
are satisfied.

Reducing this system we see that it is equivalent to the following:
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(1) x1 + x2 + x3 + x4 + 2x5 + 2xg = 0 (mod 8)
(11) X2 + X3 + 2x3 = 0 (mod 4)
@ (%11) X3 — X4 — X5 — X¢ — X7 + xg =0 (mod 4)
(iv) X4 + X5 + x4 =0 (mod 2)
(v? : Xs + xg =0 (mod 2)
(vi) X¢ + X7 =0 (mod 2)

If we also'want % to belong to ¢(U(ZD,)) we see that we must have
xi==x1,i=1,2 3,4 and xsxg — x¢x7 = + 1.

X7 X
GL(2, Z) verifying equations (v) and (vi) of (4) there exist X b= I 28

such that X = (>§1 » X2, X3, X4, X) € (U(ZDy,)) if and only if one of the
following conditions also holds:

An elementary computation shows that given a matrix X = |*3 x6l in

) (1) xg =1(mod 2); xs+x6+x7—xg =0(mod 4); x5+xg = 2(mod 4)
(11) xg =1(mod 2); xs+x6+x7—xg =2(mod 4); xs5+xg = 0 (mod 4)
(iii) xg = 0 (mod 2); x5 + xg = 0 (mod 4)

We. shall note.k')y Q the subgroup of GL(2, Z) formed by those matrices
verifying conditions (v) and (vi) of (4) and any one of the conditions in (5).
For any element X €Q the same computation shows that there exist

exactly two elements in ¢(U(ZD,)) whose last component is X. In fact,
if =41 and X is in Q we have:

(6) If (i) of (5) holds, then x = (5,3,3,3, X)e $(UZD,)).
If (ii) of (5) holds, then y = (5,5, 5,~ 8, X) € p(U(ZD,)).

Finally, if (iii) of (5) holds, we must consider two cases:

(@) If xs + x6 + x7 — xg = 0 (mod 4) also holds, then
x =(0,6,-0,-9,X)e ¢p(U(ZD,)).

(b) If x5 + x6 + x7 — xg = 2 (mod 4) holds, then
W= (57 Y 5’ 65 = 57 X) € ¢(U(ZD4))
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If « € U(ZD,) is such that ¢(a) =(x1 , X2, X3, X4, X), it is easy to see that:
(7) g0) = x4 .

Hence, for any X € Q there exists only one element in ¢(V(ZD,4)) whose
last component is X. Thus:

(8) V(ZD,) ~ Q and U(ZD,) ~ {+ 1} x Q.
Now we collect some information about Q. First it can be shown that

[GL(2,Z):Q] = 6.

Actually:
|t o |t 2 |t
o S 1 LI Bl TR Rt S T O
w4=1 1, w5=10, W6=12,
2 1 15 | |

is a complete set of representatives of the left cosets of Q in GL(2, Z).

We shall show that the elements of finite order in Q can only have orders
equal to 2 or 4. It is easy to see that an element of finite order in GL(2, Z)
can only have order equal to 2, 3, 4 or 6. The result will then follow from:

PROPOSITION 1. Let G be a finite p-group. Then a normalized unit of
finite order in U(ZG) has order a power of p.

PROOF. Let « be a normalized unit of finite order in ZG and let J » b
the field with exactly p elements.

The natural homomorphism :Z — J, can be extended in the usual
way to a homomorphism y*: U(ZG) — U(J,G) which carries (), the
finite subgroup generated by o, onto a subgroup of units of J,G.

Now, if an element x = Zix,-g,- € U(ZG) belongs to Ker(y*) and g; stands
for the identity element in G, then x; = 1.

Since every element in () is of finite order, and Berman [1] has shown
that an element of finite order in an integral group ring other than + 1
must be such that x; = 0, it follows that (&) is isomorphic to its image
in V(J,G).
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Finally, if G is a p-group, then:
V(J,G) = {veJ,G|ev) = 1}
and a direct computation shows that:
¥ G| = plsi=%,
thus every element has order a power of p.

2. The Conjugacy Problem. To give a negative answer to question (a)
we shall study the conjugacy classes of elements of order 2 in U(ZD,).

It is known that there are three such classes in GL(2, Z). One of them
is the class with one element C, = {~I}. The other two are:

Clz{Xz a“Z |a* + bc = 1; a odd; b,ceven}
a bt »
C,=1X= ok |a®> + bc=1; X ¢Cy

(See [4]).

PROPOSITION 2. There are five conjugacy classes of elements of order
2.in,

PROOF. First, we shall see that an element Ye Q n C; is conjugate either

toX1='1 or'to"y; = 4inQ.

1
0-1 0-1

In fact, there exists u e GL(2, Z) such that uYu™' = X, . Since u = w;o

for some o in Q and some i = 1,...,6, we have:
9) el = w1 X wys
If i = 1 then u € Q and we are done. If i = 3,..., 6 we see that wi 1 X w; is

not in Q and equation (9) is impossible. Finally, w5 ' X w, = Y, and it
is easy to see that X; and Y; are not conjugate in Q.

It can be shown in the same way that an element Y € Q n C, is conjugate
-3

either to X, = 2 % 3

1
Tl {0
not conjugate in this group.

orto Y, =| in Q. These two elements are
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COROLLARY. Not every normalized unit of finite order is conjugate to
an element in Dy .

PROOF. Let = be the natural projection of the direct sum onto M,(Q).
The elements of order two in D, are: a?, b, a®b, ab. But: n. ¢(a®) = —1I:;
7o P(b), o Pla*h)e X1Q; no plab), mo d(a*h)e X,Q.

Thus the elements « in V(ZD,) such that 7. ¢(x) belongs either to ¥;Q
or to Y,Q are normalized units of order two and they are not conjugate
to an element in D, .

3. The Maximal Subgroups. After the preceeding results, in order to

answer question (b) we need only to study the maximal finite subgroups
of Q.

It follows from well-known results about the finite subgroups of GL(2, Z)
(see [5] Chapter IX § 14) and Proposition 1, that any maximal subgroup
of Q is conjugate in GL(2, Z) to the subgroup D¥ of Q generated by-

A= (1) _(1) and B= (1) (1) '
Let I' be such a subgroup and let V € GL(2, Z) be a matrix such that
(10) ¥ =vrv-!=Dps.
Then, we can choose generators X, Y of I' such that
(11) X' =4, Y =B,

Since Y eC,, it is conjugate in Q either to X, = Borto Y,.

Suppose first that there exists U in Q such that
(12) ¥V =B
From (11) and (12) it follows easily that

U 'VeZB)={+ I, + B}
the centralizer of B in GL(2, Z), thus
(13) Vi=csa . or V = + UB.

In both cases I' and D} are conjugate in Q.

90

Now, if there exists U in Q such that
(14) YU = Y2
it can be seen in a similar way that

VU W -1leZ(B),

where W = ‘(1) % € GL(2, 2) is such that Y% = B. Thus we obtain:
(15) V=+WU or V =+ BWU.

In the first case we have:

-2 -5

(16) XU=W‘1AW=‘ 1 2|=A’
and in the second case we have:
17) XU=W‘1B‘1ABW=‘_% _g = A3,

which are both in Q. Collecting the information above we state:

PROPOSITION 3. A maximal finite subgroup I" of Q is conjugate to one
of the following subgroups: D = (A, B), Dy = (A, Y»).

4. The Normalized Automorphisms. Let : ZD, — ZD, be the function
defined on the generators of D4 by:

Y(a) =2a—-a*-b + ab + a*b—a’b,

Y(b) = a—a® + ab + a*b—a’b.

since Y(a)* = Y(b)? = Y(bWlaW(bW(a) = 1, ¥ can be extended in an
obvious way to D, and linearly to a morphism of ZD,.

(18)

Computing the matrix associated to Y in the basis of ZD, given by the
elements in D, it is easy to prove that i is actually an automorphism.

Suppose that ¥ is the product of an automorphism of D4 by an inner auto-
morphism 7y, defined by y, = uxu~!, VxeZD,, with ueV(ZD,). Let
f:V(ZD4) — Q be the isomorphism in (8), and yy :Q — Q the inner
automorphism defined by U = f(u). Then we have a commutative diagram:
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Qe iy
Therefore:
(19) , © yw(DF) = f o W(Dy).

Finally: foya) = A" and foy(b) = Y,.

So in (19) we would have yy(D¥) = D} contradicting proposition 3.
The example above shows that the answer to question c is negative.
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