On Henselizations of Valued Fields*

OTTO ENDLER!

This paper is intended to be a complement to Chapter IV of our book on
Valuation Theory [3], concerning the case of infinite field extensions.

The main part of that chapter deals with the existence of finite separable
field extensions with prescribed valuations. More precisely, Krull’s results
about the possibility of prescribing value groups and residue fields for
finitely many non-archimedean valuations were derived from similar
but stronger results about the prescribing of completions, where also
archimedean valuations are admitted. On the other hand, a theorem on
the existence of an infinite separable field extension with prescribed value
groups and residue fields (cf [3], (28.1)) was proved directly since we found
it difficult to obtain a similar result for completions.

Actually completions are not appropriate for the study of infinite exten-
sions, because infinite separable extensions of complete valued fields are
never complete. Therefore a suitable substitute for completions has to
be found. For the study of extensions of Krull valuations, the notion of
“henselization” is a good substitute for “completion” as was shown in [3],
Chapter I11. This fact suggests that completions should be replaced by
henselizations also in the context of Chapter IV. However for this pur-
pose, we first have to extend the notion of “henselization” to archimedean
valuations.?

In the present paper we define henselizations for arbitrary real valuations
by means of a universal property and show that many results which are
well-known in the non-archimedean case hold in general. We give a
survey of the set of all henselizations of a field K (Theorem 1) and show

*Recebido pela SBM em 4 de novembro de 1974.
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*Henselizations of archimedean valuations were already considered in Geyer’s paper [5],
with which I became acquainted after the present paper was completed.
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that the normal closure of any henselization is separably closed (Theorem 2),
as is the product of any two different henselizations (Proposition 5). Fi-
nally Theorem 3, which generalizes a theorem due to.Neukirch [7], yields
the desired result on the existence of an infinite separable field extension
with prescribed henselizations, from which the above mentioned theorem
[3]. (28.1) can be obtained as a corollary. It shows also that the inter-
section of finitely many non-isomorphic henselizations is large in the
sense that almost all of its henselizations are antihenselian.

We recall that a (real) valuation of K is a mapping ¢ from K into the set
R. of all non-negativé real numbers such that px = 0= x = 0,
@(xy) = @x- @y, and @(x+y) < ¢x + ¢y, for all x, ye K. Non-archi-
medean valuations are those for which the stronger inequality ¢(x + y) <
max {@x, @y} holds; they are in 1-1 correspondence with the Krull valua-
tions of rank 1. The usual absolute value || is archimedean. Valuations
which induce the same topology of K are called equivalent; they are real
powers of each other. The trivial valuation of K (which maps 0 to 0 and
any x # 0 to 1) will always be excluded from consideration. Every field
has infinitely many non-equivalent valuations, except absolutely alge-
braic fields of prime characteristic, which have none.

Let Q be a separable closure of the field K. We recall that any valuation ¢
of K has at least one extension to Q, and ¢ is called henselian if there is
only one extension. In particular, all valuations of any separably closed
field are henselian. A non-archimedean valuation is henselian if and only

if it satisfies “Hensel’s condition™ (cf [3], §16). By a henselization of a :

valued field (K, @) we understand any extension (K, ¢') of (K, ¢) such
that ¢’ is henselian and the following universal property holds: Any
imbedding 4 of (K, ¢) in any valued field (L, y) such that ¥ is henselian
extends uniquely to an imbedding A’ of (K’, ¢') in (L, ). It is obvious that
any two henselizations of (K, ¢) are K-isomorphic and that any extension
(L, ) of (K, ¢) such that i is henselian contains at most one henselization
of (K, ¢). Actually, “at most one” can be replaced by “exactly one”, as
soon as the existence of a henselization of (K, ¢) is proved.

In the case of a non-archimedean valuation ¢, it is well-known that
(K%, |K%) is a henselization of (K, ¢), where o is any valuation of Q

extending ¢, K7 is the decomposition field of w over K, and w|K?% is the
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restriction of w to KZ. (This holds even for Krull valuations, cf [3], §17)
A henselization can also be obtained by means of a completion (K, @)
of (K, ¢); in fact, the relative separable closure K, of K in K, endowed
with the restriction @, = ¢ | K,, is the unique henselization of (K, ¢) which
is contained in (K, @) (cf [3], (17.18)).

We are going to prove that the last statement holds also for archimedean
valuations.®> We first recall that any archimedean valuation ¢ of K is
either real-archimedean or complex-archimedean, i.e., any completion
.|| orto(C, ||*) for some o > 0.
Assuming, without loss of generality, that Q is contained in a separable
closure of K, we have K, = Q whenever @ 1s complex-archimedean, whe-
reas K, is a real archimedean closure (i.e., a real closed subfield whose
unique ordering is archimedean) whenever ¢ is real-archimedean.

PROPOSITION 1. For any archimedean valuation ¢ of K, (K,, ¢@y) is a
henselization of (K, ¢).

PROOF. Let 1 be an imbedding of (K, ¢) in a valued field (L, y/) such that
Y is henselian, and let £ be the unique imbedding of (K, go) in some comple-
tion (L, ¥) of (L, y) which extends 4. We claim that /K, < L. In fact,

if  is complex- (resp. real-) archimedean then every finite extension of L
has degree 1 (resp. < 2, cf [3], (2.13)), hence L is algebraically closed (resp.
real-closed); therefore L = L. 1K, (resp.L< L.2K, = L(/— 1)). Actua-
lly, the equality L = L. 2K, holds also in the real-archimedean case, since
otherwise we would have ./ —1¢€ L, contradicting L~ R. Therefore in
both cases we have 1K, = L, ie., 4 is actually an imbedding of (K, ¢5)
in (L, ). Moreover, any 1mbedd1ng u of (Ks, (ps) in (L, ) which extends 4
is extended by an imbedding u of (K, ¢) in (L, /), which necessarily coin-
cides with the umque extension 4 of A to K; therefore u = 4. [J

From the existence of henselizations we conclude easily that all valuations
of Q which extend a given valuation ¢ of K are K-conjugate. In fact,
denoting by % the Galois group Aut (Q|K) of Q over K, we prove the
following fact, which is well-known in the case of Krull valuations (cf [3],
(14.3)):

*Note that if K admits an archimedean valuation then it has characteristic zero; therefore
“separably closed” means “algebraically closed”.
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COROLLARY 1. Let w be a valuation of Q which extends ¢. Then
{wo0|o e is the set of all valuations of Q which extend ¢.

PROOF. Obviously woa is a valuation of Q which extends ¢. On the
* other hand, let w; be a valuation of Q which extends ¢ and (Kj, ¢;) be the
unique henselization of (K, ¢) contained in (Q, w;) (i = 1, 2). Then there
is a K-isomorphism p of (K, ¢}) onto (K3, ¢3), which extends to a K—au'to-
morphism ¢ of Q. Since w; and w; - ¢ are extensions of the same henselian
valuation ¢}, they must coincide. []

The valuations o, @ o of Q need not be distinct. In fact, similarly as in
[3], §15,it is shown that 9% = {s € ¥|w-0 = w} is a closed subgroup
of the topological Galois group %, which is called the decomposition group
of w over K. The valuations of Q which extend ¢ are in a 1-1 correspon-
dence with the right cosets of %% in 4, by w06 «%&00. The fixed field
KZ of 9% is called the decomposition field of w over K. Obviously, ¢ is
henselian if and only if 4% = ¢, if and only if K% = K, for some (and
actually any) valuation @ of Q which extends ¢. Moreover we have
Gz =g 1.9%,0 and K%,, = o7 KZ, and, similarly as in [3], (15.7),
we get the following characterization of K by a minimal property:

COROLLARY 2. For any field L between K and Q we have d Rif
and only if w|L is henselian.

We obtain as an immediate consequence:

COROLLARY 3. For any valuation o of Q which extends ¢, (K&, o|KZ)
is the unique henselization of (K; ¢) contained in (Q, w).

In particular, if ¢ is complex-archimedean then K7 = Q anq GZ consists
only of the identical automorphism 1 of Q. If ¢ is real-arch1m§dean then
KZ is real-closed, [Q: KZ%] =2, and 9, = {1, 0.}, where o,, is the only
non-identical K-automorphism of Q such that w.o, = .

Obviously, ¢ is henselian if and only if (K, ¢) is a henselization of itgelf.
Considering the opposite case, we say that ¢ is antihenselian if (Q, w) is a
henselization of (K, ¢) for some (and actually any) valuation w of Q which
extends ¢. It is clear that ¢ is antihenselian if and only if gz = {1}, if and
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only if KZ = Q, for some (and actually any) valuation @ of Q which ex-
tends ¢. In particular, any complex-archimedean, but no real-archime-
dean, valuation is antihenselian. Moreover, it is obvious that any valua-
tion of a separably closed field is henselian and antihenselian. Conversely,
if K has a valuation which is henselian and antihenselian then K = Q.

Antihenselian valuations can also be characterized by means of their
finite separable extensions or by their completions; in fact:

PROPOSITION 2. For any valuation ¢ of K the following conditions
are equivalent:

(i) @ is antihenselian.
(ii) Any finite separable extension L of K has exactly [L: K] valuations
which extend .
(i) Any finite separable proper extension of K has at least two valuations
which extend .
(iv) K is separably closed (where (K, @) is a completion of (K, @)).

A proof of the equivalences (ii) < (iii) < (iv) can be found in [3], (26.7).
The equivalence (i) < (ii) is proved in [3], (17.15) for Krull valuations.
It holds also for archimedean valuations, as follows easily from [3], (2.12).
Note that in [3], §26 “antihenselian” was defined by condition (iii) of this
proposition, whereas in [2], §5, in the case of arbitrary Krull valuations,
it was defined by condition (ii).

For non-archimedean valuations ¢, we are giving another characteriza-
tion of “antihenselian”, by means of the value group and the residue field.
We say that ¢ is saturated if its value group is divisible and its residue
field is algebraically closed. It is obvious that, in this case, any algebraic
extension (L, ¥) of (K, @) is immediate (i.e., ¥ and ¢ have the same value
group and the same residue field). Conversely, if any finite separable
extension of (K, ¢) is immediate then ¢ is saturated, as follows from Krull’s
existence theorem (cf [3], (27.1)). Moreover, we recall that for any finite
extension Lof K we have the fundamental inequality Y e, f;, < [L:K]
(summation over all valuations  of Lwhich extend ¢), where ey (resp. fy)
is the ramification index (resp. residue degree) of i/ over ¢. We say that ¢
is defectless if the equality sign holds for any separable finite extension L
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of K. For example, ¢-is defectless whenever it is discrete or its residue
field has characteristic zero (cf [3], (18.7) and (20.23)).

PROPOSITION 3. For any non-archimedean valuation ¢ the following
conditions are equivalent :

(i) @ is antihenselian.
(i) ¢ is saturated and defectless.

PROOF. (i) = (ii) follows from the fundamental inequality. (ii) = (i)
follows from Proposition 2. []

Note that there exist non-archimedean valuations which are saturated
but not antihenselian. In fact, let (@p, q}p) be the field of p-adic numbers;
then the field L obtained by adjoining to @, all roots of unity and all roots
of p is not separably closed, and the unique extension of ¢, toL is satu-

rated and henselian.

Obviously, discrete valuations are not saturated and therefore are not
antihenselian. . Therefore many fields, for example, all finite extensions
of @ and of F,(X), have no antihenselian valuations. On the other hand,
there are fields which are not separably closed and have very many anti-
henselian valuations, as is shown in the following proposition.

PROPOSITION 4. If K has a henselian valuation ¢ then any valuation
of K which is non-equivalent to ¢ is antihenselian.

This proposition is proved in [3], (26.5) by means of the existénce theorem
(25.6), and it yields the following well-known theorem, which ‘is due to
F. K. Schmidt.

COROLLARY 1. Any field which is not separably closed has at most one
henselian valuation (up to equivalence).

Let $ be the set of all those subfields H of Q which occur as henselizations
of K, i.e., such that (H, ) is a henselization of (K, ¢) for appropriate valua-

tions ¢, Y.
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PROPOSITION 5. If Hy, H,€$ and H, # H, then H, H, = Q.

PROOF. By Corollary 3 of Proposition 1 there exist non-equivalent
valuations wy, @, of Qsuch that H, = K%, H, = K%, and o, |H,, w,|H,
are henselian and non-equivalent valuations. So are the restrictions of
w; and w, to Hy - H,, and therefore H; - H, = Q by the preceding corol-
lary. [J

We know already that Q is in § if and only if K admits an antihenselian
valuation, and Q is the henselization of K with respect to any valuation
of that type. Moreover, it is clear that $ is closed under K-isomorphisms,
so we can consider the classes [H] = {cH | o € 4} of K-conjugate henseli-
zations. The following theorem gives a survey of the set of these classes.

THEOREM 1. The classes [H] such that He $, H # Q, are in I-1 cor-
respondence with the equivalence classes [¢] of those valuations ¢ of K
which are not antihenselian.

Under this 1-1 correspondence, the classes [R] defined by archimedean
real closures R of K correspond to the equivalence classes of real-archi-
medean valuations of K.

PROOF. If ¢ is not antihenselian and (H, v) is a henselization of (K, ¢)
then He $, H # Q, and the class [H] depends only on the equivalence

class [¢]. Obviously, [¢] ~ [H]is a mapping onto the set of those classes.
It is injective, as follows immediately from Proposition 5.

If ¢ is real-archimedean and [H] corresponds to [¢] then H is an archi-
medean real closure. On the other hand, any archimedean real closure
R of K can be imbedded in R and therefore has a real-archimedean valua-
tion Y. Since Y has only one extension fo R(,/ —1) = Q, by [3], (2.12), ¥
is henselian. Let (H, /| H) be the unique henselization of (K, i | K) which
is contained in (R, ¥). It follows from [3], (2.13) that H is real-closed,
hence R = H € $. Therefore R corresponds to the class of the real-archi-
medean valuation y|K of K. []

It is well known that the archimedean orderings of K are in 1-1 correspon-
dence with the classes of K-isomorphic real closures of K. Using the

second statement of Theorem 1, we conclude that they are also in 1-1
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correspondence with the equivalence classes of real-archimedean va-
luations of K.

Obviously, K has a henselian valuation if and only if K € $, and in this
case we have = {K, Q}, by Proposition 4. Moreover, we conclude
from Theorem 1:

COROLLARY. For any field K the following conditions are equivalent:
(i) K has an archimedean ordering and a henselian valuation.

(ii) K is real closed and has a real-archimedean valuation.

In this case, these valuations are unique and coincide, up to equivalence.

PROOF. (i) = (ii): K admits an archimedean real closure R < €, and
by Theorem 1, (R, ) is a henselization of (K, ¢) for appropriate real-archi-
medean valuations ¢, . Since K has a henselian valuation, we have
Re$ = {K, Q}, hence (K, ¢) = (R, ¥).

(ii) = (i): Let ¢ be a real-archimedean valuation of K and (R, ) be a
- henselization of (K, ¢). Since R is an archimedean real closure of K, by
Theorem 1, we have (R, ) = (K, ¢). Hence (i) holds and ¢ is henselian.
The uniqueness statement follows from Corollary 1 of Proposition 4. []

As to real-closed fields whose unique, ordering is non-archimedean, we
mention without proof that they have always henselian valuation rings
(namely, the canonical valuation ring and those which contain it) but not
necessarily of rank 1.

On the other hand, we conclude that a field which admits a henselian
non-archimedean valuation cannot have an archimedean ordering. This
can also be obtained as a consequence of the following result, which is
due to Prestel:

PROPOSITION 6. Let A be a henselian valuation ring of K, A # K,
and let < be an ordering of K. Then A is <-convex (i€., if 0 < a <b and
b e A then a € A) and the ordering < is non-archimedean.

PROOF. To prove <-convexity, it suffices to show that 0 < a < £ im-
plies £ € A. Suppose £ ¢ A; then € M (unique maximal ideal of A) ard
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therefore X?> + X + 2= X -(X +1) mod 9. By Hensel's condition
(cf[3], (16.6)) there exist ¢,d € A such that X? + X + £ = (X +¢) (X + d).
Weconcludethat1 = ¢ + d,1 <% = c-d,hence0 < c < land0 < d < 1,
hence ¢-d < 1, a contradiction. Assume that the ordering < is archi-
medean and let aeIM, 0 < a. Then 1 < na for some ne N, hence
0<(ma)™' <1 and therefore (na)™'e€ A; this is impossible since
naeM. [

Note that, for an arbitrary valuation ring A of K, any ordering < of K
such that 4 is <-convex induces an ordering of the residue field 4/9M,
and any ordering of A/ is obtained in this way (cf [8] for a detailed
discussion of the relationship between the orderings of K and those of
A/M). In particular, we get as a consequence of Proposition 6:

COROLLARY. Let A be a henselian valuation ring of K. Then A/M is
formally real if and only if K is formally real.

Let (K, ¢) be a valued field such that ¢ is not henselian. We claim that
its henselization is an infinite extension (unless K is real-closed) whose
normal closure is equal to Q. In fact, this is a consequence of the following
theorem*:

THEOREM 2. Let (L, Y) be an extension of (K, @) such that L < Q and

assume that ¢ is non-henselian and  is henselian. Then:

a) The normal closure of L|K is equal to Q.

b) If [L:K] < oo then K is real closed, K # L= K(\/:—l) =Q, and ¢
is antihenselian.

PROOF. a) Let N be a normal extension of K such that L& N < Q
and x be the unique valuation of N which extends . Since ¢ is non-hen-
selian, there is a valuation y’ of N, different from y, which also extends ¢.
Since N is a normal extension of K, it follows from Corollary 1 of Propo-
sition 1 that ¥’ = x . ¢ for some K-automorphism ¢ of N, and 'since y is
henselian, so is . We claim that N = Q. In fact, otherwise N is not
separably closed and therefore, by Corollary 1 of Proposition 4, the valua-
tions y, x' are equivalent. Since both are extensions of ¢, they are even
equal, contradicting the choice of .

*For non-archimedean valuations this theorem was proved in [1].



b) If Lis a finite extension of K then so is the normal closure of L| K;
therefore [Q:K] < oo, by a). Using a slight generalization of Artin-Sch-
reier’s theorem (cf [1], Lemma), we conclude that K is real-closed and
Q=K({/—1). Since K =« Lc Qand [Q:K] =2, we have L = Q. Since
@ is not henselian and Q is the only finite extension of K, ¢ satisfies con-
dition (ii) of Proposition 2 and is therefore antihenselian. []

COROLLARY. Assume that K has no henselian valuation and is not real-
-closed. Then any H € $ is an infinite extension of K and Q is the normal
closure of H|K.

The preceding Corollary as well as Proposition 5 show that all henseli-
zations H € § are, roughly speaking, “large” subextensions of Q|K (unless
$ < {K, Q}). Our next aim is to show that even each intersection of
finitely many fields Hy,..., H; € 9, belonging to non-equivalent valua-
tions ¢4, ..., @ of K, is large in the sense that almost all of its valuations
(up to equivalence) are antihenselian. This statement will be obtained
from the following much more general result, the first part of which is
essentially due to Neukirch [7].

THEOREM 3. Let w;, ..., w be valuations of Qand Ly, ..., L, be subfields
of Q such that w,; |L1,...,a)k|Lk are henselian_and , IL,...,a)k|Lare
pairwise nonequivalent, where L= Ly n ... Ly. Then

a) (L;, w;) is a henselization of (L, w;), for j=1, ..., k>
b) Any valuation Y of Lwhich is non-equivalent to w, |L, ..., wy|Lis anti-
henselian.

PROOF. a) Let (Hj, w;) be the unique henselization of (L, w;) contained
in (L;, wj) = 1,...,k). It suffices to show that L, = H;. Let oy € L;
and let P, € H;[ X] be the minimal polynomial of «; over H,, of degree n
(say). Forj =2,..., klet P; be a product of n distinct linear factors X — y
in H[X]. Since w;|L,...,»|L are pairwise non-equivalent and L is
dense in (Hj, w;), for j = 1, ..., k, we may approximate Py, ..., P simul-
taneously by monic polynomials F € L[ X | of degree n. By the continuity

SWe write (L, o) instead of (L, w|L) when w is a valuation of Q and Lis a subfield of Q.
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of polynomial roots (cf[ 3], (24.4)), F may be chosen such that, forj = 1,...,k,
a 1-1 correspondence between the roots (in Q) y of F and the roots « of
P; is given by w;(y — o) < &, where ¢ is sufficiently small. Let y, be that
root of F for which wy(yo — 1) < &; then H,(a;) = H;(y,) by Krasner’s
lemma (cf [3], (24.1)). We claim that y, € H; for j = 2, ..., k. In fact, let
a; € H; be that root of P; for which wj(yo — «;) < &; then for any H ;-auto-
morphism ¢ of Q we have wjoy, — ®)) = (w;-0) (yo — @;) < &, since
w;jo0 = w; and o; = ow; and therefore gy, = y,. We conclude that
Yo€H ()" Hyn...nH S Ly n...n Ly=Land therefore a; € Hy(;)
= Hi(yo) = H;.

b) Let w4+, be a valuation of Q which extends ¥ and let Ly, ; = Q; then
the assumptions of this theorem hold for wy,..., wx+1, Ly, ..., Lysy
and L=L;n...n Ly=Ly n...n Liy;. By a), (Q, wesq) is a hense-
lization of (L, ). []

The assumptions of Theorem 3 are clearly satisfied whenever the fields
Ly, ..., Ly are extensions of henselizations K, ..., K; of K with respect
to non-equivalent valuations ¢, ..., ;. Therefore, Theorem 3 yields
the construction of a field extension Lof K with prescribed henselizations,
in the following sense:

COROLLARY 1. Let @1, .- -» Qr be pairwise non-equivalent valuations
of K. Forj=1,...,klet (K; @;) be a henselization of (K, ¢;) and Libea
field between K and Q. Then the field L= Ly n ... L has the following
properties:

a) For each je{l,..., k} there is a valuation \; of Lwhich extends ¢; and
such that (Lj, ;) is a henselization of (L, ;) (where y; is the unique exten-
sion of @; to L;).

b) Any valuation  of L which is non-equivalent to Yy, ..., Y is antihen-
selian (i.e., has henselization (Q, w), where w extends V).

From this corollary, together with [3], Exercise IV-18, one can obtain
an analogous result about the prescription of value groups and residue

fields in the case of non-archimedean valuations, which has been proved

107



in a direct way in [3], (28.1). Therefore, this corollary fits in the context
of [3], Chapter IV, which for this purpose has to be modified by substi-
tuting henselizations for completions. Such a substitution is convenient
whenever infinite extensions of valued fields are involved, since infinite
algebraic extensions of henselian fields are henselian whereas infinite
separable extensions of complete fields are never complete.

By setting L; = Ky, ..., [y = K, in Corollary 1, we get the following
result which was already announced above:

COROLLARY 2. Let (K;, ¢;) be a henselization of (K, ¢@;), where ¢y, ..., ¢x
are pairwise non-equivalent valuations of K. Then any valuation of
Ki n...n Ky which is non-equivalent to the restrictions of @y, ..., @y is
antihenselian.

A weaker form of Corollary 1 was already stated in [4]. Under some
additional hypotheses, Corollary 2 was proved in [6] and [4].
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