Going down for Monoidal Transforms*

ARON SIMIS

1. Introduction. In this note I improve results of Dobbs [2]. The techni-
ques are throughout of elementary nature and make no appeal to any
heavy theorems.

I will stick to the following terminology: a minimal prime over-ideal of an
ideal I in a commutative ring 4 is a prime ideal containing I and not
containing properly any prime ideal that contains I. If 4 is noetherian
or, more generally, if I admits a finite reduced primary representation,
then the minimal prime over-ideals of I are exactly the isolated prime
ideals of such a representation.

For the purpose of this work — and for lack of better terminology — I
call WBH ring (short for “well behaved for hypersurfaces”) a commuta-
tive ring such that every principal ideal has only finitely many minimal
prime over-ideals and these are of height < 1. Noetherian rings consti-
tute the most important class of WBH rings. Another noteworthy class
of WBH rings is formed by Krull domains (more generally, the so-called
domains of finite real character).

Throughout (ay ,...,a,) stands for the ideal of 4 generated by the ele-
ments ay ,...,a,. The Krull dimension of 4 is denoted dim A. Needless
to insist, all rings are commutative with identity.

I wish to heartily thank David Dobbs, for a pleasant and enlightening
correspondence on the subject.")

2. Monoidal transforms along a centre of codimension 2. Let me begin
with the following existence result.

*Recebido pela SBM em 4 de novembro de 1974.

) Results similar to the above have been obtained by Dobbs (Comm. in Algebra, 1 (1974)
439-458). Since the present work deals with other questions as well, I've decided to publish
it in its entirety.
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LEMMA 1.1. Let A be a ring such that every principal ideal has only fini-
tely many minimal prime over-ideals. If dim A > 2 then A has a proper
ideal (a,b) whose minimal prime over-ideals have height > 2. Moreover,
for any prime over-ideal P of (a, b) such that Ap is a WBH ring, the ideal
(a, b)Ap is not principal.

PROOF. Start with any chain Po ¢ Py € P, < ... of prime ideals in
A (P, is not necessarily assumed to be mlnlmal) By assumption, (0) has
only finitely many minimal prime over-ideals. Therefore, one can choose
an element ae P; belonging neither to P, nor to any minimal prime
ideal of A. Then dim A/(a) > 1

I further claim that, for any choice of a as above, there exists b € A such
that (a, b) fulfils the requirements of the lemma. For otherwise, any non-
unit b of A = A/(a) is such that the ideal (a, b) of A has a minimal prime
over-ideal of height < 1; such an ideal is a fortiori a minimal prime over-
ideal of (a) because of the way a has been chosen. Again, by hypothesis,
A has only finitely many minimal prime ideals. It follows that every ma-
ximal ideal of 4 is contained is one single minimal prime ideal of A4, thus
implying that dim 4 = 0.

The last part of the lemma is immediate since for a minimal prime over-
ideal P of (a, b), PAp is (the unique) minimal prime over-ideal of (a, b)Ap .

REMARK. The first part of Lemma 1.1 admits the following easy exten-
sion: let A be a ring such that Spec A is a noetherian space. If dim4 > n
then A has proper ideal (a;,...,a,) whose minimal prime over-ideals
have height > n. The proof is by induction on n and one can in fact start
with any prime ideal of height > n. In case A itself is noetherian, the
result is a well-known consequence of the “Primidealsatz” of Krull and
carries several extra bonuses.

THEOREM 1.2. Let A be a WBH domain with quotient field K. Then the
following conditions are equivalent:

(i) For every ue K the natural injection A < A[u] satisfies going down.
(i) dimA < 1.

PROOF. The implication (ii) = (i) is easy. In fact, the following holds
in general: if A o B is an injection of domains with dim A < 1, then
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going-down is satisfied (Thus, at first sight the hypothesis of WBH is
not needed to establish the implication (ii) = (i). At second thought, ho-
wever, this is not gaining much as there is only one single instance of a
one-dimensional domain that is not WBH, namely, a non-noetherian
one-dimensional G-domain possessing infinitely many maximal ideals:
a rather weird tresspasser).

The implication (i) = (ii) is a consequence of Lemma 1.1 and Chevalley’s
lemma. Namely, take an ideal (a, b) as in Lemma 1.1 and set u = a/b e K.
Then Chevalley’s result [3, Theorem 55] warrants that (a, b)A[u] # A[u]
(say). Now, let P" be any minimal prime over-ideal of (a, b)A[u]. As P' n A
contains (a, b) it must have height > 2. By assumption A4 is WBH, hence
one can find a prime over-ideal P of (b) properly contained in P’ N A.
If Q' = P'is a prime of A[u] lying over P then Q' contains (a, b)A[u]=bA[u],
consequently Q' = P’ by minimality of P’. Thus, no Q' lies over P, sho-
wing that going-down fails for 4 o A[u].

Note that the above theorem truly generalizes the following results of [2]:
Proposition 7, Corollary 9, part (a) of Theorem 3 and, to some extent,
part (b) of the latter. I do however not know the exact relation (if any)
between WBH domains and the FC domains mentioned by Dobbs.

In the noetherian case one can discard the hypothesis that the ring A4
have no proper zero-divisors, according to the following result.

PROPOSITION 1.3. Let A be a noetherian ring with total quotient ring T.
Consider the following conditions.

(i) For every ueT, the injection A & A[u] satisfies going-down.

(ii) For every unit ue T, A c A[u] satisfies going-down.

(i) dimA<1or A=T

Then (i) implies (iii) (and, trivially, (i) implies (ii)). If A is besides normal
then the three conditions are equivalent. -

PROQOF. Firstly, in all generality, (i) implies (iii). Indeed, if dim A > 2,
choose (a, b) as in Lemma 1.1 in such a way that a is a non-zero-divisor
of A (this is possible unless A coincides with its total quotient ring). Then
b/aeT and one can define an A-homomorphism A[X] — A[b/a] by
assigning X +— b/a. Let N be the kernel. Clearly, aX -beN. As A is
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noetherian, (a, b) has height 2 exactly. Therefore, by [1, Proposition 1],
the ideals N and (AX —b) have the same radical. Given a prime over-
ideal P of (a,b), one then has N = PA[X], thus implying that PA[b/a]
is a prime ideal of A[b/a]. It follows that (a, b)A[b/a] is a proper ideal
and the rest of the proof proceeds exactly as in the proof of Theorem 1.2.

Now assume A is normal (i.e., locally normal) and suppose (iii) holds.
At-any rate, A is the product of its irreducible components, say,
A=~ A/P;y x ... x A/P,, where Py,..., P, are the minimal prime ideals
of A. Accordingly, one has that T ~ Ap; x ... X Ap, and Ap,; is the
quotient field of A/P;. Let u = a/be T. Then

A[u] = (A/Py x ... x AP)(u,. .., u)] =
sl Pld % s io % AIBI0] & dpy X o X dimg

(as a slight check on this equality, note that ue Ap; for every i since
b¢ O P;). Now, by the implication (ii) = (i) of Theorem 1.2, one knows
i=1

that going-down holds in 4/P; ¢ A/P;[u] for every i. This implies going-

down in A g A[u]. Precisely, given P; ¢ M < A (M maximal) and gi-

ven M’ < A[u] lying over M, one has that M’ is identified with
ARl oo M s AfR,Jal

where M) is a prime ideal of A/P;[u] (only one such j), hence M is iden-
tified with A/P; x ... x M;n (4/P;) x ... x A/P,. One must have
P; = P; because P; ¢ M (note that P; is identified with

APy %1 o X (Q) X LI AP,

] &
Then the prime ideal of A[u] identified with

A/Pu] x ... x (9) X', X APl

lies over P; = P;.
Finally, (ii) implies (iii) under the conditions that A is normal. For assu-
me dim A > 2. Since the principal ideals of 4 have now no embedded
prime ideals, one can choose (a, b) in Lemma 1.1 in such a way that
(a, b) is an A-sequence. In particular, a and b are non-zero-divisors

in A, hence b/ae T is a unit. Now one proceeds exactly as in the impli-
cation (i) = (iii).
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REMARK. Proposition 1.3 is not very satisfactory. In particular, (iii)
implies (i) provided A4 is a product of its irreducible components. Of
course, this assumption automatically implies that 4 has no embedded
prime ideals. Also, if A is local non Cohen-Macaulay, then (trivially)
(iii) = (i). In general, one can reduce the question to the same one with
A having no embedded primes. As to implication (ii) = (iii), one needs
less than normality for all that is required is that a and b be non-zero-
divisors in A, whereas {a,b} being A-sequence is stronger.

I close this section with an amusing result. It is along the line of Chevalley’s
lemma and tells grosso modo that, in some cases, most prime ideals sur-
vive in both monoidal transforms A[a/b] and A[b/a], provided the center
of the transform is sufficiently “generic”.

PROPOSITION 14. Let A be an integrally closed WBH domain of di-
mension > 2. Then there exists an element a/b in the quotient field of A
such that, for every prime over-ideal P of the ideal (a, b), the ideals PA[a/b]
and PA[b/a] are both prime.

PROOF. Choose (a, b) as in lemma 1.1 and let P = A4 be any prime over-
ideal of (a,b). Let N  A[X] be the kernel of the A-homomorphism
A[X] — A[a/b] defined by X + a/b. One has an induced A-homo-
morphism Ap[X] — Ap[a/b] whose kernel is Np. If Np = PAp[X]
then clearly N = PA[X], hence PA[a/b] is a prime ideal of A[a/b]. The-
refore, one may assume that A is quasi-local with maximal ideal P (note
that the property of WBH is preserved under localization). In this case,
let f(X)eN have a coefficient outside P. Then [3, Theorem 6] one must
have ae(b) or be(a), thus implying that (say) @ has a minimal prime
over-ideal of height > 2. This contradicts the assumption that A is WBH.
Since b/a has a symmetrical role, the proof is finished.

REMARK. Note that {a, b} as given in the above proposition is an ana-
lytically independent set in the sense of Davis [1].

3. Going-down and grade. In a commutative ring 4 one can define gra-
de(A) as the supremum of the grades of all proper ideals of 4. One of the
remarkable properties of (noetherian) normal and Cohen-Macauly rings
is the so called (S,) condition. Thus, for such rings one can in Lemma 1.1
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choose (a, b) in such a way that {a, b} form an A-sequf?nce. In othc?r wor'ds,
for a noetherian normal (resp. Cohen-Macaulay) ring 4 of dimension
> 2 one has grade(A) > 2.

Not so for general rings: one needs only think of a non-noetheriag valua-
tion ring A, where grade(A) < 1 while dim A is arbitrary. This is why,
in general, one looks at the WBH property in order for gomg-siown to
fail. However, the WBH property is not fine enough. To see this, recall
that for a domain 4, one says that Spec 4 is a tree if no two non-compa-
rable (by inclusion) prime ideals of 4 admit a bigger prime ideal con-
taining both of them. In connection with a question raised by Dobbs,
there is the following result:

PROPOSITION 3.1. Let A be a WBH domain of dimension > 2. Then
Spec A is not a tree.

PROOF. Let (0) ¢ Py ¢ P; be any chain of prime ideals in 4. Choose
aeP;\P,. Since A is WBH, there exists a prime ideal P, ¢ P; such
that ae P,. Supposing Spec A is a tree one must have P, ¢ P,. But
it can be assume that there are no prime ideals properly between P, and
P; [3, Theorem 11]. Therefore, one gets a contradiction.

Note that the above proof actually gives that, for a domain A satisfying
condition (S,) (i.e., a domain whose principal ideals have no embedded
primes), Spec A is never a tree. Dobb’s question is to the effect whether
for a treed domain A of grade 1 one always has going-down. The above
proposition shows that our work is not sharp enough to answer this
question.

Let A be a domain with quotient field K. Call an element u € K grade-
regular if u admits a representative whose terms a, b form an A-sequence.
Note I do not exclude the possibility of a,b generating the unit ideal;
in particular every non-zero element of 4, and the inverse in K of every
non-zero element of A4, are grade-regular. In terms of grade-regular ele-
ments, Theorem 1.2 can be reestated as follows.

PROPOSITION 3.2. Let A be a domain with quotient field K. If A is WBH
then the following conditions are equivalent:
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(i) For every grade-regular ue K, A s A[u] satisfies going-down.
(i) grade(A) < 1.

The proof is certainly a lot easier than that of Theorem 1.2; in particular,
Lemma 1.1 is not needed. Thus, the implication (ii) = (i) holds for any
domain of grade < 1 since any grade-regular ue K then has the form
a/b, with (a, b) = A and this implies that 1/b € A[a/b],ie., Ala/b] = A[1/b].
Also, (i) implies (ii) for any domain such that the minimal prime over-
ideals of a principal ideal have all height < 1.

Observe that a grade-regular element u e K admits a unique (up to unit
factors) representative whose terms form an A-sequence. In fact, one has
the following result which seems to be scattered in the literature.

PROPOSITION 3.3. Let A be an integral domain satisfying the ascending
chain condition for principal ideals, let K be the quotient field of A. The
following are equivalent conditions:

(i) Every non-zero element of K is grade-regular.

(i) A is a UFD.

(iii) Every non-zero element ue K can be written u = a/b, where a,b are
such that the A-homomorphism A[X] — A[u] defined by X — u has
kernel (bX — a).

Moreover, if dimA > 2 (any of) these conditions imply the following :
(iv) For every ue K there exist a,be A such that u = a/b and such that
for every minimal prime over-ideal Q of (a, b) A[a/b], Q N A is a minimal
prime over-ideal of (a, b) of height > 2.

PROOF. (i) = (ii) It suffices to show that every irreducible element gene-
rates a prime ideal. Let ae A be a non-zero irreducible and suppose
bd e (a), say, bd = ac. Let a/b = a/B, with {o, B} an A-sequence. Then
a=da and d = d'o for some a,d € A. Since a is irreducible, either o’
or o is a unit. If a' is a unit, one gets « = a'~'a, so d = d'a’ ‘ae(a). If o
is a unit, one obtains b = gfo~! by construction, so b e (a). Therefore,
(a) is prime.

(ii) = (iii). Let ue K, u # 0. Write u = a/b, with a,b relatively prime.

Then {q, b} is clearly an A-sequence, hence the kernel of A[X] — Alu],
X —u, is (bX —a) as is well known.
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(iii) = (i). Let 0 # u € K. By assumption,
A[X]/(bX —a) ~ Alu]

(via X ~—> u) for some a,be A4 such that u = a/b. I claim that {a,b} is
a regular sequence. Assume ac = bd, c,d€ A. Since c(a/b) = d, then
¢X —d vanishes at a/b, hence ¢X —d = (bX —a) f(X) some f(X)e A[X].
Clearly, one must have f(X) = e€ A. Therefore ¢ = be, as required.

Now suppose dim A > 2 and A is a UFD. Let u = a/b, with a, b relati-
vely prime (i.e., {a,b} an A-sequence) and let Q = A[u] be a minimal
prime over-ideal of (a,b) A[a/b]. Since grade(a,b) > 2 then Q N A has
height > 2. On the other hand, let (a,b) « P = Q n A, P prime ideal.
Then (bX —a) = PA[X], so PA[a/b] is a prime ideal of A[a/b] containing
(a, b)A[a/b]. By minimality of Q, PA[a/b] = Q. Therefore PA[a/b] N A =
= Q N A.Since PA[X] n A = P,also PA[a/b] n A = P.Thus,P = QN 4,
thereby showing that Q N 4 is a minimal prime of (a, b).

QUESTION. Does condition (iv) of Proposition 3.3 characterize a UFD
among Krull domains of dimension > 2? An answer to this question,
even in the classical literature of birational morphisms with target a
normal variety, is not clear.

COROLLARY 34. Let A be a UFD. If grade(A) < 1 then dimA < 1.

PROOF. By Proposition 3.3, every non-zero u € K is grade-regular. By
Proposition 3.2 it then follows that 4 5 A[u] has going-down for every
ue K. By Theorem 1.2, dimA < 1.

QUESTION. What are the UFD’s A4 such that, for every ne N, grade(A) <
< d=dimA < n (hence dim A = grade (4))?
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