On the Existence of Local Solutions of Pseudodifferential
Equations*

FERNANDO CARDOSO

0. Introduction. In this paper we mention some recent results on the
local solvability of the pseudodifferential equation Py = f. Closely rela-
ted questions of hypoellipticity and analytic-hypoellipticity of the same
equation will not be discussed here. We are concerned with pseudodifferen-
tial operators [P'that have real characteristics of multiplicity r, r > 1. In
particular, we consider operators of the type

(1) P = P(x, D) ~ Z; Py (6 B,

where for each j=0, 1,..., P,_(x, &) e C*(Q x Ry\{0}), (@ an open
subset of R"), is positive homogeneous of degree m — Jj with respect to ¢
and ~ is the standard relation in the theory of pseudodifferential operators.
The reader who does not feel confortable with pseudodifferential operators
may think of [P as the differential operator

(2) Pdsin>- e ) DY (D = — /=1 %),

[ofZm
where c,(x) € C*(Q) are complex-valued functions. We recall that P,(x, &)
is the principal symbol of P(x, D). It is to be regarded as a (complex-valued)
function on the cotangent bundle T*(Q) over Q or, rather, on the com-
plement of the zero section in T*(Q), complement which we denote by
T*). No such intrisic meaning can be assigned to the P,,_(x, ¢) for
J > 0. We require that P,(x, ¢) can be factored (microlocally) as

3) Pulx, &) = Qx, H{L(x, O}, r =1,

in a conic neighborhood % (i.e. % is invariant under the dilations (x, &) —
(x, p&) when p > 0) of a point (xo, €% of T*(Q). The factors Q and L
are C* functions in %, positive homogeneous of degree m — r and 1, res-
pectively, with respect to £, and satisfy the following conditions

*Recebido pela SBM em 4 de novembro de 1974

121



) L(xo, £° = 0; gr?d L(xo, £°) # 0 O(xo, £°) # 0.
If we let A = Re(L) and B = Im(L), then (4) implies that grc{zd A and
grad B do not both vanish at (xo, £°). Assume that grcgd A(xo, £°) # 0.

3
After a possible shrinking of %, we may further assume that

(5 grcétd A#0in %
and that
(6) 0 # 0 (ie. elliptic) in %

With a real symbol such as A(x, &) we may associate a vector field in T*Q),
the Hamiltonian of A:

N odA 0 0A 0
0 Ha= 3 3600 00 05
The integral curves of H, are the bicharacteristic strips of .A; they' are
defined by the system of 2n ordinary (non-linear) differential equations
(the Hamilton-Jacobi system)
(8) X = grad A(x, ©), &= —grad Alx, 9.

Note that, along such a strip, A(x, £) = const.. We shall refer to those

along which 4 = 0 (e.g. the one through (x,, £°)) as null bicharacteristic

strips of A. As a result of (5), the bicharacteristic strips of 4 i‘n U are t.rue
curves and their projections in Q are also true curves (not just a point).
Observe that the principal symbol of the commutator [A(x, D), B(x, D)],
which is a pseudodifferential operator of order < 2m — 1, i§ nothing else
but (H4B) (x, &) = — (HpA) (x, &) = {4, B}(x, &) (the Poisson bracket
of A and B). We shall now define the property under study, namely local
solvability assuming that P is a differential operator [see (2)] ; for pseudo-
differential operators, the definition has to be slightly modified to take
into account the pseudolocal character of these operators.

DEFINITION 0.1. The differential operator P is said to be locally sol-
vable at the point x, € Q if there is an open neighborhood U of x, in Q
such that given any function f e C?(U), there is a distribution u € Z'(U)
such that Pu=fin U.

The operator P is locally solvable in a subset S < Q if it is lqcally solvable
at every point of S; note that it is then locally solvable in some open
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subset of Q containing S. All differential operators with constant coef-
ficients are locally solvable. This is a trivial corollary of the Malgrange-
-Ehrenpreis theorem on the existence of fundamental solutions for such
operators.

All elliptic differential operators are locally solvable; it follows from the
existence of parametrices for such operators. We recall that P is elliptic
if the characteristic variety of P ie. the set Vp_of zeros of the principal
symbol P,(x, &) in T*(Q), is empty. After extending L(x, &) to the com-
plement of %, we can consider it to be the symbol of a first order pseudo-
differential operator L(x, D) of principal type. Results on the local solva-
bility of such operators are well known and we shall recall them (they
correspond to r=1 in (3)).

1. Operators of Principal Type

DEFINITION 1.1. The operator P is said to be of principal type in Q
if, given any xeQ and any £eRy, £ # 0, grcézd P,(x, &) # 0. Observe

that, by Euler’s homogeneity relation, mP,,(x, E)r= f.grgd P,(x, &) and,
therefore, any zero of grcgd Pp(x,") would be at least a double zero of P,,(x,").

In other words, to say that P is of principal type is to say that its real
characteristics are simple. All elliptic differential operators and all hyper-
bolic differential operators are of principal type; the parabolic ones are
not. All first-order differential operators whose principal part does not
vanish identically at any point are also of principal type. The operators
of principal type are, in the sense of the multiplicity of their real characte-
ristics, the simplest after the elliptic operators. The first important results
on local solvability for differential operators of principal type were obtained
by L. Hsrmander and H. Lewy. In his thesis L. Hérmander proved that
if Py(x, &) is real then P is locally solvable in Q. Around 1957, H. Lewy
surprised the specialists in the field by giving his celebrated example of a
simple differential operator, in R3 which is not solvable at any point
of R®. In fact, he proved that for “most” fe C*(R?) the equation (with

nonvanishing principal type, hence certainly with simple real characte-
ristics)

(9) —iDlu + Dzu hy 2(X1 + ixZ)D3U =f



does not have any (distribution) solution in any open nonvoid subset
of R3. TIts coefficients are very smooth: all of them constant, except one,
linear! Of course, the coefficients in its principal part are not all real.
An extension of this example, due to Hérmander (1959) gives a necessary
condition for a differential equation Pu = f to be locally solvable:

(10) Suppose the dijj‘erential equation is locally solvable in Q. Then {Re P,
Im P} (x, &) = 0 whenever Pn(x, &) =0, (x, ) € T*().

Clearly this condition can be reformulated as follows:

(11) Suppose that, at some characteristic point (xo, ¢°) € T*(Q) the following
holds: the restriction of Im P,(x, &) to the (null) bicharacteristic strip
of Re P,(x, &) through (xo, ¢°) vanishes at this point whereas its first
derivative along this curve does not. Then the equationPu = f is not
locally solvable at xo.

Hérmander’s condition reveals the rdle of the commutator of the prin-
cipal part of the operator with its complex conjugate (note that {Re P,

Im P,} = : - {P,,, P,,}); it also points to the significance of the bicha-

racteristics. Since then, thanks to the combined efforts of R. Beals, C.
Fefferman, L. Nirenberg and F. Treves, much has been done to characte-
rize operators of principal type in so far as local solvability is concerned.
In particular, these studies show that Lewy’s operator is in the limit of
nonsolvability (e.g. an example such as Lewy’s could not have been found
in two independent variables). There is however one important drawback
in the statement (11). It is clear that the property under study here, local
solvability, is not only invariant under changes of coordinates in Q (which
means to say that P is locally solvable at x, if and only if F~ P F is locally
solvable at ¥/(x,) where F is an elliptic Fourier Integral Operator associated
with the canonical transformation ¥ in T*(Q) induced by the change of
coordinates in Q), but also under multiplication of the operator P by a
nonvanishing complex C* function (or more generally, by an elliptic
operator). Any condition which intends to characterize local solvability
ought to possess such an invariance, if it is to be of use to us (in such a
case there will be no ambiguity concerning our choices for the real and
imaginary parts of P,). Assuming that P is a pseudodifferential operator
[see (1)] we state:
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DEFINITION 1.2. We say that Property () holds at a point (xo, %) e T*(Q)
if there is an open neighborhood O of (x,, £°) in T*(Q) such that, for any
complex number z satisfying:

(12) grad Re(zP,)(x, &) # 0 for every (x, &)e(, the following is true:

(13) if the restriction of Im zP,, to any null bicharacteristic strip of Re zP,,
in O is negative at some point, it remains nonpositive at all further
points along the (oriented) bicharacteristic strip.

When the pseudodifferential operator is antipodal, i.c.,
Pu(x, —&) = (—=1)" Py(x, &)

(in particular a differential operator) Property (/) becomes Property (2).

DEFINITION 1.3. We say that Property (2) holds at a point (xo, £%)e T*(Q)
if there is an open neighborhood O of (xo, £°) in T*(Q) such that, given
any complex number z satisfying (12), the following is true:

(14) the restriction of Im zP,, to any null bicharacteristic strip of Re zP,,
in O does not change sign.

Properties () and () are acceptable from the view point of invariance
but lead to new difficulties, in so far as (13) and (14) must be checked, in
principle, for all complex z satisfying (12). Fortunately, it suffices to check
them for only one z such that (12) holds: they are then automatically true
for all other such z's.

We may now state the conjectures (due to L. Nirenberg and F. Treves).
Of course the operator P is assumed of principal type. If it were not so,
these statements would not make (in general) any sense (notice that in
general the concept of bicharacteristic is meaningless for higher multi-
plicities of the characteristics).

CONIJECTURE 1. The pseudodifferential operator P [see (1)] is locally
solvable in Q if and only if Property () holds at every point in T*(Q).
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CONJECTURE 2. The differential operator P [see (2)] is locally solvable
in Q if and only if Property (?) holds at every point in T*(<).

The sufficiency of Property () in Conjecture 2 was proved in two different
ways by R. Beals and C. Fefferman (before that, L. Nirenberg and F.
Treves had proven the same result in the following situations: 1) m=1;
2) N =2; 3) P, analytic). The first proof relies on a recent result of Cal-
deron-Vaillancourt on the L? boundedness of pseudodifferential operators
of order zero and type (3, 3). For the second proof, they embedded the
symbol P,, in a more sophisticated symbolic calculus (the class of symbols
S¥-m and followed Nirenberg-Treves’ ideas in the analytic case reducing
the whole problem to proving the following lemma:

LEMMA 1.1. Let pdx, &) be a first-order classical symbol depending smoothly
on the real parameter t, and suppose that for each fixed (x, &), the function
t — pix, &) does not change sign. Then, the corresponding operator p,(x, D)
may be written in the form p(x, D) = A,B + C,, where B is a fixed (unboun-
ded) self-adjoint operator, A, is self-adjoint bounded and non-negative, C,
is a bounded error, and [A,, B], [[4» B], B] are bounded.

Ideally, one should prove the lemma simply by writing the symbol pi(x, ¢)
in the form:

(15) p. = a,0b + ¢, where a, > 0 and a., b, ¢, are classical symbols of
order 0, 1, 0, respectively.

If p, could be so expressed, the conclusion of Lemma 1.1 would follow
instantly from the classical symbolic calculus and sharp Gérding ine-
quality. Nirenberg and Treves carried this out in the case of real-analytic
symbols p,, but unfortunately p, cannot, in general, be written in the form (15)
using classical symbols (the unpublished counterexample is due to J.
Mather).

Yu V. Egorov announced that he proved the sufficiency of Property ()
in Conjecture 1.

Under the additional hypothesis (FZ) of zeros of finite order (only at the
point where a change of sign can take place), Yu V. Egorov, L. Nirenberg
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and F. Treves proved that () is also necessary for the local solvability
of P.

DEFINITION 14. We say that Property (FZ) holds at a point (x,
&% e T*(Q) where P,, vanishes, if whatever z € C such that grad (zP,,) # 0
4

at (xo, ¢°), the restriction of Im zP,, along the (null) bicharacteristic strip
of Re zP,, through (x,, £°%), vanishes of finite order k at this point.

It can be shown that k is independent of all such z's. We shall outline
briefly some ideas in the proof of Conjecture 1. Let (x,, £°) € Caract. P
(outside this set P is elliptic hence locally solvable). The property prin-
cipal type allows one to obtain a factorization, in a conic neighborhood
U of (xo, &%), of the type:

(16) Pu(x, &) = Q(x, &)y — AUx, &)

oP,, s 20
(we assume v (x0, €°) # 0), where Q is elliptic (in %) of order m — 1,
aqd A € C*(%), homogeneous of degree one in & = (&,...,&Ey_;). By
microlocalization, then, one is led to study the first order operator

(17) L= Dy — AMx, D)
which by a canonical transformation can be put in the form:

% % o O e, L)
where b(x, t, &) is real. We have changed completely the notation: xV
became t, x = (x',..., x") (n = N — 1) stands for the other variables in Q
(after the canonical transformation), z and ¢ = (¢4, .. ., &,) are the co-varia-
bles associated to t and x respectively. We consider the ordinary differen-
tial equation (in t, depending on the parameters (x, &))

du

(19) Fr: Ayl Xs Ly - EM A O it o)

(18) L=

We suppose that ¢ varies in a closed interval |¢| < T, and (x, &) in a conic
neighborhood %' = U x %, of (xo, £°) in R" x (R,\{0}) where U is an
open subset of R" containing x, and %, an open cone in R,\{0} containing
&% (U and %, with smooth boundaries). Let & be the space of functions
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f(x, t, &) which are C* in U x [—T, T] x %, and fastly decreasing with
respecto to &, at infinity (in %,); let D’ be the space of distributions in
a neighborhood of U x [ — T, T] tempered (and measurable) with respect
to €U, We introduce the property:

(20) V feé&, 3T ueD satisfying (19).

We write

Bl tatiof)r= J b(x, s, &)ds

t

and, for —T < T(x, &) < T,

(21) u(x, t, &) = J eTHEbER SV f G o BNl

T(x, &)

It is easy to verify that (20) holds if and only if we can choose T'(x, &) (for
each (x, {) e %’) such that the following is true:

(22) Vte[—T, T], Vt' in the interval with extremities t and T(x, &),
Bix,t, 4} ‘& =0.

The reader will convince him self that (22) is equivalent to the following
property:

(22') If, for some |to| < T, b(x,t0, &) < O,thenb(x,t,&) < Oforallt,to <t < T.

It is not difficult to recognize (22') as Property () for the first-order factor
L. Thus an attractive feature of the solvability theory in the simple charac-
teristics case is that it reduces to the study of the ordinary differential
equation (19). One may ask then the analogous question for equations
with multiple characteristics. Of course, the first-order ODE (19) should
be replaced by an equation whose order is equal to the order of the multi-
plicity of the characteristics at the “central” point (xo, to, ¢%, 7). Finding
out what the higher-order “basic” ODE's (if they exist) should be and
proving the equivalence of its solvability (in the sense of solutions which
are tempered in the variable &) with the local solvability of the pseudo-
differential equation under consideration are two of the aims of the general
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theory. This, however, can be very difficult as one realizes by examining
the situation of the linear ODE theory of order > 1, from the view point
of the asymptotic properties of solutions with respect to a parameter (in
our case ¢) converging to + co. Fortunately we are interested in condi-
tions not only for (xo, p&°), p ~ + oo, but for the entire cone (x, pb),
p ~ + o0, (x, £) € an open subset of the cosphere-bundle S*(Q), and this
imposes important restrictions to the type of ODE we have to study.

2. Operators with Multiple Characteristics

We recall that the characteristic variety of P [see (1)] is the set Vp of
zeros of the principal symbol P,(x, &) in T*(Q). We shall denote by Wp,,
the set of singularities of V5, (in the sense of Analysis), that is to say, the
set of points (x, £) in T*(Q) which satisfy the equations:

(23) PO(x, &) =0, |a| < 1.

Let (xo, £°) be some point in W;,,. Let us make the following assumption

(24) there is an N-tuple o, |o| = 2, such that P&(x,, £°) # 0. Possibly
after a linear change of the coordinates x/ we may assume that
o sz (Qlrrdrni0, 620
By virtue of the Weierstrass-Malgrange preparation theorem, we
may find a factorization of the following kind:

(25) Pulx, &) = Q(x, &) {(€n — &R)* + au(x, &) (En — £R) + aalx, &)}, valid
in some open neighborhood % of (xo, £° in T*(Q). We have used
the notation & = (£, ..., &y—1). The functions Q and a,j=1,2,
are C* in%; Q(x, £) does not vanish at any point of %; a;(xo, £'°) = 0,
J =1, 2. Furthermore, in view of (23):

(26) grad ax(xo,¢"°) = 0.
5/
One remark is in order: We can (and shall) assume that % is conic and

that Q and a;, j = 1,2 are positive homogeneous functions of ¢ of degrees
m—2 and j = 1,2 respectively.

DEFINITION 2.1. We say that (xo, £°) € W, is a regular double characte-

ristic point of P if the factorization (25) holds in an open (conic) neigh-
borhood % of (xo, £°) and if, furthermore, .
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(27) Alx, &) = 7 ai(x, &) — axlx, &) =0 in %.

It will be observed that we do not require a; to be real, and, therefore, we
do not require the variety Vp,, to have points in % other than (xo, 4
When (27) holds, we may write P,(x, £) as in (3) with r = 2. In such a
case, F. Cardoso and F. Treves have proved the following result:

THEOREM 2.1. Assume that (FZ) holds for the first-order factor L and
that () is violated by Lat (xo, £°). Then P is not locally solvable at x,.

The noteworthy feature in Theorem 2.1 is that the lower-order terms of P
do not influence the conclusion.

COROLLARY 2.1. Suppose that P is a differential operator and that (FZ)
holds at (xo, £°) with an odd integer k. Then neither P nor ‘P (the trans-
pose of P) is locally solvable at xo.

The starting point in the proof of Theorem 2.1 is the same as always in
this kind of question: the remark of Hormander as to the functional-ana-
lytic consequence of local solvability: if P were locally solvable at x,
there would be two neighborhoods V < U of xq in €, a compact subset K
of U, an integer M > 0, a constant C > 0 such that

(28) | |fodx| < Csup( Y, |D¥)- sup ( Y |D(Pv)|)

la| =M || =M

for every f,ve CP(V). In order to show that (28) cannot hold, in the pre-
sent situation, whatever the choice of U, V, K, M and C, one takes

(29) b= e, p~ + o

with the complex valued (phase) function w € C*(Q) and the (amplitude)
¢ € CX(V) chosen in such a way that v is an “approximate” solution of
the homogeneous equation ‘Pv = 0. An important role in the investi-
gation of problems of the type which we are concerned here is played by
the following asymptotic expansion in powers of p, about p ~ + o
(grad o at xo is equal to &°):

+ oo
(30) e PP eP) ~ Y p" I Plw; x, Do,
j=0
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where, for each j =0, 1,..., 2{(w;x, D,) is a differential operator in Q,
of order < j whose coefficients depend on w and on its derivatives. It
is readily seen that

(31) Po(@3x, D) = Pu(x, grad o).
A somewhat lengthier, but straightforward, computation shows that
(32) 2w;x, D) = Y P®(x, grad w)D* +

la]=1

v T)m—l(x, grad w, (grad)2 w)d)a

0

where P®(x, &) = (6 7

) a(x, &), and where

(33) Pn_i(x, grad o, (grad)* ) = Pp_1(x, grad o) +
£ 1
) sz= 2 51 PP(x, grad w)D* o

The functional P,,_; defines an invariant associated with the pseudodif-
ferential operator P. The correct way of looking at it is as a function on
the bundle I3(Q) of jets of degree two over Q (the cotangent bundle T*(Q)
is nothing else but the bundle of jets of degree one over Q). Suppose that
 has been chosen so as to satisfy

(34) PP(x, grad w) =0 in Q, |a| = 1.
Notice that this implies that « satisfies also the characteristic equation
(35) P,(x, grad ) = 0 in Q.

It then follows that the differential operator 2,(w; x, D,) reduces to its
zero-order term, which can be written:

(36) M(x, grad w) = P, —(x, grad w) — 5 Ial}:l DiP%(x, grad w).

The remarkable fact is that (36) is a function on the cotangent bundle.
Under this form it has been used by Mizohata and Ohya in the study of
the Cauchy problem. It should also be remarked that when applying the
asymptotic expansion we need (since  is complex valued) a “good”
analytic approximation, in the covariable ¢, of the symbol P(x, &) of .
Later, when combining the asymptotic expansion with (28) we perform
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also an analytic approximation in the variable x. All of this, of course,
introduces some errors which must be estimated when disproving (28).
We can assume in the proof of Theorem 2.1 that P is of the following form:

(37) P = <6it + b(r:)Dx>2 — c(t)Dy + d(t), N = 2,A xo = (0, 0)

where b, ¢, d are analytic functions of ¢, |t| < Tand b(t) is real. Roughly
speaking, one can “reduce” the general situation to one close to (37), by
performing “admissible operations” such as: use of canonical transfor-
mations to straighten up bicharacteristics and to flatten transversal “pieces”
of the characteristic variety perpendicular to the straightened bicharacte-
ristics; moving away (along the characteristic variety) from the original
point (xo, £°) to a new point (xo, £'°), arbitrarily close to (xo, £°) and con-
veniently chosen, so that the problem of disproving solvability of P at x,
is transferred to that of the non-solvability of P at x; (in this step it is very
important that the order k of the zero in Theorem 2.1 is necessarily odd);
“division” by the elliptic factor Q. It is also important to mention that
although the Mizohata-Ohya invariant

) M =Pl § - 4 B BDR O

plays no role in the statement of Theorem 2.1, it is very much present in
its proof which subdivides into two parts, according to whether the lower
order terms have or do not have a “strong influence”. The precise measu-
rement of this influence is achieved by means of the imaginary part of the
square-root of the invariant in question, defined in the characteristic variety.

The next case to investigate is when the factor L (still satisfying (FZ))
satisfies the condition () for local solvability. In such a case obstruction
to solvability may come from the Mizohata-Ohya invariant (39), speci-
fically from the fact that it does not decay to zero fast enough as (x, &)
converges to (xo, £°) along certain bicharacteristic strips in the cotangent
bundle. Results in this direction are fragmentary. A particular (but deci-

sive) situation is that of the operator
(40) P = (& + b(t, Dy))* + clt, D)
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where b(t, ;). is a real valued C* function of (¢, £) in (5. 1) x {R,\{0h),
T> 0, positive homogeneous with respect to ¢ of degree one and

ot & = eitt, &) + f cLit, &)

where each ci(t, &), i = 1,0, —1, —2,..., is a C*® function of , &) in
(=T, T) x (R,\{0}) positive homogeneous of degree i with respect to &.
If we assume that for some £° e S¥(Q):

41) b(t, &% = bot*(1 + O(t)), k odd, by, > O,

j[hen "I;Iieorem 2.1 implies that ‘Pis not locally solvable at the points (x, 0)
in R""%. In the cases corresponding to solvability of 0, + b(t, D,) ie.:

(42) for every £°e S*(Q), b(t, £°) = bot*(1 + 0(z)), k even or else k odd
and by, < 0,

we might have ponsolvability for P due to the influence of the lower order
terms. In fact, if we suppose k even (and without loss in generality b > 0),
J. Barros Neto and F. Treves have shown that the condition

(43) <J"|Im Jeals, 9| ds)z' < const. ft b(s, &)ds,

forallt > ¢'in a neighborhood of zero and for all ¢ = ]—E—linaneighborhood
of £°, implies that P is hypoelleptic at (x, 0), and, hengce, that ' Pis locally
so.lvgble at (x, 0) (They have also shown that P is analytic hypoelliptic if
this is true of d, + b(t, D,)). F. Cardoso and F. Treves have been trying
tq .show (so far unsuccessfully) that (43) is also necessary for the solva-
bility of ‘Pat (x, 0) (and hence also for the hypoellipticity of P at (x, 0)).

If we now go back to the factorization (25), without constant multiplicity
[see Def. 2.1] and assume that P,, factorizes smoothly as a product:

(44) Pulx, &) = Q(x, &) Ly(x, &) Ly(x, &)

where L; and L, are first order symbols, then new phenomena can be
expected as has been shown by A. Gilioli and F. Treves. They studied
completely (by the method of “concatenation”), from the view point of
local solvability, the second-order operator in R2,
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: 0 :
(45) P0=<5—atk|Dx|> <-6?_btkli|>+Ctk 1|D:lCI

where k is an integer, a, b € R, c € C. According to the theory of operators
of principal type, if k is even, the operator X = % — at*| D, | is both

locally solvable and hypoelliptic (in fact, subelliptic), if a # 0. When k
is odd, X is hypoelliptic but non-solvable if a > 0 and solvable but not
hypoelliptic if @ < 0. The interesting case is therefore when

(46) k is odd, a>0, b<0

(the other cases are easy to classify). They proved the following result

THEOREM 22. The following conditions are equivalent
a) P, is not locally solvable at the origin

b)af

= is a positive integer congruent to 0 or 1 modulo k + 1.

This shows that phenomena of a discrete type occur (they suggest spectral
properties of second order equations). This had already been shown in
the study of hypoellipticity by Grushin and others. Theorem 2.2 has been
extended by Gilioli in his thesis. When k=1, J. Sjostrand, F. Treves and
L. Boutet de Monvel have obtained more powerful results. We return
now to the situation described in the Introduction [see (1), (3) and (4)]
with r > 3. R. Goldman proved in his thesis the following

THEOREM 2.3. Assume that (FZ) holds for the first order factor L and
that () is violated by Lat (xo, £°). Furthermore assume that the Mizo-
hata-Ohya invariant M (x, &) [see (39)] does not vanish at (xo, —&°). Then
P is not locally solvable at x,.

We remind the reader that the principal symbol of ‘P is P,(x, —¢) and
its “subprincipal symbol” or Mizohata-Ohya invariant is .#,,(x, &) =
= M,(x, —&). Therefore the extra condition in Theorem 2.3 means that
Mip(x0, %) # 0. It was conjectured by F. Treves that Theorem 2.3 is true
without this extra condition [see Theorem 2.1].
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COROLLARY 22 Suppose r =3 and that (FZ) holds at (xo, £°) with
k=1. If () is violated by Lat (xo, £°), then P is not locally solvable at x,.

PROOF. If A (xo, —£&°) # 0 the Corollary is merely a restatement of the

theorem. In the case # (xo, —&°) = 0 we apply a recent result of Sjostrand
to obtain the conclusion.

COROLLAR\g 2.3. Suppose P is a differential operator in Q and that (FZ)
holds at (xo, £°) with an odd integer k. Then if M(xo, £°) # 0, neither P
nor 'Pis locally solvable at x,.

Finally we mention that Treves proved that Property () for an arbitrary
symbol p without critical points is equivalent with the fact that p is the
limit, in the local C* topology, of subelliptic symbols p; of order 4 i. Di
satisfy the following condition: s

1 2
47) 5 {pj» bj} > 0 at all characteristic points of pj

(p; is the complex conjugate of p)).

Such a result points to a new definition of () which is totally independent
Qf thp concept of bicharacteristic and thus lends itself perfectly to genera-
h.za‘tlon to arbitrary symbols, with an arbitrary multiplicity of the characte-
ristics. This, of course, led Treves to a new general conjecture on the
n§cessity of (), redefined as indicated, for local solvability of any linear
differential, or pseudodifferential equation. Of course, the sufficiency of
(¥) in this case is out of question since we know that lower-order terms in
a differential operator can affect its solvability properties.
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