On Klingenberg’s Theorem*

KETI TENENBLAT

L. In the classical problem of classifying the structure of a riemannian
manifold M from the properties of the seccional curvature Ky of M,
the following well known results were obtained, when K, is bounded
below by a positive constant. Berger proved in [1] and [2] that a com-
plete, simply connected and even dimensional riemannian manifold
with # < Ky < 1 is homeomorphic to a sphere, or otherwise M is isome-
tric to one of the compact symmetric spaces of rank one. For arbitrary
dimensional riemannian manifolds, Klingenberg proved in [8] that a
complete and simply connected riemannian manifold with ¥ < K,, < 1
is homeomorphic to a sphere. Moreover in the odd dimensional case
with # < Ky < 1, Klingenberg proved in [9] that M is still homeomor-
phic to a sphere.

The above results were proved, using the following Kliﬁgenberg’s
theorem [7].

THEOREM A. Let M be a compact, simply connected, n-dimensional
riemannian manifold, such that § < Ky < 1.Then ¥ me M, the distance
Jrom m to its cut locus C(m), satisfies

dm, C(m)) > =.

This theorem follows from the following

LEMMA A. Let M be a compact, simply connected n-dimensional rieman-
nian manifold, such that 0 < Ky; < 1.Then YVme M

d(m, C(m)) > min {n, Lzl} .

where | denotes the length of the smallest closed geodesic on M. If n is even,
then 1 >2n. If nis odd and % < Ky < 1, then | > 2n.
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Berger in [3] gave an example showing that Klingenberg’s theorem for
odd-dimensional manifolds cannot be proved for 0 < K,; < 1. The
example is a three-dimensional riemannian manifold, whose seccional
curvature satisfies 4 < K, < 1 and it has closed geodesics with length
less than 2.

In this paper we consider three and five dimensional manifolds M, with
0 < Ky <1 where 6 < %, and we prove results analogous to Klingen-
berg’s theorem, with hypothesis on the diameter and volume v(M) of M.
The hypothesis on the diameter is based on the following result proved
by Berger [3]. If M is a complete, simply connected n-dimensional rieman-
niam manifold, such that

T

0<d0<Ky<1 and diam M > ;

then M is homeomorphic to the n-dimensional sphere S" where n # 3, 4.

Let S5 denote the n-dimensional sphere with constant seccional curvature d.
In §3 we prove the following results.

THEOREM 1. Let M be a complete, three-dimensional riemannian mani-
fold such that 0 < 6 < Ky <1, § < 55,

T 9
diam M < and (M) > — v(S3).
iam 5T (M) 20 (S3)
Then every closed geodesic on M has lenght > 2m.

THEOREM 2. Let M be a complete, five-dimensional riemannian manifold
such that

T

¥ 5 9 3
0<d0<Ky<l1ld6< (=], diamM < d (M) >— v(S3).
<0< Ky< <60> iam 5 \/(—3 and v(M) 5 v(S3)

Then every closed geodesic on M has length > 2m.
From Lemma A, we get

COROLLARY. If M is a simply connected, riemannian manifold satisfying
the conditions of theorem 1 or 2, then Vme M

d(m, C(m)) > m.
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We remark that once the value of § is fixed it is possible to improve the
condition on the volume, for example we can prove that in the 3-dimen-
sional case, if

o= %, diam M < % and (M) >\/Tg v(S3)

then every closed geodesic on M has length > 27. It is not difficult to see
that Berger’s example [3] mentioned above does not satisfy our conditions
on the diameter of M.

In §2 we introduce the main tool used in the proof of theorems 1 and 2.
It is a generalization of a result obtained in the author’s doctoral thesis.
In §3 we prove our main results.

§2. In ([10] Theorem 2 and Theorem 3) we obtained a method which
gives a lower bound for the length of the closed geodesics on a complete,
riemannian manifold M, such that Ky > 1 and »(M) > V. This method
was obtained, considering diam M < n which follows from Myers theorem.

Since in this paper, we have an extra hypothesis on the diameter of M "
we are going to generalize the result mentioned above, when diam M < d.

Cheeger [4] proved the following

THEOREM B. Let M be a complete, n-dimensional riemannian manifold,
such that Ky > H, diamM < d and v(M) > V, where d, V> 0, HeR.
Then there exists a constant c,(d, V, H) > 0 such that every closed geodesic
on M has length > ¢, (d, V, H).

Based essentially on the proof of theorem B, we obtain values for culd, V, H),
when Ky > H > 0. Without loss of generality we can consider K,, > 1.

THEOREM 3. Let M be a complete, n-dimensional riemannian manifold,
such that Ky > 1, diamM < d and v(M)> V. Let 0 <% and r < d be

respectively determined by the following equations

1) 2f...fsin"_1 ay sin" 2oy ... sinoy,_qday ...do, = V;
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where 0<a; <d, 0<a, <%, 0<o;<m, i=3, ..., n—1, 0<o,<2m, and

d
Va J; sin" Yoy doty

r
) J sin" " tay doy =
9 2J‘. & Jsin"“ Loy sin" 20y ...sin0,— 1 doy ...do,—V}

where 0<a;<d,0<a, <% 0<o;<mi=3,...,n—1,0<0a,<2m, and
Vi, V, are positive numbers such that Vy +V, =V. Let c,(d, V, 1) be any
positive real number <2 tan™! (cos 6 tanr) and <n. Then every closed
geodesic on M has length > c,(d, V, 1).

PROOF. Let S" be the n-dimensional unit sphere in R"*! centered at
p=1(0,...,0, 1). Consider the following parametrization

X1 = Sin oy COS 0y
X, = Sin oy Sin 0z COS O3

Xp2q = SINo SN, . S¥sint—1.CoS0y
X, = SIL.0 ST 0o .. 'SI Oy — 1 Si 00y
Xp+1 = 1 — cosoy,

where 0 <a; <m i=1,...,n—1and 0 < a, < 2m. ,(u) will denote
the set of vectors that form an angle < 0 with u or —u and with length < ¢.
If m e S" we denote by D,(m) the set of vectors ve T, S" such that || v || < r.
Fix 0 e S" and the vector u=(1,0,...,0)e T, S", with the above parame-
trization. It is not difficult to see that equations (1) and (2) are respectively
equivalent to

v(expo (D40) — ap W) = V1
and
v(expo (o)) = V.

Let c,(d, V, 1) be any positive real number less than 2 tan™ ! (cos 0- tanr).
Since 0 < 0 < §, if follows from the first variation formula and the relations
on spherical triangles, that if 7(z) and o(s) are geodesics on S" such that
7(0) = 6(0) and (7'(0), ¢'(0)) < 6, then
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3) d(o(r), t(t)) < r for all ¢,
0<t<c,d V1)< 2tan™ ' (cos O, tanr).

We can now prove, that the existence of a closed geodesic on M with
length < ¢,(d, ¥, 1), would imply v(M) < V. What will follow is Cheeger’s
proof [4] of theorem B, which is included for the sake of completeness.
Let y be a closed geodesic on M with length L <c,(d, V;,1). If we prove
that the set

W(0)) = {w e Ty0) M; d(expyoy @, y(0)) = ||o||}

is contained in

(WM(0) — o 46 (¥(0)) L6 (y(0)),

then it will follow from Rauch Comparison theorem that

UM) = vlexpyo) (M(0)) — Ly (¥(0))) +
+ vlexpyo) (MY(0)) N, (y(0)) <
< v(expo (Da(0) — o 40 ())) + vlexpo (£, () =
= V1 + V2 = V.

We now prove the inclusion mentionéd above. Let we Wy(0)); since
diam M < d, it follows that

we WMy(0) — L ('(0) or  we o (y(0).

If we ;4 (y'(0)), then
expy o)t P
[[wl
is not minimal for ¢ > r. In fact, suppose it is minimalup to r; then it follows
from Toponogov’s theorem [5] and the fact that c,(d, V, 1) satisfies (3)

and c,d, V, 1) < n that
w

d(expyoyr Hw“ Y(L)) < r.
Since y is a closed geodesic,
d(expyoyr ﬁ:—” y0) < r

Le. exp, ot m is not minimal for t > r.

Hence, w e o/, 4(y'(0)), which completes the proof.
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Theorem 3 is closely related to a result of C. Heim [6].

§3. Before proving theorems 1 and 2, we remark that if M is a riemannian

manifold such that é < K, < 1, we can multiply the metric by 9, so that -

in the new metric 1 < K,; <3 Hence theorem 1 is equivalent to the
following. -

THEOREM 1. Let M be a complete, 3-dimensional riemannian manifold
such that 1 < Ky <3, 0 < 4, diam M <% and v(M)> 55 v(S>). Then
every closed geodesic on M has length > 271\/5.

PROOF. It follows from theorem 3. We initially remark that in theorem 3
when d =3, equations (1) and (2) are respectively equal to

(3) v—(g—)—ZJ...jsin"_lalsin"_zaz...sinocn,ldocl...doc,,zV1
where Oéalﬁ%I,OSOCZSQ,OSOCiSTC,i=3,...,n—],OS(anQn, and
; - 3
4) J sin" Yoy doy =—ST2— J‘ sin" " Loy doy.
0 ( )_ V 0
2 1

Let V; and V, be respectlvely equal to 3/5 and 2/5 of the lower bound
of v(M), i

Vi =2l w$% " and =%u(s3).
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We obtain 0 <0< § from equation (3>). which gives

27
(5) cosf = 3

we get 0 <r<7% from equation (4) i.e.

4 1
j sin? oy doty = ==

0

W[ oo
Ll

It is not difficult to see that r satisfies

tanr > 5.70037.
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We conclude using (5) and the hypothesis on §, that

2 tan" ' (cos 0- tanr) > 2 % T > 2\/5 .

Finally, using Theorem 3, we get that every closed geodesic on M has
length > 27r\/5. qed.

In a similar way we can prove Theorem 2, which is equivalent to the
following:

THEOREM 2. Let M be a complete, 5-dimensional rlemanman manifold
such that 1 < Ky <%, 6 <(&)?, diam M < % and v(M) > 25 (S°).Then every
closed geodesic on M has length > 271\/5

REMARKS. 1. Results analogous to the above theorems can be obtained
for higher dimensions.

2. If M is an n-dimensional, complete riemannian manifold, given
0<d <z it would be interesting to find a function f(5), such that if

0<Ky<

T
< and  v(M) > f(0) v(S}),
2 \/5 f 5)
then every closed geodesic on M has length > 2n. Clearly this function
will depend on the dimension n. In the three dimensional case, when

4
0016 <5 <, £(5) = Vo

could be such a function.

3. Suppose M is a simply connected, riemannian manifold satisfying
the conditions of theorem 1, with
4 Sn

o= 5> and hence diam M < e
Let B,(p) = {me M; d(m, p) <r}. Is it possible to obtain M = B,(p) U B,(g),
where p,qe M and r < n? If the answer is affirmative, then M is homeomor-
phic to a sphere. Similarly, one may ask an analogous question where M
satisfies theorem 2 with § = (23)%.
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