“‘Thres’hold of Singularity”” for an Equation of non Linear
Evolution*

PATRICK PENEL

1. Introduction. We consider here a master equation, connected with the
Theory of Turbulence. The master equation is referred to an historical
introduction in the physical thesis of M. Lesieur, in which he and U.
Frisch give a markovianized version of the Kraichnan’s Random Cou-
pling Model (MRCM).

When the MRCM is applied to the Biirgers equation, we obtain the
master equation:

(L.1) g—? + 25 (. 0) — w2} = 0.

(One can also apply the MRCM to three dimensional homogeneous
isotropic turbulence with or without “helicity”; see U. Firsch and M.
Lesieur).

It is known in the “inviscid” limit that the Biirgers model leads to the
formation of shocks after a finite time. In the same way, let us mention
Onsager’s conjecture (1949), that Euler’s equation for perfect incom-
pressible fluid can have “turbulent” irregular solutions for which the
energy is not conserved (see also M. Lesieur and U. Frisch).

In order to prove this result on equation (1.1), we study the regularity
of solutions and we establish the existence of a “limit” of regularity, or
better a “threshold” of singularity. We wish to call the attention of the
reader for such an important particular property: the master equation
is essentially parabolic in the cone of positive-type functions, but it ne-
cessarily generates irregular solutions, after a finite time, and it happens
even if we have smooth initial data.

In formulating this property we first prove a negative theorem. Then
we divide this paper into several theorems giving a result of existence
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of a solution to equation (1.1) and results of regularity of solutions. We
conclude showing some numerical results.

All results presented here constitute part of the author’s doctoral disser-
tation and part of a work of C. M. Brauner, R. Teman and the author.

2. Non-existence of regular solutions

We want to rewrite equation (1.1) in a more convenient form which we
will use:

1) ) L afu)e, ) 2 (1,x) =
where
2.2) AL, %) = 2ule, 0)—ult, )

The positive-type of u insures that a(u)(t,.) > O for all ¢+ > 0, u attaining
its maximum at x = 0.

We look for a function u defined in [0, oo[ x R, solution to equation
(2.1) and subject to the following initial and boundary conditions
u(,x) — 0 when xX— + ®

M(O,.) = Uo

THEOREM 2.1. The master equation does not have solutions of positive-
type in C*([0, o[ x R), nor in C*[0, oo x R) either.

2.3)

PROOF. We assume that the master equation has a solution u in
C*[0,0[ x R). Let us differentiate equation (2.1) with respect to x, we have

o*u ou 0°u 0%u
(24) s —olu )ﬁ+8ax ’a—§+6<ax ) =10
and let us denote 07142(& 0) by D(t).

Then, u being a positive-type function,

(2.5) % D(t) + 6 D(r) = 0.
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Denoting the initial condition by D, (Do < 0), one can easily verify that
(2.6) D(r) =

1 .
6D,

This contradicts the assumption for regular solutions.

2.7 Dit) —--o0 as t—-—

3. A result on existence of solutions

THEOREM 3.1. For all positive-type initial data u, given in H Y(R), there
exists a solution u to the problem (2.1) (2.3) such that

(3.1) wult,.) has the positive-type for all t >0,
(3.2) ueL*(0, o[; H(R

(33) Do) = a2

p and ®(u) = oc(u) eLz([O o[ x R).

Under the assumption that S5

I % ¢ L*(R), we also have:

(3.4) g—ueLoo ([0, o[ x R),

(3.5) ®ou)e L0, oo ; H(R)) N L*([0, oo x R),

(3.6) g—?e L2([0, oo[ x R).

For a proof we refer the reader to [6] [7] Theorems 1.1, IL1, IIL.1 and
IV.2. So, if we denote by u, the solution to problem (2.1) (2.3) with viscosity,

ou, 0 ou, %u,
G7) T oy = Vg

we can observe that:

There exist a sequence v — 0 and a function u solution to problem
(2.1) (2.3) such that
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(3.8) uy — u in L*([0, oo ; L[R)) and L=([0, oo x R) weak-star;

(3.9) 6(;;:, — g_u in L*([0, o[ ; L%(R)) and L*([0, co[ x R) weak-star.

4. “Threshold” of singularity

THEOREM 4.1. Let u be a solution to problem (2.1) (2.3), given by Theo-
rem 3.1. Besides let us assume that uo € H*(R) and that the Fourier transform

in x, # %EZQGU(R). Then there exists t, >0 such that

(4.1) ue L2([0, t,[; H*([R)).

In order to prove this result, we shall first assume that u, belongs to H “R).
We shall prove a lemma which is very useful later on.

LEMMA 4.1. Let u, be the solution to problem (3.7). Let ¢ be a real para-

1
meter such that 0 < ¢ < - -‘F— Then there exists ty, = ty4(uo,c) such
°(0)

that

4.2) 0>a—923(t0)>—-for all t, 0 <t < ty.

4
PROOF. Denotmg 66 by u{® and % Y by ul¥, we have
4.3) Eu(vz)C 0) + 6{ul?(. 0)}> —vuld(. ,0) = 0

(44) 40,0 = 440 <

By using the positive-type of u,, it follows from (4.3) that

—~1 -1
4.5) m > Ezu—o_ 6t
dx?
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Hence we conclude (4.2) for all t < t, = é { d : c}.
' (0)

By means gf results on regularity of u, (see [7] chap. 3), we can write
the successive derived equations for u{®, u®, u{Y. We can justify par-
ticularly (4.3) (4.4) and besides we can prove the following a-priori estimates:

4.6) u®,u®, u(® remain in bounded sets of L*([0,1,];L*R));
4.7) v*u{® remains in a bounded set of L*([0,t,]; C°(R)).

For example we have

ou? ou 0
4.8) 3 Bx [(v + ofuy) } 65, [ uP] = 0.
We multiply (4.8) by u{* and we integrate over R: (denoting by |- | the
norm in L2(R)),

@9 L Lpegp 4 J (v + aluw)t, x) (a“v . x))z dx
R

- 3] (w?(t, x))* dx = 0.

R
Because of the negative-type of u{¥, we have

(4.10) u@(t, x) > ut, 0) for all x, for all ¢ > 0.
Then

@.11) 2120 + 6uP(e,0)- [P < 0.

It follows from Lemma 4.1 and from Growall’'s Lemma:

@12) [P < ’d—r
dx

2
- exp[-6 J;u?)(o, 0)ds] for all t>0

2
.exp[%] far £ty

REMARK 4.1. We have also the inequality (cf. (4.9))

(1 + Loy [6t* ])
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d2u0

< |==
dx

duo

Ly
f O + o )t, e, x))Pdxde < - g

0 YR 2




We refer to [7] for the other a-priori estimates.
Now, we conclude the proof of Theorem 4.1:

Taking 1 > 0 appropriately, under the assumption u,, of positive-type
in H%R), we get

' 1
4.13) 0 > u2(t,0) > — =
for all ¢ such that
. 1 1
OSISI* =?|—W*C|
=2 0
and therefore by (4.12),
61, o
(4.14) Tu@(0))? < |u§)|? exp li%:|, Gt <it, .
We choose ug, such that, as n — 0
(4.15) Uy — o in  H*R);
4.16) Fuly) — Fu@  in LY(R).

1 X°
For instance we take uo, = @, « uo where @,(x) = Wexl’ |:— ﬁfj'

Then by means of Lebesgue’s theorem (4.16) is obvious. Indeed uo, has
the positive-type and | #ul}) |11 w = —ut3)(0). Then (4.14) holds also with

1 1
ul}) replaced by u®, for all ¢ such that 0 <t <t, = F|: T —c]

The result follows as v — 0.

5. Regularity C* in [0, T, ] x R

THEOREM 5.1. If ug belongs to C&(R), the solutions u to problem (2.1)
(2.3) verify: |
(5.1) ueCE([0, L] x R)
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where
. -1
: 0
6 T4 0)

PROOF. The proof extends the results of the kind of (4.6) (4.7) and Re-
mark (4.1), for all derived equations.

As v — 0, if t, = t,(uo,c) is given by Lemma 4.1, we can obtain for
all integer m > 4:

(53) u™ = % remains in a bounded set of L*([0,r,]; L3(R)):
X
(m) (m)
(54) Opnu,) = ofuy) ‘35‘; and a{;‘—t remain in bounded sets of
L*([0,t,] x R).

We induce the regularity at the limit v = 0 by an iterative process in the
successive derived forms of equation (2.1).

REMARK 5.1. One can easily verify the uniqueness of solution to pro-
blem (2.1) (2.3) in [0, T,[ x R.

REMARK 5.2. One can write an asymptotic development (see [7])

(5.5) u(t, x) = u(t, 0) + 2x*u®(t,0) + 0x*) 0<t<T,.

REMARK 5.3. Let u be a solution to problem (2.1) (2.3) under the assump-
tions of Theorem 3.1. Then for a.e. 1 > 0,

(5.6) S—Z(t,.) is continuous in R- {0}

and we can obtain the following equation which precises this disconti-
nuity at x = 0:

2
(57) & [utt,0)] + 2 [S—Z , o+)} 0

153



As long as u is differentiable at x = 0, therefore we have %(t, 0)=0

ou

and o

t,0)=0for 0<t<T,.

6. Numerical results

Let u be a solution to the master equation; u is a function of covariance
(see the model MRCM) and therefore its value at x = 0 exhibits a term
of energy. Then we can interpret the results considering the energy: the
energy is conserved for the differentiable solutions, in the interval (0, T}).
Afterwards the energy becomes dissipated (see (5.7) and Fig. 1). The no-
tion of “catastrophe of energy” is connected with the effective onset of
turbulence.

2
The problem (2.1) (2.3) with uy(x) = exp [—%] has been discretised (with

a variable step in space) and computed in the Laboratory of Dynamic
Meteorology (ENS-Paris). We observe T, =1/12and the singular point
at x = 0.

U0
ELgR e
\
0.9980
T* = 1/12 \
|
0.99607
T
. i
007 0.1

Fig. 1. Conservation of energy and “Catastrophe” of energy.
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t = 0.08

)

t = 0.09

0.990
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0.015

Fig. 2. Evolution of u solution to (2.1) (2.3), for x < 0.015.
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Notes added in proof.
In relation to chap. 4 and remark 5.3, results on the energy dissipation have been obtained in:
C. FOIAS and P. PENEL, CR.A.S,, Paris, 280, sériec A, 1975, p. 629.

C. BARDOS, P. PENEL, U. FRISCH and P. L. SULEM, Modified dissipativity for a
non linear evolution equation arising in turbulence (to appear).
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