Recent Developments on the Time-Dependent Approach to
the three Dimensional Inverse Scattering Problem*

GUSTAVO PERLA MENZALA

L. Introduction. We shall present here recent developments in the so-called
time-dependent approach for the Inverse Scattering Problem (ISP) Roug-
hy speaking this ISP deals with all the possible information that we can
obtain about the dynamics of a system by knowing its asymptotic beha-
vior. By now, we are more interested in examples rather than abstract
theorems, thus we will restrict ourselves in these notes to a pair of impor-
tant models in mathematical-physics, namely

(1) Ou+gxu=0 in Q=R -w<t<ow®
82 3 52
= W-A, AP 077 2 , where g(x) denotes the potencial energy and
D ]

u(x, t) the state of the system.

And, the nonlinear wave equation
) Ou+gqgxu*=0 in Q=R -ow<t< .

As we mention above, our main interest here is to use the time-dependent
approach to show that the scattering operator S (one for each equation (1)
and (2) respectively) determines uniquely the scatterer, at least when
g(x) satisfies certain reasonable conditions at infinity which we will spe-
cify later.

Before concluding this introduction we would like to make a few com-
ments on the literature. First, in the case in which g(x) is spherically symme-
tric then the ISP for equation (1) reduces to one-dimensional case and
has been intensely studied through a stationary approach by using the
methods of Gel'fand-Levitan-Marchenko, see [3]. In 1955, J. Berezanskii
[2] gave a uniqueness result, through a stationary method, for the three-
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dimensional (and two-dimensional) Schrodinger equation, i.e., iu, = Au +
+ g(x)u, although g(x) it was assumed to be C* and with compact support.
In [11], T. Schonbek gives a result on inverse scattering for the Klein-
Gordon equation (ie., [Ju + m*u + g(x)u = 0 m > 0) concluding that
for suitably small potentials g,(x), g»(x) there is uniqueness of the inverse
problem provided that g;(x)— g(x) is either non-negative or non-positive
(for all x’s) with compact support. Recently L. D. Faddeev [4] outlined
a generalization of the Gel’fand-Levitan method to the three-dimensional
Schoedinger equation. (See also [7].) In [8] ([9]) G. Perla Menzala pre-
sents a uniqueness result concerning equation (1) and a sketch of his
method will be shown in (II).

In what concerns equation (2) W. Strauss in [12] presented the scatte-
ring properties for the case when g(x) is “small at infinity” and again
W. Strauss in [13] gives an abstract time-dependent approach for the
inverse (nonlinear) scattering problem from which equation (2) is a par-
ticular case. In (IIT) we will sketch his method. It is perhaps surprising,
as W. Strauss pointed out in [13], that the nonlinear ISP is much easier
than the corresponding linear one.

This work is based on a lecture I gave at the University of Brasilia during
the meeting of Scattering Theory of the “Escola de Analise” held in Bra-
silia during January 20 to January 27 of 1975. I wish to thank the staff
of the Departamento de Matematica of the University of Brasilia for
their financial support during that time.

II. The linear case. We consider the initial value problem
(IL.1) Cu + gx)u =0

inQ=R3-0w <t < o with C*-data of compact support (i.e. CF(R?))
at t = 0. We assume that the real-valued function g(x) is non-negative
and, in order to simplify our arguments we will assume that g(x) = 0(|x| >~
as |x| approaches infinity (¢ > 0). Furthermore we assume that g(x) is
continuous.

From now on we shall refer to solutions u of

(I1.2) Cu =0
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in Q=R3* -0 <t < oo with C¥-data at t = 0 as free solutions. In the
space of such free solutions we define the norm (energy) | |z, by

1
lulg, =5 | [gradsul® + u[*]dx
Ra
where grad, u denotes the gradient of u (in x) and

3
|grad, ul?® = ¥ |us |
ji=1

In the space of solutions of (I.1) with such initial data at t = 0 we define
the (total) energy of u as

1
|ulz = ) [lgradsul? + |u]* + q(x) |u|*] dx.
R3
It is not difficult to show that | ||z, and | | are constant in ¢ ie. we
are dealing with two conservative equations. A much more deep result
is the following: For each solution u of (IL.1) with Cg-data at t =0 there
exists a unique pair u, of free solutions wuch that

lu-u,|lg—0 as t— =zc0.

Furthermore, the operator which relates u- — u. is unitary. Such ope-
rator is called the scattering operator associated with (II.1) and denote
by S = S(g).

REMARK. The existence and unitarity of S can be proved under much

weaker conditions on ¢(x). See T. Kato [5] and S. Agmon [1] for example.
As pointed out (and proved) in [8] for our needs it is better to write S as

(IL.3) Sui(x,t) =u_(x,t) + f J R(x -y, t—s)q(y)uly, s)dyds
- R3

where u, are the corresponding free solutions for u (solution of (IL.1)),
xeR3, teR and R denotes the Riemann function associated with (IL.2).

In the special case in which S = I = identity operator then (II.3) gives us
(L) f f R(x 3, 1 =)0y, Sdyds = 0

—oo VR3
for each “perturbed” solution u and all xe R3, teR.
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From (II.4) we would like to show that ¢ = 0, however some technical
difficulties arose and we had to use classical limiting process together
- with the energy method. In fact, we can write

(IL.5) u(y, s) = u—(y,s) + Pu(y,s)
where
Puly, ) =~z | €17 aly + Bty + &5~ [¢)de.

Ra
We state now a lemma which was proved in [8]

LEMMA II.1. Let u be a solution of (I1.1) with C¥-data at t = 0 then

a) j q(x) |u(x, )|* dScx < const. ||u?
Ch

where Ch denotes any characteristic cone and dScy, the surface measure
on Ch, and :
1/3 1/3

b) sup | Puty, )| < const g% | ]2 Jull.

Now, by substituting (II.5) in (IL.4) and using the above lemma we get

(IL6) Il < const | q]|%2 a3 lullg
where
+
lall = sup J I R(x—y, t—5)q(y) u-(y, s)dyds
lu b=t | Ja,
It is really shown by using the continuity of g(x) that || || is a norm
(See [8]).

Let us choose a solution u (of IL.1) such that ||u |z = 1 and let us substitute
q by eq (¢ > 0) in (IL6) therefore we would obtain that the ratio

| 2all/| eq %7 e (72

is bounded by a positive constant: But as ¢ — 0 this cannot be possible
unless g = 0. This result can be summarized in the

THEOREM 11.2. Let q(x) satisfying all hypotheses given in the beginning,
of this section. If q % O then there exists a positive number &, such that
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for 0 < & < &5 we must have S(eq) # I = identity. Here S(eq) denotes the
scattering operator associated with [(Ju + equ = 0.

REMARKS

1) The case in which we have two spatial potentials q1(x), g2(x) can be
treated in a similar way. The reason is not because the scattering operator
depends linearly on the potentials which in general is Jfalse but because
(IL3) and the way that our method was carried out.

2) The method that we describe here for the ISP for small potentials,
seems to work for many other equations. For example, we have carried
out the computations for the Klein-Gordon equation with an external
potential in R* and it still works, (See [10]). This also improves Schonbek’s
result, [11].

III. The nonlinear case. In this section we consider classical solutions of
(ITL.1) Ou + q(xu® =0

in Q=R3 -0 <t < oo which have initial data Cy at t = 0. In order
to garantee the existence of the scattering operator S we assume for example
that 0 < g(x) < const |x|7' 7% ge LY(R?) and that g(x) has first and se-
cond derivatives in L*(R?). The following argument that we will use
to solve the inverse problem will require also the continuity of g(x),
however, by using Fourier transformation, q(x) can be determined pro-
vided it is integrable.

Let u and v solutions of (II.1) with C¥-data at t = 0. We consider the
bilinear form

W(u, v)(t) = J (40 — uv,)dx
R3
Formally, we differentiate with respect to ¢ and use of (IT1.1) give us

(I11.2) % W(u, v)t) = f3 q(x)uv® - ulv)dx
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Integration of (IIL.2) from — T to T gives
T

(ITL.3) W(u, v)(T)- Wu,v)(-T) = f f q(x)(uv® —udv)dxdt
—T JR3

Observe that

Wu,v) (£ T) - Wluy,v.)(£T)=Wu—us,v:)(£T)+
+Wu-uy,0.)(£T)+ Wy, v—0v.)(£T)

and because each term on the right hand side tends to zero as T — +
then

(IL4) W, ol(+ T)-Wuy 0.+ T) —0 as T — +o
Letting T — oo in (IIL.3) and using (II1.4) we get

(IILS)  Lim Wy ,0s)T) - Wlu- ,0-XT) = r j dx)uv® - wPoMdxdt.
3 -0 JR3

The right side converges because of the left side. In fact, to see this it is
enough to observe the bilinear form W is invariant under free solutions,

because as easily shownd—dt Wiug ,vo)t) = 0 if ug,ve are solutions of

Ou = 0 with C¥-data at t = 0. Thus (IIL5) give us
(I11.6) Wy ,v4+)0)— Wu-,v-)0) = j j q(x)uv® — udv)dxdt.
—w YR3

For solutions of (II.1) with Cg-data at r = 0 we consider the norm
Mull = _sup_Tlu. e + (1 + [eD]ute 0,23

We can write u = u_ + Pu, where
Pu(y,s) = - J j R(y —z,5—71) q(z) u’(z, r) dzdr
— o JR3

ie. Pu is essentially the Riemann function (R) convoluted with qu>.

Let ¢ any nontrivial free solution (in the domain of S) and choose u_ = &g
and v- = 2&¢ (¢ > 0).
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It was shown by W. Strauss [13] that the corresponding perturbed so-
lution u satisfies

a) [[[ulll = 0k)  and  b) [|[Pul|| < const |||ul|]?
By substituting this on (II1.6) we obtain
W(S(ep), S(2e))0) - Wiep, 2ep)0) =

= f f a(X)[(e0)2e0)* — (e9)*(2e9)Jdxdt + O(&)
—o0 VR3
as ¢ — 0. That is

Lim oy [W(sep), s220))0) ~ Wiep, 26)0)] =
(I1L.7) ek

f f a(x)@*(x, tydxdt = I(¢p)
— o JR3

for all free solutions ¢ (of [J¢ = 0) with C-data at ¢t = 0. Observe that
(ITL7) shows that the scattering operator S determines

I(p) = f J q(x) @*(x, t)dxdt.
-0 JR3

Now we use the scaling argument to determine g(x) from S. In fact, let
xo € R* and suppose we would like to determine g(x,). We choose the
free solution ¢@; with the initial datum @;(x,0) = g(A(x —x,)), where
4> 0 and g is any nice function (C§ for example). Also, it is enough to

choose 66—(’;’1(3@ 0) = 0. If we change variables

y = AUx —Xop), A>0
s=At

and @(y, s) = @;(x, t) then @ is the free solution in the new variables with
initial datum ®(y, 0) = g(y). Thus :

(1g) oo= [ a(}+x)o00 %8
- YR3
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As 1 — o0, the right hand side of (II1.8) approaches to
q(xo)J J DXy, s)dyds,
—

which shows that g(x,) is determined by S and therefore g(x) for any x.

REMARKS

1) The method describe above works also for the nonlinear Schrodinger
equationu, = i(— Au + g(x)|u|"~' u) x e R", p = integer > 3(p > 3ifn = 2,
p > 4 if n = 1) with the appropriate norms and conditions on g(x). See
[13]. Recently, C. Morawetz — W. Strauss generalize the method to an
interaction term g(x, ¢) = Y q;(x)¢’ analytic in a neighborhood of ¢ =
=.0. See [6]. SFE

2) Generalizations of the above method to nonlinear symmetric hyper-
bolic systems

=" Ajuy; + Pu)
= R

where x e R", u(x,t)e R", A; are real symmetric (m x m) matrices and
P(u) is a smooth vector function vanishing to a certain order at u = 0,
remain, far as we know still open.

3) By using essentially the same idea as in (III), I and Prof. L. A. Medeiros
considered the equation u; + uy— Uy, + yu"™u, =0 in —00 < x,t < 00,
y=const. and m=even>7 and showed that the scattering operator
determines uniquely the constant 7.
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