Characterization of Compactness for Symplectic Manifolds*

F. DUMORTIER** and F. TAKENS

Introduction. In this paper we prove the following:

THEOREM. Let (M, ®) be a symplectic manifold, Xu(M) the Lie algebra
of Hamiltonian vectorfields on M, C(M) the Lie algebra of C* functions
on M with the Poisson brackets and n: C§(M) — Xg(M) the symplectic
gradient mapping. Then the following statements are equivalent :

1) M is compact;

2) m has a right inverse in the category of Lie algebras;

3) CH(M) # [CRM), CEM)];

4) HY(C5(M)) # {0},

When % is a Lie algebra, his commutator [Z, ] is defined to be the
subset of elements which can be expressed as a finite sum of brackets.

The cohomology we consider is the usual Lie algebra cohomology with
real coefficients [3], [6].

It is a well known fact [3], [2] that the first cohomology group H(#)
is the linear space dual to #/[%, #], hence 3 < 4.

The inclusions 1 =2 and 1 =3 have been proven by Arnold in [2].

We will prove 3 =1 in Proposition 4, and 2 =3 in Lemma 1.

All our manifolds are supposed to be C*, connected and without boundary,
unless we mention it explicitly otherwise.

§1. Let us first recall some definitions and facts which can be found in all
handbooks about symplectic geometry, e.g. [1].

*Recebido pela SBM em 11 de abril de 1975.
**“Aangesteld Navorser” of the “Nationaal Fonds voor Wetenschappelijk Onderzoek”
of Belgium.

167



DEFINITION. A symplectic manifold (M*", ) is a C* manifold of di-
mension 2n, together with a nondegenerate closed 2-form w: ie.

do =0
o"=wA...Aw 1S a volume on M.

We denote by o the volume [(—1)"?/n!] o".

By the theorem of Darboux [1] we know that in each point of M we can
find a local chart (U, ¢) such that w|U gets the canonical expression

w|U = i=il dx' A dy'.

The local charts are called “symplectic charts” and the component func-
tions (x', y’) are called “canonical coordinates”.

DEFINITION. A vectorfield X on (M, w) is called symplectic if Lxw = 0,
where Ly is Lie derivation with respect to X.

We denote by X,,(M) or X,, the Lie algebra of sympletic vectorfields with
the usual Lie brackets for vectorfields

X, Y] =XY— YX
DEFINITION. The symplectic gradient of fe C*(M) is the vectorfield
X, with following property

VYeX®(M): o(Xy, Y)=df(Y).
Let us denote the symplectic gradient mapping by n. Clearly n(C*(M)) =
e ‘

DEFINITION. We call a vectorfield Hamiltonian if it lies in the image
of m and we denote n (C*(M)) by Z'g.

For each X € Xy the elements of n~!(X) are called Hamiltonians for X
and since M is supposed to be connected, two Hamiltonians for the same
vectorfield only differ by a constant.

The Poisson brackets on C*(M) are defined as follows:

{fag} =Lxs; g = ~Lng
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It is easy to verify that n({f,g}) = [ X, X,] which means that & is a Lie
algebra morphism. '

§2. Before proving Proposition 4 we are now going to present some well
known ingredients, under the form of propositions.

PROPOSITION 1. [4]. If M is an open connected C* manifold, then
there exists an infinite sequence {K;}{2 of compact connected C* submani-
folds with boundary such that

M = k) Ki and Vl.:KiCI%H.l.
i=0
PROPOSITION 2. Let (M™, ) be an open symplectic manifold. Each
K; as in the statement of Proposition 1 can be covered with open balls
{Bijji<i' 21, such that each Bij lies in the domain of a symplectic chart

and such that B;j, n By, = ¢ for all i, jy, j, with j; #j, and 1 <jy, j, < p:.

The proof is trivial if we use a triangulation of K; [5] subordinated to a
finite covering with symplectic charts.

PROPOSITION 3. Let I*" = R*" denote the open unit cube of R*", which
we endow with the canonical symplectic structure

@ = i; dx' A dy'

for some coordinates (x',...,x", y',..., y") of R*". Then each f with the
property

support (f)<I*"  and Jfoc =0
can be expressed as a finite sum of Poisson brackets
2n
f= ‘Zl {gia hl}
where Vi supp({g;, h;}) = I*".

The p‘roof of this proposition is a straightforward calculation using the
coordinate functions x', )’ as g; and applying the theorem of Fubini.
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§3. PROPOSITION 4. Suppose (M*", w) is an open symplectic manifold;
then CE(M) = [CH(M), CH(M)].

PROOF. 1) We first decompose each fe C*(M) in an infinite sum of f;
such that for each f;, supp f; is compact and

ffi o =0.

We do this by induction on i using the sequence of K; obtained in Pro-
position 1:

fi has properties f;|K;=f, fi|K$=0 and ffl a=0,

where this last condition can be obtained by adapting any f1 satisfying
the first two properties in a small ball lying in K,\K;.

By induction, if we have f; for 1 <i < k—1, then we construct f; as follows:

k—1
flKi=f= % f
fleﬁ+1 =0

Jfk.(x=0

Clearly f= ) f; and Vi: supp fic K;{\K;_;.
i=1

2) We now -prove that each of these f; can be decomposed as a finite sum
of Poisson brackets.

Therefore we cover K;.\K; with open balls as given in Proposition 2.

Using a C* partition of unity subordinated to that covering, we can
express f; as a sum of functions f; = ) h;; such that each h;; has his support
i

inside an open ball on which @ can be given a canonical form.

Also is it possible to adapt the construction such that all h;; satisfy

hij o= 0. This can fe. be done by putting all open balls of our covering
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in a finite sequence of open balls (B,...,B,) such that
Vae{l,...,p—1}: B,n B, ; # ¢

3) Using Proposition 3, we know that
2n
Vj: hij = kZ1 {lije miji}.

Since Vi the supports of the h;; are contained in open balls {B;;}221! 2,

such that B;; N B;j, = ¢ Vi, jy,j, with j, # j,, We can write:

2n(2n+1)

fi= Y {thie Vi)

a=

Now
2n(2n+1) 2n(2n+1)
r= L8 o )+ 3, (7F i
i even a=1 i odd a=-1
2n(2n+1)
. Z [{ Z Uias z Uia} =+ { z Uig, z via}]
=1 i even i even i odd i odd
Hence

4n@2n+1)
f= > {wsz

REMARKS 1. From the previous construction it is clear that in the
compact case the commutant of C(M) coincides with the sub-Lie algebra
of functions having a zero average value.

The one and only Lie algebra-inverse for 7 is the mapping X I e (g
where t, € R has the property

Jv(f‘+‘ tf) =0,
2. In all cases Xy = [ Xy, X ] or equivalently H'(Xy) = {0}. (See also [2]).

LEMMA 1. If C§(M)=[CE(M), CE(M)], then m has no right inverse
in the category of Lie algebras.

PROOF. Each fe C(M) can be expressed as a finite sum of brackets.
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Hense f= ) {h,g;} and also f+1 =Y {u;v;}.
i=1 =1

So
"= 3 [ath. ) = 3 X, X,]= X,
"D = 3 D). 7)) = 3 X Xo] = Xpoo

and Xf e Xf+1.
Suppose now that k is a Lie-algebra inverse of n. Then

K(Xf) = K< i [Xhi’ XQi]) = _Zn:l {K(Xhi)a K(Xgi)} = i {hiagi}>

i=1 i=1

since Ve,s€ R and V& neCRM): {¢+t, n+s} = {&n}. This means

that necessarily k(X ;) = f, but also k(X ;) = k(X ;+,) =f+ 1, which con- -

tradicts the existence of «x.

§4. For this chapter we refer to the book of Souriau [7] or to the paper
of Robbin [6] which is an excellent introduction to this book. Let us
recall some facts.

When £ is a Lie algebra and M a manifold, an action of ¥ on M is a
morphism of Lie algebras & —% X(M), A — Ay such that the evaluation
map is smooth.

If we have a symplectic structure on M then we say an action is Hamil-
tonian if W(¥) < Xg.

In this case there exist linear mappings J: ¥ — C*(M), A — J, such
that iq0 = dJA

Such a linear mapping is called a “moment” and it is shown in [6] how
to associate to (M,w,%,h) a cohomology class [f]e H?*¥) which
vanishes precisely when there exists a moment which is a morphism of
Lie algebras. It is also shown that whenever w is given by an Z-invariant
I-form 6 (ie. w= —df and YV Ae Z: Ly, 0=0) then J: £ - C{(M),
A > 14, 0is a Lie algebra morphism. If we now consider the Hamiltonian
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action Xy —4 X, for some (M, w) then the moments for this action are
exactly the linear right inverses of 7: Ch(M) — Xp. Hence using Pro-
position 4 and Lemma 1 we can state the following proposition.

PROPOSITION 5. If (M, w) is an open symplectic manifold, then
H?*(Xy) # {0).
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