Characterization of Compactness for Symplectic Manifolds*

F. DUMORTIER** and F. TAKENS

Introduction. In this paper we prove the following:

THEOREM. Let (M, ω) be a symplectic manifold, $\mathfrak{X}_H(M)$ the Lie algebra of Hamiltonian vectorfields on M, $C_H^{\infty}(M)$ the Lie algebra of C^{∞} functions on M with the Poisson brackets and $\pi \colon C_H^{\infty}(M) \longrightarrow \mathfrak{X}_H(M)$ the symplectic gradient mapping. Then the following statements are equivalent:

- 1) M is compact;
- 2) π has a right inverse in the category of Lie algebras;
- 3) $C_H^{\infty}(M) \neq [C_H^{\infty}(M), C_H^{\infty}(M)];$
- 4) $H^1(C_H^{\infty}(M)) \neq \{0\}.$

When $\mathscr L$ is a Lie algebra, his commutator $[\mathscr L,\mathscr L]$ is defined to be the subset of elements which can be expressed as a finite sum of brackets.

The cohomology we consider is the usual Lie algebra cohomology with real coefficients [3], [6].

It is a well known fact [3], [2] that the first cohomology group $H^1(\mathcal{L})$ is the linear space dual to $\mathcal{L}/[\mathcal{L}, \mathcal{L}]$, hence $3 \Leftrightarrow 4$.

The inclusions $1 \Rightarrow 2$ and $1 \Rightarrow 3$ have been proven by Arnold in [2].

We will prove $3 \Rightarrow 1$ in Proposition 4, and $2 \Rightarrow 3$ in Lemma 1.

All our manifolds are supposed to be C^{∞} , connected and without boundary, unless we mention it explicitly otherwise.

§1. Let us first recall some definitions and facts which can be found in all handbooks about symplectic geometry, e.g. [1].

^{*}Recebido pela SBM em 11 de abril de 1975.

^{**&}quot;Aangesteld Navorser" of the "Nationaal Fonds voor Wetenschappelijk Onderzoek" of Belgium.

DEFINITION. A symplectic manifold (M^{2n}, ω) is a C^{∞} manifold of dimension 2n, together with a nondegenerate closed 2-form ω : i.e.

$$d\omega = 0$$

 $\omega^n = \omega \wedge \ldots \wedge \omega$ is a volume on M .

We denote by α the volume $[(-1)^{n/2}/n!]$ ω^n .

By the theorem of Darboux [1] we know that in each point of M we can find a local chart (U, φ) such that $\omega \mid U$ gets the canonical expression

$$\omega \mid U = \sum_{i=1}^{n} dx^{i} \wedge dy^{i}.$$

The local charts are called "symplectic charts" and the component functions (x^i, y^i) are called "canonical coordinates".

DEFINITION. A vectorfield X on (M, ω) is called *symplectic* if $L_X \omega = 0$, where L_X is Lie derivation with respect to X.

We denote by $\mathfrak{X}_{\omega}(M)$ or \mathfrak{X}_{ω} the Lie algebra of sympletic vectorfields with the usual Lie brackets for vectorfields

$$[X, Y] = XY - YX$$

DEFINITION. The *symplectic gradient* of $f \in C^{\infty}(M)$ is the vectorfield X_f with following property

$$\forall Y \in \mathfrak{X}^{\infty}(M): \ \omega(X_f, Y) = df(Y).$$

Let us denote the symplectic gradient mapping by π . Clearly $\pi(C^{\infty}(M)) \subset \mathscr{X}_{\omega}$.

DEFINITION. We call a vectorfield *Hamiltonian* if it lies in the image of π and we denote π $(C^{\infty}(M))$ by \mathcal{X}_H .

For each $X \in \mathfrak{X}_H$ the elements of $\pi^{-1}(X)$ are called Hamiltonians for X and since M is supposed to be connected, two Hamiltonians for the same vectorfield only differ by a constant.

The Poisson brackets on $C^{\infty}(M)$ are defined as follows:

$$\{f,g\} = L_{Xf} g = -L_{Xg} f$$

It is easy to verify that $\pi(\{f,g\}) = [X_f, X_g]$ which means that π is a Lie algebra morphism.

§2. Before proving Proposition 4 we are now going to present some well known ingredients, under the form of propositions.

PROPOSITION 1. [4]. If M is an open connected C^{∞} manifold, then there exists an infinite sequence $\{K_i\}_{i=0}^{\infty}$ of compact connected C^{∞} submanifolds with boundary such that

$$M = \bigcup_{i=0}^{\infty} K_i$$
 and $\forall i: K_i \subset \mathring{K}_{i+1}$.

PROPOSITION 2. Let (M^m, ω) be an open symplectic manifold. Each K_i as in the statement of Proposition 1 can be covered with open balls $\{B_{ij}\}_{i=1}^{m+1} \ _{j=1}^{p_i}$, such that each B_{ij} lies in the domain of a symplectic chart and such that $B_{ij_1} \cap B_{ij_2} = \phi$ for all i, j_1, j_2 with $j_1 \neq j_2$ and $1 \leq j_1, j_2 \leq p_i$.

The proof is trivial if we use a triangulation of K_i [5] subordinated to a finite covering with symplectic charts.

PROPOSITION 3. Let $I^{2n} \subset \mathbb{R}^{2n}$ denote the open unit cube of \mathbb{R}^{2n} , which we endow with the canonical symplectic structure

$$\omega = \sum_{i=1}^{n} dx^{i} \wedge dy^{i}$$

for some coordinates $(x^1, \ldots, x^n, y^1, \ldots, y^n)$ of \mathbb{R}^{2n} . Then each f with the property

support
$$(f) \subset I^{2n}$$
 and $\int f\alpha = 0$

can be expressed as a finite sum of Poisson brackets

$$f = \sum_{i=1}^{2n} \{g_i, h_i\}$$

where $\forall i \ supp(\{g_i, h_i\}) \subset I^{2n}$.

The proof of this proposition is a straightforward calculation using the coordinate functions x^i , y^i as g_i and applying the theorem of Fubini.

§3. PROPOSITION 4. Suppose (M^{2n}, ω) is an open symplectic manifold; then $C_H^{\infty}(M) = [C_H^{\infty}(M), C_H^{\infty}(M)]$.

PROOF. 1) We first decompose each $f \in C^{\infty}(M)$ in an infinite sum of f_i such that for each f_i , supp f_i is compact and

$$\int f_i \ \alpha = 0.$$

We do this by induction on i using the sequence of K_i obtained in Proposition 1:

$$f_1$$
 has properties $f_1 \mid K_1 = f$, $f_1 \mid K_2^c = 0$ and $\int f_1 \alpha = 0$,

where this last condition can be obtained by adapting any f'_1 satisfying the first two properties in a small ball lying in $K_2 \setminus K_1$.

By induction, if we have f_i for $1 \le i \le k-1$, then we construct f_k as follows:

$$f_k \mid K_k = f - \sum_{i=1}^{k-1} f_i$$

$$f_k \mid K_{k+1}^c = 0$$

$$\int f_k \mid \alpha = 0$$

Clearly $f = \sum_{i=1}^{\infty} f_i$ and $\forall i$: supp $f_i \subset K_{i+1} \setminus K_{i-1}$.

2) We now prove that each of these f_i can be decomposed as a finite sum of Poisson brackets.

Therefore we cover $K_{i+1}\backslash K_i$ with open balls as given in Proposition 2.

Using a C^{∞} partition of unity subordinated to that covering, we can express f_i as a sum of functions $f_i = \sum_j h_{ij}$ such that each h_{ij} has his support inside an open ball on which ω can be given a canonical form.

Also is it possible to adapt the construction such that all h_{ij} satisfy $\int h_{ij} \alpha = 0$. This can f.e. be done by putting all open balls of our covering

in a finite sequence of open balls (B_1, \ldots, B_p) such that

$$\forall \alpha \in \{1,\ldots,p-1\}: B_{\alpha} \cap B_{\alpha+1} \neq \phi$$

3) Using Proposition 3, we know that

$$\forall j \colon h_{ij} = \sum_{k=1}^{2n} \{l_{ijk}, m_{ijk}\}.$$

Since $\forall i$ the supports of the h_{ij} are contained in open balls $\{B_{ij}\}_{i=1}^{2n+1} p_i$ such that $B_{ij_1} \cap B_{ij_2} = \phi \ \forall i, j_1, j_2 \text{ with } j_1 \neq j_2, \text{ we can write:}$

$$f_i = \sum_{\alpha=1}^{2n(2n+1)} \{u_{i\alpha}, v_{i\alpha}\}.$$

Now

$$f = \sum_{i \text{ even}} \left(\sum_{\alpha=1}^{2n(2n+1)} \{u_{i\alpha}, v_{i\alpha}\} \right) + \sum_{i \text{ odd}} \left(\sum_{\alpha=1}^{2n(2n+1)} \{u_{i\alpha}, v_{i\alpha}\} \right)$$
$$= \sum_{\alpha=1}^{2n(2n+1)} \left[\left\{ \sum_{i \text{ even}} u_{i\alpha}, \sum_{i \text{ even}} v_{i\alpha} \right\} + \left\{ \sum_{i \text{ odd}} u_{i\alpha}, \sum_{i \text{ odd}} v_{i\alpha} \right\} \right]$$

Hence

$$f = \sum_{\beta=1}^{4n(2n+1)} \{w_{\beta}, z_{\beta}\}.$$

REMARKS 1. From the previous construction it is clear that in the compact case the commutant of $C_H^{\infty}(M)$ coincides with the sub-Lie algebra of functions having a zero average value.

The one and only Lie algebra-inverse for π is the mapping $X_f \mapsto f + t_f$, where $t_f \in \mathbb{R}$ has the property

$$\int (f+t_f)\,\alpha=0.$$

2. In all cases $\mathfrak{X}_H = [\mathfrak{X}_H, \mathfrak{X}_H]$ or equivalently $H^1(\mathfrak{X}_H) = \{0\}$. (See also [2]).

LEMMA 1. If $C_H^{\infty}(M) = [C_H^{\infty}(M), C_H^{\infty}(M)]$, then π has no right inverse in the category of Lie algebras.

PROOF. Each $f \in C_H^{\infty}(M)$ can be expressed as a finite sum of brackets.

Hense
$$f = \sum_{i=1}^{n} \{h_i, g_i\}$$
 and also $f + 1 = \sum_{j=1}^{m} \{u_j, v_j\}$.

So

$$\pi(f) = \sum_{i=1}^{n} [\pi(h_i), \pi(g_i)] = \sum_{i=1}^{n} [X_{h_i}, X_{g_i}] = X_f$$

$$\pi(f+1) = \sum_{j=1}^{m} [\pi(u_j), \pi(v_j)] = \sum_{j=1}^{m} [X_{u_j}, X_{v_j}] = X_{f+1}$$

and $X_f = X_{f+1}$.

Suppose now that κ is a Lie-algebra inverse of π . Then

$$\kappa(X_f) = \kappa\left(\sum_{i=1}^n [X_{h_i}, X_{g_i}]\right) = \sum_{i=1}^n \{\kappa(X_{h_i}), \kappa(X_{g_i})\} = \sum_{i=1}^n \{h_i, g_i\},$$

since $\forall t,s \in \mathbb{R}$ and $\forall \xi,\eta \in C^\infty_H(M)$: $\{\xi+t,\eta+s\}=\{\xi,\eta\}$. This means that necessarily $\kappa(X_f)=f$, but also $\kappa(X_f)=\kappa(X_{f+1})=f+1$, which contradicts the existence of κ .

§4. For this chapter we refer to the book of Souriau [7] or to the paper of Robbin [6] which is an excellent introduction to this book. Let us recall some facts.

When $\mathscr L$ is a Lie algebra and M a manifold, an action of $\mathscr L$ on M is a morphism of Lie algebras $\mathscr L \xrightarrow{h} \mathfrak X(M)$, $A \longmapsto A_M$ such that the evaluation map is smooth.

If we have a symplectic structure on M then we say an action is Hamiltonian if $h(\mathcal{L}) \subset \mathfrak{X}_H$.

In this case there exist linear mappings $J: \mathcal{L} \to C^{\infty}(M)$, $A \mapsto J_A$ such that $i_A \omega = dJ_A$.

Such a linear mapping is called a "moment" and it is shown in [6] how to associate to $(M, \omega, \mathcal{L}, h)$ a cohomology class $[f] \in H^2(\mathcal{L})$ which vanishes precisely when there exists a moment which is a morphism of Lie algebras. It is also shown that whenever ω is given by an \mathcal{L} -invariant 1-form θ (i.e. $\omega = -d\theta$ and $\forall A \in \mathcal{L}$: $L_{A_M} \theta = 0$) then $J: \mathcal{L} \to C_H^\infty(M)$, $A \mapsto L_{A_M} \theta$ is a Lie algebra morphism. If we now consider the Hamiltonian

action $\mathfrak{X}_H \xrightarrow{id} \mathfrak{X}_H$ for some (M, ω) then the moments for this action are exactly the linear right inverses of $\pi \colon C_H^{\infty}(M) \longrightarrow \mathfrak{X}_H$. Hence using Proposition 4 and Lemma 1 we can state the following proposition.

PROPOSITION 5. If (M, ω) is an open symplectic manifold, then $H^2(\mathfrak{X}_H) \neq \{0\}$.

References

- [1] R. ABRAHAM, J. MARSDEN, Foundations of Mechanics, W. A. Benjamin Inc., New York, 1967.
- [2] V.I. ARNOLD, One-dimensional cohomologies of Lie algebras of nondivergent vectorfields and rotation numbers of dynamic systems, Funktional Analysis and its applications, Vol. 3 (1969), 319-321.
- [3] C. CHEVALLEY, S. EILENBERG, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948), 85-124.
- [4] J. MILNOR, *Morse Theory*, Annals of Mathematics studies 51 Princeton University Press, Princeton, New Jersey, 1963.
- [5] J. MUNKRES, *Elementary Differential Topology*, Annals of Mathematics Studies 54, Princeton Univ. Press, Princeton, New Jersey, 1963.
- [6] J. ROBBIN, "Symplectic mechanics" in Global Analysis and its Applications, Vol. III, I.A.E.A. Vienna 1974.
- [7] J. M. SOURIAU, Structure des Systèmes Dynamiques, Dunod Université, Paris, 1970.

Instituto de Matemática Pura e Aplicada Rua Luis de Cusmões 68 Rio de Janeiro – BRASIL

Mathematisch Instituut Rijks Universiteit Groningen postbus 800 Groningen – The Netherlands