Adams Operations in KO(X) ® KSp(X)*

JACQUES ALLARD

Introduction

Let KO(X) and KS,(X) be the real and quaternionic K-theory of a finite
CW-complex X. The tensor product and the exterior powers of vector bundles
induce a Z,-graded A-ring structure on L(X) = KO(X) ® KS,(X) (see [Bott]).

In this paper, it is shown that I(X) is a special A-ring. The Adams operations
Y LX) - LX) k=12...

associated to this A-ring are therefore ring homomorphisms and satisfy the
composition law:

Yo =ylo gk =yt Kk 1=12...

(see [Atiyah and Tall]).

The Adams operations on I(X) were first used in the classification of H-spaces
of rank 2 by [Sigrist and Suter]. This paper contains the proof of our result
in the case where L(X) has no torsion.

This paper has five sections. §1 contains the definitions and properties of
A-semi-rings that we need.

*Recebido pela SBM em 24 de maio de 1974.
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Essentially, §2 points out that the direct sum of the real and quaternionic
representation rings of a compact Lie group is a special A-ring (hence its
Adams operations are ring homomorphisms and satisfy the composition law
described above). In §3, we prove the main result stated above, and §4 re-
lates the y/*'s on L(X) with the real and complex Adams operations. Finally,
in §5 we compute I(X) and the y-operations for the complex and quater-
nionic projective spaces CP" and HP".

§1. J-semi-rings

In this section, we recall a few facts about A-semi-rings and we propose a
definition of special A-semi-rings. A detailed treatment of A-rings can be
found in [Atiyah and Tall], part I. Only minor adaptations are necessary
for semi-rings:

1.1. DEFINITION. A J-semi-ring R is a commutative semi-ring with identity
together with a set of maps A" :R — R, n =0, 1,..., that satisfy the follo-
wing three properties for all x, ve R:

(1) 2%(x) = 1
ridx] =%

(B) Fx+ 1) = 3 209 1)
r=0

A J-ring R is a J-semi-ring that is also a ring.

If R and R’ are A-semi-rings, a A-homomorphism f:R — R’ is a semi-ring
homomorphism commuting with the maps A", n = 0, 1.... (We use the same
symbol for the maps A" on all A-semi-rings).

Let a;,...,a, and b,,...,b, be indeterminates and let s; and o, be the i

elementary symmetric functions in a,,...,a, and b,,...,b, respectively.

Take q > max(n,mn), r > n and let Ps,,...,s,; 6,,...,0,) be the coeffi-

cient of t" in[[(1 + a;bjt); let P, (s;,...,S,,) be the coefficient of " in
i.j

in [[ (I1%a,...a,1). P, and P,, are uniquely defined polynomials

with coefficients in Z. Also, the terms in each of these polynomials are of
constant weight. They split into:
P, =P —F,
Pm,n = P;,n_Pr;,n
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where P, (resp. P, ,) is the sum of the terms of P,(resp. P,,,) having positive
coefficient, and P, (resp. P, ,) is minus the sum of the terms of P,(res. P
having negative coefficient.

m,n)

1.2. DEFINITION. A A-semi-ring R is a special A-semi-ring if the following iden-
tities hold V x, ve R:

) Pr(Nx),. .., A%(x); 21(W),- .., A(V)) + A(xp)
= P, .., 2(x); 2V, .., AN0)

(%) P, (2N (X), ..., A™(x)) + A™(A"(x))
= P}, (0Nx),..., Am(x)).

Identity (4) relates A%(xy) to Ai(x), A(v) (i = 1,...,n); identity (5) relates

Am(A"(x)) to A(x) (i = 1,...,mn). From now on, we will write these identities as:
) F,(x,¥) = G,(x.y)
(5) Fouplx) = Gy ix);

where F,(x,y) denotes the left hand side of (4), etc.

1.3. LEMMA. Let R, be a A-semi-ring. Then the Grothendieck group R of R,
has a unique A-ring structure such that the canonical map R, — R is a )-semi-
ring homomorphism. Moreover, if R, is a special )-semi-ring, R is a special }-ring.

Proor. For the unique A-ring structure on R, see [Husemoller] chap. 12.
If R, is special, then R is special, because (4) and (5) are intrinsically com-
patible with (3) (see [Atiyah and Tall], lemma 1.5), and Im (R, — R) gene-
rates additively R.

For k=1,2,... let Q, be the unique polynomial with integer coefficients
such that:

0sy,....8) =di +... +a

with the s;’s and g; s as above, and g > k. Given a A-ring R, the Adams ope-
rations on R are the maps y* : R — R defined by:

PHx) = QA (x),..... , ANx))
for.xeR, ik =1;2:.10: We have
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L.4. PROPOSITION. If R is a special )-ring, the maps y* k = 1,2,... are ring
homomorphisms, and

Yyt = gt = Yyt Lki=1.2,..:
YP(x) = x? (mod p), p prime, xeR.

For the proof, see [Atiyah and Tall], part I.

§2. Representations of Compact Lie Groups.

Let ¢ be a compact Lie group. For A = R, C or H, we denote by Z,(%) the
group of A-representations on ¥. When A = R or C, the tensor product
and the exterior powers of representations induce a - -ring structure on 2,(%).
In fact, we have the following theorem which is due to [Adams, 1].

2.1 THEOREM. .@R({g) and ?/?C(g) are special J-rings.

We will now turn our attention to the group @R(g) ® %H(g) Given real

representatlons a, o and quaternionic representations £, ' of ¢, the repre-
sentations « ® o, B @ B, Aa, 12*B (k =0, 1,...) are real representations of
g, and the representations a« ® B, 22**!f (k =0, 1,...) are quaternionic re-
presentations of 4 (see [Bott]). Therefore a multiplication is defined in
@R({ﬁ) @ '@IH](% by

([2].0)- ([«].0) = ([« ® 2], 0)

([«].0)-(0.[8D) = 0, [2® B])
©.[8)-©.[8D =[B® 1.0

and extending linearly([«] dc_:notes the class of o in .@H(g), etc). We also define:

M[a], 0) = ([2%«],0)

_ [([2*81,0)  k even
)~k(0’ [ﬁ]) - {(0, [;..kﬂ]) k odd

M. 08D = 3 20 70, 8)

The elements of the form ([«],[f]) in @R(g) @@H(?) form a 2-semi-ring
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of which %R(g)GDQH(g) is the Grothendieck group. By lemma 13
%R(g) @ %H({g) is a A-semi-ring. Actually we have

2.3. THEOREM. For compact Lie group ¥, @R({g) @ Q?H({q) is a special )-ring.

PrOOF. Let us consider the group 9?@(@) @ QZC(@) with the following 1-ring
structure: for u, v, v, v' e %’C(g), define:

(u,0)- (W, 0) = (uu' + vv', w' + u'v)

k
% (2, 0) k even
qeb= {(0, M)k odd

k
MMu,v) = Y 2w, 0) 270, v).

r=0
R ({4 D % (g) with this structure is a special A-ring because Q?C(g) itself
Let
R (G — R _(9)
2.4) i c
c .%H(fﬁ) — QZC(@)

be the maps induce by “complexification” of real and quaternionic repre-
sentations respectively (see [Adams, 2], 3.5, 3.26). These maps are compatible
with the l-operations and

a=c®Dc¢ : %R(g)@ @H({ﬁ) — RC(Q) @ %C({é)

is a A-ring monomorphism (see [Adams 2], 3.27). Since the A-structure on
%C({g)@%@({g) is special, the theorem follows.

§3. The J-ring L(X) = KO(X) ® KSp(X)

For A = R, C or H and for a finite C W-complex X, let Vect,(X) be the abelian
semi-group of isomorphism classes of A-vector bundles over X. We use the
same symbol for a vector bundle and its isomorphism class. Let

V(X) = VectR(X) @ VectH(X)
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and denote by KO(X), KU(X), KSp(X) and L(X) = KO(X) ® KSp(X) the
Grothendieck groups of VectR(X), VectC(X), VectH(X) and V(X) respecti-

vely. We wish to show that V(X) is a special A-semi-ring.

We will use the following notation throughout §3 and §4. Let U(t,A) be
the ¢-dimensional orthogonal group (A = R), unitary group (A =C) or
symplectic group (A = H). Let £ be a A-vector bundle and n be a A’-vector
bundle over X with dim,¢ = r and dimy,n = s. Since X is compact, & and n
have structure group U(r, A) and U(s, A') respectively. This means that there
is an open covering {V;},.; of X such that ¢ and 5 are determined by the
system of transition functions:

{gij Vin V; —» Ulr, A)}i,jez

{hij s He— WS, A/)}i,lel

bet n, 1 UG, A) x U(s, A') — Ufr, A)

Tyt U(r, A) x U(s,A’) — Ugs, A)
1:U(r,A) — U(r,A)

be the representations of compact Lie Groups defined by the two projection

maps and the identity map, and let (A, A’) be one of the pairs (R, R), (C, C),
(R, H), (H, H).

In view of the previous section, the representations 7; ® n, and A%(I) are
defined for each pair. Therefore we can define the vector bundles ¢ ® # and
A"(&) as the vector bundles determined respectively by the following systems
of transition functions:

{n, ® Tyo (gij > hij)}i,jel
{ik(l) o gi,j}i,jel
where (g;;, h;;) 1 V; N V; — U(r,A) x U(s,A’) is the obvious map.
When (A,A) = R,R) or (C, ©), the usual tensor product and exterior powers
are obtained. When (A, A') = (R, H), £ ® n is a quaternionic vector bundle;

when (A, A') = (H, H), ¢ ® n is a real vector bundle and A"(&) is real if k is
even and quaternionic if k is odd.

From now on, we identify VectR(X ) and VectH(X ) with their canonical images

in V(X) = VectR(X) @ VectH(X). Let (a, f), (o, B)e V(X) and define:
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p) @ f)=@®@d +BRB, a@P + R )
o) = Y 27(0,0) 70, B
r=0

Note that 20, f) = (1B, 0) for r even and A'(0, f) = (0, A"B) for r odd. V(X)
is then a (Z,-graded) A-semi-ring. Moreover,

3.2. LemMA. V(X) is a special A-semi-ring

PROOF. (4') and (5') need to be verified. It is sufficient to check thes= identities
elements of VectR(X )u VectH(X ) © V(X) since this set generates .4 .uvely

V(X) (cf proof of 1.3.). Let us check (5). We have to show that F, (&) and
G,, /(&) are isomorphic vector bundles (A = R or H). Since the terms of Bt
are of constant weight, F,, () and G, (&) are both quaternionic or both real.
They are determined by the systems of transition functions

{Fm,n(I) ° Cij}i,jel
{Gm,n(I)agij}i,jeI
Since @R(U(r, A))@%H(U(r, A)) is a special A-ring (th. 2.2), F,.(I) and

G, (1) are equivalent representations, and there is an element M e U(r, ")
(t, A” depending on A and (), such that

M. F,,(I)g) = G, (INg)o M Vge U(r,A).

(3.3)

Therefore, the set of constant maps {r; : V; — U(t, A")},., defined by r(x) = M
determines an equivalence between the systems of transition functions (3.3).
Thus F,, (&) and G, (&) are isomorphic vector bundles (see [Husemoler]
ch.'5), an& (5') is verified. (4') is verified similarly, and this completes the proof
of the lemma.

3.3. THEOREM. For a finite CW-complex X, L(X) = KO(X) ® Ksp(X) is a
special 2-ring.

The proof consists of lemmas 3.2 and 1.3.

Hence, we have proved that L(X) is a contravariant functor from the cate-
gory of finite CW-complexes to the category of (Z,-graded) special A-rings.
Given another finite CW-complex Y and a continuous map f: Y — X, we

denote by f': L(X) — L(Y) the (Z,-graded) A-homomorphism induced by f.
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The Adams operations associated to the A-ring L(X) are a family of natural
tranformations of the functor L(X) to itself. They have the two basic pro-
perties of proposition 1.4. Notice that y* is a ring homomorphism but that
it does not respect the Z,-grading. In fact, y/X(¢&) is real if & is real or k even,
and quaternionic if ¢ is quaternionic and k is odd.

If X is given a base point x,, all the above maps pass to the reduced functor
L(X) = ker(L(X) — L(x,)),
and one has a natural splitting
L(X) = L(x,) ® L(X).

If X* denotes the disjoint union of X and a point taken as base point, we
have also

L(X*) = L{(X).

Finally, for a point x,,

Lixg) =Z D e Z
ca ko _ )&k odd
with ¢* =4 and yX¢) = {2 AR

¢ being represented by the trivial 1-dimensional quaternionic bundle over {x07-

§4. The Relation between the Adams Operations on L(X) and the
classical Adams Operations.

We first look at the relation of the y*s on L(X) to the classical complex
Adams operations on KU(X). Let us endow KU(X) @ KU(X) with a Z,-gra-
ded special 2-ring structure in the same way as for 9?@({9) @ %C(g) (cf §2).

We write LU(X) = KU(X) @ KU(X) and we denote dzq“: the Adams opera-
tions on LU(X); they are completely determined by the Adams operations
on KU(X). Let & {Vi},.y, {g}ijer be as in §3. If A = R (resp. A = H) ¢&
(resp. ') is the complex vector bundle given by the system of transition
functions {c(l) > g;;} e (resp. {c'(I) o g;;}: ;1) With d(I) (resp. ¢(I)) given by
(2.4). The induced group homomorphisms
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c: KO(X) — KU(X)
¢ KSp(X) —» KU(X)

make the map
a=c®c:LX)=KOX)® KSp(X) —» KU(X) ® KU(X) = LU(X)

a Z-homomorphism. Hence. we have a commutative diagram:

) <% LUI(X)
Yk w

If L(X) is torsion-free, c® ¢’ is a monomorphism and L(X) can be viewed
as a natural sub-/-ring of LU(X). In this case, the complex Adams operations
on KU(X) determine the operations on L(X) (see [Sigrist and Suter]).

Concerning the real Adams operations, recall that the Bott isomorphism
gives a group isomorphism

1d ® B: L(X) — RO°(X) ® RO~ *(X).

This is actually a ring isomorphism, with KO°(X) @ KO ~*(X) being consi-
dered as a subring of KO*(X). We remark first that the restriction of Vit
L(X) —> L(X) to KO(X) gives the real Adams operation on KO(X). Further-
more, using the Bott isomorphism KSp(X) ~ KO(X A $*) = RO~ *(X). we
state.

4.1. PROPOSITION. The following diagrams are commutative:
B
Ksp(xX) —222 L KO(X A s

k odd k2 -y Wl

KSp(X) —Ejﬁ" KO(X A $%
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Bott
Kspln) — KX 'S
Ly
k even KO(X) Uik
kl
?8
p(X) ———> KO(X A S*
KSp(X) —5=— KO(X A 5*)
k* k? h .. . ional
wherefsz denotes the map o +— e and ¢ is the trivial 1-dimensiona

quaternionic vector bundle.

The proof in [Sigrist and Suter], where L(X) is assumed to be torsion free,
remains true in general without change.

§5. Computation for HP" and CP"

We will describe the Adams operations on L(HP) and L(CP"). iny an outline
of the method of calculation is given, since only standard techniques are used.
The results are given in terms of the polynomials T, € Z[x] such that

2 1 L 1
T(Z + 7—2) =ZF+ ?—2.

There is a unique such polynomial for each positive integer k.

Let ¢ be the trivial 1-dimensional quaternionic vector bundle, and ¢ the ca-
nonical quaternionic line bundle over HP".

5.1. THEOREM. The ring L(HP") is generated by 1, ¢ and © = ¢'E—¢ with rela-
tions ¢ =4 and "' = 0. Moreover, the Adams operations are given by:

& 5

Yir) =

T, <% ‘r) k even.
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The proof is as follows. First one shows easily that L(HP") is torsion free
(induction on n using the long exact sequence of the cofibration HP"~! —,
HP" — S$*"). Then, by §4, L(HP") = LU(HP"). The Adams operations on
LU(HP") can be computed using the map f': LU(HP") — LU(CP2"*1)
induced by the canonical map f: CP2"*! — HP" and the results of
[Adams, 1]. Then it suffices to study the (4-ring) inclusion L(HP") < LU(HP")
to get the result.

Let 1 be the canonical complex line bundle over CP", and let y = n-1le
KU(CP"). Let y be a bundle such that [y] generates KU(S?) = Z. Let U
be the real vector bundle obtained from u by forgetting the complex structure,
and let u, be the real vector bundle over CP" A S* & CP" A S% A S? obtai-
ned from p - v* by forgetting the complex structure. Finally, let v, = B~ !(u,) e
KSp(CP") be given by the Bott isomorphism B.

5.2. THEOREM. (i) Let n be even. L(CP") is the free abelian group generated bv
Hos Mg s MG2™Y vy, Valg ..., VU~ The multiplicative structure is
completed by v3 = u2.

(ii) Let n = 2t 4+ 1. L(CP") is the direct sum of the free abelian group generated

bV, e ,...,_/18"1)/,2 Vo Vallo - -y Vouly "2 and the cvelic group of order
two generated bv 15" if't is odd or v, &t ! if t is even. The multiplicative structu-

re is completed bv v = u3.
The Adams operations on L(CP") are given by:

Y o) = Tiuo) k=100

Tdpo) k=24,...
Wk(vz) = ‘
%Tk(‘/lo) E=19 1

S. Araki (see [Fujii]) computed the ring KO*(CP"). This gives the structure
of L(CP") = KO°(CP") ® KO~ *(CP". For n even, L(CP") is torsion free, and
therefore the Adams operations y* are determined by the complex Adams
operations Y& on LU(CP"); the latter were computed in [Adams, 1]. For n
odd, one observes that the natural inclusion CP" —s CP"™*! induces an
epimorphism f(C[P’"“) — L(CP"). The Y*¥s on L(CP") are then obtained
by naturality.
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n+l

5.3. REMARK. The cofibration CP' — CP"*! —> @%)@T induces an embedding

n! : L(CP"*Y/CPY) —> L(CP™Y).

From theorem 5.2 and this remark, one gets the Adams operations on
L(CP"*!/CPY).

The author wishes to thank Dr. U. Suter for the numerous conversations
leading to the completion of this paper.
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