Adams Operations in $KO(X) \oplus KSp(X)^*$

JACQUES ALLARD

Introduction

Let KO(X) and $KS_p(X)$ be the real and quaternionic K-theory of a finite CW-complex X. The tensor product and the exterior powers of vector bundles induce a \mathbb{Z}_2 -graded λ -ring structure on $L(X) = KO(X) \oplus KS_p(X)$ (see [Bott]).

In this paper, it is shown that L(X) is a special λ -ring. The Adams operations

$$\psi^k$$
: $L(X) \longrightarrow L(X)$ $k = 1, 2, ...$

associated to this λ -ring are therefore ring homomorphisms and satisfy the composition law:

$$\psi^k \circ \psi^l = \psi^l \circ \psi^k = \psi^{kl} \qquad k, \ l = 1, \ 2, \dots$$

(see [Atiyah and Tall]).

The Adams operations on L(X) were first used in the classification of H-spaces of rank 2 by [Sigrist and Suter]. This paper contains the proof of our result in the case where L(X) has no torsion.

This paper has five sections. \$1\$ contains the definitions and properties of λ -semi-rings that we need.

^{*}Recebido pela SBM em 24 de maio de 1974.

Essentially, §2 points out that the direct sum of the real and quaternionic representation rings of a compact Lie group is a special λ -ring (hence its Adams operations are ring homomorphisms and satisfy the composition law described above). In §3, we prove the main result stated above, and §4 relates the $\psi^{k'}$ s on L(X) with the real and complex Adams operations. Finally, in §5 we compute L(X) and the ψ -operations for the complex and quaternionic projective spaces \mathbb{CP}^n and \mathbb{HP}^n .

§1. λ -semi-rings

In this section, we recall a few facts about λ -semi-rings and we propose a definition of special λ -semi-rings. A detailed treatment of λ -rings can be found in [Atiyah and Tall], part I. Only minor adaptations are necessary for semi-rings.

1.1. DEFINITION. A λ -semi-ring R is a commutative semi-ring with identity together with a set of maps $\lambda^n: R \longrightarrow R$, $n = 0, 1, \ldots$, that satisfy the following three properties for all $x, y \in R$:

- $(1) \lambda^0(x) = 1$
- $(2) \lambda^1(x) = x$

(3)
$$\lambda^n(x+y) = \sum_{r=0}^n \lambda^r(x) \lambda^{n-r}(y)$$
.

A λ -ring R is a λ -semi-ring that is also a ring.

If R and R' are λ -semi-rings, a λ -homomorphism $f: R \longrightarrow R'$ is a semi-ring homomorphism commuting with the maps λ^n , $n = 0, 1, \ldots$ (We use the same symbol for the maps λ^n on all λ -semi-rings).

Let a_1, \ldots, a_q and b_1, \ldots, b_r be indeterminates and let s_i and σ_i be the i^{th} elementary symmetric functions in a_1, \ldots, a_q and b_1, \ldots, b_r respectively. Take $q \geq \max(n, mn), r \geq n$ and let $P_n(s_1, \ldots, s_n; \sigma_1, \ldots, \sigma_n)$ be the coefficient of t^n in $\prod_{i,j} (1 + a_i b_j t)$; let $P_{m,n}(s_1, \ldots, s_{mn})$ be the coefficient of t^m in

in $\prod_{i_1 < \dots < i_m} (1 + a_{i_1} \dots a_{i_n} t)$. P_n and $P_{m,n}$ are uniquely defined polynomials with coefficients in \mathbb{Z} . Also, the terms in each of these polynomials are of

constant weight. They split into:

$$P_n = P_n^+ - P_n^-$$

 $P_{m,n} = P_{m,n}^+ - P_{m,n}^-$

where P_n^+ (resp. $P_{m,n}^+$) is the sum of the terms of P_n (resp. $P_{m,n}$) having positive coefficient, and P_n^- (resp. $P_{m,n}^-$) is minus the sum of the terms of P_n (res. $P_{m,n}$) having negative coefficient.

1.2. Definition. A λ -semi-ring R is a special λ -semi-ring if the following identities hold $\forall x, y \in R$:

(4)
$$P_n^-(\lambda^1(x),\ldots,\lambda^n(x);\ \lambda^1(y),\ldots,\lambda^n(y)) + \lambda^n(xy)$$
$$= P_n^+(\lambda^1(x),\ldots,\lambda^1(x);\ \lambda^n(y),\ldots,\lambda^n(y))$$

(5)
$$P_{m,n}^{-}(\lambda^{1}(x),\ldots,\lambda^{mn}(x)) + \lambda^{m}(\lambda^{n}(x))$$
$$= P_{m,n}^{+}(\lambda^{1}(x),\ldots,\lambda^{mn}(x)).$$

Identity (4) relates $\lambda^n(xy)$ to $\lambda^i(x)$, $\lambda^i(y)$ (i = 1, ..., n); identity (5) relates $\lambda^m(\lambda^n(x))$ to $\lambda^i(x)$ (i = 1, ..., mn). From now on, we will write these identities as:

$$(4') F_n(x, y) = G_n(x, y)$$

$$(5') F_{m,n}(x) = G_{m,n}(x),$$

where $F_n(x, y)$ denotes the left hand side of (4), etc.

1.3. Lemma. Let R_0 be a λ -semi-ring. Then the Grothendieck group R of R_0 has a unique λ -ring structure such that the canonical map $R_0 \longrightarrow R$ is a λ -semi-ring homomorphism. Moreover, if R_0 is a special λ -semi-ring, R is a special λ -ring.

PROOF. For the unique λ -ring structure on R, see [Husemoller] chap. 12. If R_0 is special, then R is special, because (4) and (5) are intrinsically compatible with (3) (see [Atiyah and Tall], lemma 1.5), and $Im(R_0 \rightarrow R)$ generates additively R.

For k = 1, 2, ... let Q_k be the unique polynomial with integer coefficients such that:

$$Q_k(s_1,\ldots,s_k)=a_1^k+\ldots+a_q^k$$

with the s_i 's and a_j 's as above, and $q \ge k$. Given a λ -ring R, the Adams operations on R are the maps $\psi^k : R \longrightarrow R$ defined by:

$$\psi^k(x) = Q_k(\lambda^1(x), \dots, \lambda^k(x))$$

for $x \in R$, $k = 1, 2, \dots$ We have

1.4. Proposition. If R is a special λ -ring, the maps ψ^k , $k=1,2,\ldots$ are ring homomorphisms, and

$$\psi^k \psi^l = \psi^{lk} = \psi^l \psi^k \qquad l, k = 1, 2, \dots$$

$$\psi^p(x) = x^p \pmod{p}, \quad p \quad prime, \quad x \in R.$$

For the proof, see [Atiyah and Tall], part I.

§2. Representations of Compact Lie Groups.

Let \mathscr{G} be a compact Lie group. For $\Lambda = \mathbb{R}$, \mathbb{C} or \mathbb{H} , we denote by $\mathscr{R}_{\Lambda}(\mathscr{G})$ the group of Λ -representations on \mathscr{G} . When $\Lambda = \mathbb{R}$ or \mathbb{C} , the tensor product and the exterior powers of representations induce a λ -ring structure on $\mathscr{R}_{\Lambda}(\mathscr{G})$. In fact, we have the following theorem which is due to $\lceil \Lambda \rceil$.

2.1 Theorem. $\mathcal{R}_{\mathbb{R}}(\mathcal{G})$ and $\mathcal{R}_{\mathbb{C}}(\mathcal{G})$ are special λ -rings.

We will now turn our attention to the group $\mathcal{R}_{\mathbb{R}}(\mathcal{G}) \otimes \mathcal{R}_{\mathbb{H}}(\mathcal{G})$. Given real representations α , α' and quaternionic representations β , β' of \mathcal{G} , the representations $\alpha \otimes \alpha'$, $\beta \otimes \beta'$, $\lambda^k \alpha$, $\lambda^{2k} \beta$ $(k=0,1,\ldots)$ are real representations of g, and the representations $\alpha \otimes \beta$, $\lambda^{2k+1} \beta$ $(k=0,1,\ldots)$ are quaternionic representations of \mathcal{G} (see [Bott]). Therefore a multiplication is defined in $\mathcal{R}_{\mathbb{R}}(\mathcal{G}) \oplus \mathcal{R}_{\mathbb{H}}(\mathcal{G})$ by

$$([\alpha], 0) \cdot ([\alpha'], 0) = ([\alpha \otimes \alpha'], 0)$$
$$([\alpha], 0) \cdot (0, [\beta]) = (0, [\alpha \otimes \beta])$$
$$(0, [\beta]) \cdot (0, [\beta']) = ([\beta \otimes \beta'], 0)$$

and extending linearly($[\alpha]$ denotes the class of α in $\mathcal{R}_{\parallel}(\mathcal{G})$, etc). We also define:

$$\lambda^{k}([\alpha], 0) = ([\lambda^{k}\alpha], 0)$$

$$\lambda^{k}(0, [\beta]) = \begin{cases} ([\lambda^{k}\beta], 0) & k \text{ even} \\ (0, [\lambda^{k}\beta]) & k \text{ odd} \end{cases}$$

$$\lambda^{k}([\alpha], [\beta]) = \sum_{r=0}^{k} \lambda^{k-r}([\alpha], 0) \cdot \lambda^{r}(0, [\beta]).$$

The elements of the form ([α],[β]) in $\mathscr{R}_{\mathbb{R}}(\mathscr{G}) \oplus \mathscr{R}_{\mathbb{H}}(\mathscr{G})$ form a λ -semi-ring

of which $\mathcal{R}_{\mathbb{R}}(\mathcal{G}) \oplus \mathcal{R}_{\mathbb{H}}(\mathcal{G})$ is the Grothendieck group. By lemma 1.3, $\mathcal{R}_{\mathbb{R}}(\mathcal{G}) \oplus \mathcal{R}_{\mathbb{H}}(\mathcal{G})$ is a λ -semi-ring. Actually we have

2.3. Theorem. For compact Lie group \mathscr{G} , $\mathscr{R}_{\mathbb{R}}(\mathscr{G}) \oplus \mathscr{R}_{\mathbb{H}}(\mathscr{G})$ is a special λ -ring.

PROOF. Let us consider the group $\mathcal{R}_{\mathbb{C}}(\mathcal{G}) \oplus \mathcal{R}_{\mathbb{C}}(\mathcal{G})$ with the following λ -ring structure: for $u, v, u', v' \in \mathcal{R}_{\mathbb{C}}(\mathcal{G})$, define:

$$(u, v) \cdot (u', v') = (uu' + vv', uv' + u'v)$$

$$\lambda^{k}(0, v) = \begin{cases} (\lambda^{k}v, 0) & k \text{ even} \\ (0, \lambda^{k}v) & k \text{ odd} \end{cases}$$

$$\lambda^{k}(u, v) = \sum_{r=0}^{k} \lambda^{k-r}(u, 0) \lambda^{r}(0, v).$$

 $\mathscr{R}_{\mathbb{C}}(\mathscr{G}) \oplus \mathscr{R}_{\mathbb{C}}(\mathscr{G})$ with this structure is a special λ -ring because $\mathscr{R}_{\mathbb{C}}(\mathscr{G})$ itself is. Let

(2.4)
$$c: \mathcal{R}_{\mathbb{R}}(\mathcal{G}) \longrightarrow \mathcal{R}_{\mathbb{C}}(\mathcal{G})$$
$$c': \mathcal{R}_{\mathbb{H}}(\mathcal{G}) \longrightarrow \mathcal{R}_{\mathbb{C}}(\mathcal{G})$$

be the maps induce by "complexification" of real and quaternionic representations respectively (see [Adams, 2], 3.5, 3.26). These maps are compatible with the λ -operations and

$$a = c \oplus c' : \mathscr{R}_{\mathbb{R}}(\mathscr{G}) \oplus \mathscr{R}_{\mathbb{H}}(\mathscr{G}) \longrightarrow R_{\mathbb{C}}(\mathscr{G}) \oplus \mathscr{R}_{\mathbb{C}}(\mathscr{G})$$

is a λ -ring monomorphism (see [Adams 2], 3.27). Since the λ -structure on $\mathscr{R}_{\mathbb{C}}(\mathscr{G}) \oplus \mathscr{R}_{\mathbb{C}}(\mathscr{G})$ is special, the theorem follows.

§3. The λ -ring $L(X) = KO(X) \oplus KSp(X)$

For $\Lambda = \mathbb{R}$, \mathbb{C} or \mathbb{H} and for a finite CW-complex X, let $Vect_{\Lambda}(X)$ be the abelian semi-group of isomorphism classes of Λ -vector bundles over X. We use the same symbol for a vector bundle and its isomorphism class. Let

$$V(X) = Vect_{\mathbb{R}}(X) \oplus Vect_{\mathbb{H}}(X)$$

and denote by KO(X), KU(X), KSp(X) and $L(X) = KO(X) \oplus KSp(X)$ the Grothendieck groups of $Vect_{\mathbb{R}}(X)$, $Vect_{\mathbb{C}}(X)$, $Vect_{\mathbb{H}}(X)$ and V(X) respectively. We wish to show that V(X) is a special λ -semi-ring.

We will use the following notation throughout §3 and §4. Let $U(t,\Lambda)$ be the t-dimensional orthogonal group $(\Lambda=\mathbb{R})$, unitary group $(\Lambda=\mathbb{C})$ or symplectic group $(\Lambda=\mathbb{H})$. Let ξ be a Λ -vector bundle and η be a Λ' -vector bundle over X with $\dim_{\Lambda} \xi = r$ and $\dim_{\Lambda} \eta = s$. Since X is compact, ξ and η have structure group $U(r,\Lambda)$ and $U(s,\Lambda')$ respectively. This means that there is an open covering $\{V_i\}_{i\in I}$ of X such that ξ and η are determined by the system of transition functions:

$$\begin{aligned} \{g_{ij}: V_i \cap V_j \longrightarrow U(r, \Lambda)\}_{i,j \in I} \\ \{h_{ij}: V_i \cap V_j \longrightarrow U(s, \Lambda')\}_{i,j \in I} \end{aligned}$$

Let

$$\pi_1: U(r,\Lambda) \times U(s,\Lambda') \longrightarrow U(r,\Lambda)$$

 $\pi_2: U(r,\Lambda) \times U(s,\Lambda') \longrightarrow U(s,\Lambda')$
 $I: U(r,\Lambda) \longrightarrow U(r,\Lambda)$

be the representations of compact Lie Groups defined by the two projection maps and the identity map, and let (Λ, Λ') be one of the pairs (\mathbb{R}, \mathbb{R}) , (\mathbb{C}, \mathbb{C}) , (\mathbb{R}, \mathbb{H}) , (\mathbb{H}, \mathbb{H}) .

In view of the previous section, the representations $\pi_i \otimes \pi_2$ and $\lambda^n(I)$ are defined for each pair. Therefore we can define the vector bundles $\xi \otimes \eta$ and $\lambda^n(\xi)$ as the vector bundles determined respectively by the following systems of transition functions:

$$\{\pi_1 \otimes \pi_2 \circ (g_{ij}, h_{ij})\}_{i,j \in I}$$
$$\{\lambda^k(I) \circ g_{i,j}\}_{i,j \in I}$$

where $(g_{ij}, h_{ij}): V_i \cap V_j \longrightarrow U(r, \Lambda) \times U(s, \Lambda')$ is the obvious map.

When $(\Lambda, \Lambda') = \mathbb{R}, \mathbb{R})$ or (\mathbb{C}, \mathbb{C}) , the usual tensor product and exterior powers are obtained. When $(\Lambda, \Lambda') = (\mathbb{R}, \mathbb{H})$, $\xi \otimes \eta$ is a quaternionic vector bundle; when $(\Lambda, \Lambda') = (\mathbb{H}, \mathbb{H})$, $\xi \otimes \eta$ is a real vector bundle and $\lambda^n(\xi)$ is real if k is even and quaternionic if k is odd.

From now on, we identify $Vect_{\mathbb{R}}(X)$ and $Vect_{\mathbb{H}}(X)$ with their canonical images in $V(X) = Vect_{\mathbb{R}}(X) \oplus Vect_{\mathbb{H}}(X)$. Let $(\alpha, \beta), (\alpha', \beta') \in V(X)$ and define:

$$(\alpha, \beta) \cdot (\alpha', \beta') = (\alpha \otimes \alpha' + \beta \otimes \beta', \ \alpha \otimes \beta' + \beta \otimes \alpha')$$
$$\lambda^{k}(\alpha, \beta) = \sum_{r=0}^{k} \lambda^{k-r}(\alpha, 0) \cdot \lambda^{r}(0, \beta).$$

Note that $\lambda^r(0,\beta) = (\lambda^r\beta,0)$ for r even and $\lambda^r(0,\beta) = (0,\lambda^r\beta)$ for r odd. V(X) is then a $(\mathbb{Z}_2$ -graded) λ -semi-ring. Moreover,

3.2. Lemma. V(X) is a special λ -semi-ring

PROOF. (4') and (5') need to be verified. It is sufficient to check these identities elements of $Vect_{\mathbb{R}}(X) \cup Vect_{\mathbb{H}}(X) \subset V(X)$ since this set generates A levely V(X) (cf proof of 1.3.). Let us check (5'). We have to show that $F_{n,n}(\xi)$ and $G_{m,n}(\xi)$ are isomorphic vector bundles ($\Lambda = \mathbb{R}$ or \mathbb{H}). Since the terms of $F_{m,n}$ are of constant weight, $F_{m,n}(\xi)$ and $G_{m,n}(\xi)$ are both quaternionic or both real. They are determined by the systems of transition functions

(3.3)
$$\begin{cases} F_{m,n}(I) \circ g_{ij} \rbrace_{i,j \in I} \\ \{G_{m,n}(I) \circ g_{ij} \rbrace_{i,j \in I} \end{cases}$$

Since $\mathscr{R}_{\mathbb{R}}(U(r,\Lambda)) \oplus \mathscr{R}_{\mathbb{H}}(U(r,\Lambda))$ is a special λ -ring (th. 2.2), $F_{m,n}(I)$ and $G_{m,n}(I)$ are equivalent representations, and there is an element $M \in U(t,\Lambda'')$ (t,Λ'') depending on Λ and $\binom{r}{mn}$, such that

$$M \circ F_{m,n}(I)(g) = G_{m,n}(I)(g) \circ M \qquad \forall g \in U(r, \Lambda).$$

Therefore, the set of constant maps $\{r_i: V_i \longrightarrow U(t, \Lambda'')\}_{i \in I}$ defined by $r_i(x) = M$ determines an equivalence between the systems of transition functions (3.3). Thus $F_{m,n}(\xi)$ and $G_{m,n}(\xi)$ are isomorphic vector bundles (see [Husemoler] ch. 5), and (5') is verified. (4') is verified similarly, and this completes the proof of the lemma.

3.3. THEOREM. For a finite CW-complex X, $L(X) = KO(X) \oplus Ksp(X)$ is a special λ -ring.

The proof consists of lemmas 3.2 and 1.3.

Hence, we have proved that L(X) is a contravariant functor from the category of finite CW-complexes to the category of $(\mathbb{Z}_2$ -graded) special λ -rings. Given another finite CW-complex Y and a continuous map $f: Y \longrightarrow X$, we denote by $f!: L(X) \longrightarrow L(Y)$ the $(\mathbb{Z}_2$ -graded) λ -homomorphism induced by f.

The Adams operations associated to the λ -ring L(X) are a family of natural tranformations of the functor L(X) to itself. They have the two basic properties of proposition 1.4. Notice that ψ^k is a ring homomorphism but that it does *not* respect the \mathbb{Z}_2 -grading. In fact, $\psi^k(\xi)$ is real if ξ is real or k even, and quaternionic if ξ is quaternionic and k is odd.

If X is given a base point x_0 , all the above maps pass to the reduced functor

$$\tilde{L}(X) = ker(L(X) \longrightarrow L(x_0)),$$

and one has a natural splitting

$$L(X) = L(x_0) \oplus \tilde{L}(X)$$

If X^+ denotes the disjoint union of X and a point taken as base point, we have also

$$\tilde{L}(X^+) = L(X).$$

Finally, for a point x_0 ,

$$L(x_0) = \mathbb{Z} \oplus \varepsilon \mathbb{Z}$$

with
$$\varepsilon^2 = 4$$
 and $\psi^k(\varepsilon) = \begin{cases} \varepsilon & k \text{ odd} \\ 2 & k \text{ even} \end{cases}$,

 ε being represented by the trivial 1-dimensional quaternionic bundle over $\{x_0\}$.

$\S 4$. The Relation between the Adams Operations on L(X) and the classical Adams Operations.

We first look at the relation of the ψ^k 's on L(X) to the classical complex Adams operations on KU(X). Let us endow $KU(X) \oplus KU(X)$ with a \mathbb{Z}_2 -graded special λ -ring structure in the same way as for $\mathscr{R}_{\mathbb{C}}(\mathscr{G}) \oplus \mathscr{R}_{\mathbb{C}}(\mathscr{G})$ (cf. §2). We write $LU(X) = KU(X) \oplus KU(X)$ and we denote $\psi^k_{\mathbb{C}}$ the Adams operations on LU(X); they are completely determined by the Adams operations on KU(X). Let ξ , $\{V_i\}_{i\in I}$, $\{g_{ij}\}_{i,j\in I}$ be as in §3. If $\Lambda = \mathbb{R}$ (resp. $\Lambda = \mathbb{H}$) $c\xi$ (resp. $c'\xi$) is the complex vector bundle given by the system of transition functions $\{c(I) \circ g_{ij}\}_{i,j\in I}$ (resp. $\{c'(I) \circ g_{ij}\}_{i,j\in I}$) with c(I) (resp. c'(I)) given by (2.4). The induced group homomorphisms

$$c: KO(X) \longrightarrow KU(X)$$

 $c': KSp(X) \longrightarrow KU(X)$

make the map

$$a = c \oplus c' : L(X) = KO(X) \oplus KSp(X) \longrightarrow KU(X) \oplus KU(X) = LU(X)$$

a λ-homomorphism. Hence, we have a commutative diagram:

$$L(X) \xrightarrow{c \oplus c'} LU(X)$$

$$\downarrow \psi^{k} \qquad \qquad \downarrow \psi^{k}_{C}$$

$$L(X) \xrightarrow{c \oplus c'} LU(X)$$

If L(X) is torsion-free, $c \oplus c'$ is a monomorphism and L(X) can be viewed as a natural sub- λ -ring of LU(X). In this case, the complex Adams operations on KU(X) determine the operations on L(X) (see [Sigrist and Suter]).

Concerning the real Adams operations, recall that the Bott isomorphism gives a group isomorphism

$$Id \oplus B \colon \tilde{L}(X) \longrightarrow \tilde{K}O^{\circ}(X) \oplus \tilde{K}O^{-4}(X).$$

This is actually a ring isomorphism, with $\tilde{K}O^{\circ}(X) \oplus \tilde{K}O^{-4}(X)$ being considered as a subring of $\tilde{K}O^*(X)$. We remark first that the restriction of ψ^k : $L(X) \longrightarrow L(X)$ to KO(X) gives the real Adams operation on KO(X). Furthermore, using the Bott isomorphism $\tilde{K}Sp(X) \simeq \tilde{K}O(X \wedge S^4) = \tilde{K}O^{-4}(X)$, we state.

4.1. Proposition. The following diagrams are commutative:

$$KSp(X) \xrightarrow{\longrightarrow} KO(X \wedge S^{4})$$

$$\downarrow k \quad odd \qquad \qquad \downarrow k^{2} \cdot \psi^{k} \qquad \qquad \downarrow \psi^{k}_{\mathbb{R}}$$

$$KSp(X) \xrightarrow{\cong} KO(X \wedge S^{4})$$

where $\frac{k^2}{2}\varepsilon$ denotes the map $\alpha \mapsto \frac{k^2}{2}\varepsilon \cdot \alpha$, and ε is the trivial 1-dimensional quaternionic vector bundle.

The proof in [Sigrist and Suter], where L(X) is assumed to be torsion free, remains true in general without change.

§5. Computation for \mathbb{HP}^n and \mathbb{CP}^n

We will describe the Adams operations on $L(\mathbb{HP})$ and $L(\mathbb{CP}^n)$. Only an outline of the method of calculation is given, since only standard techniques are used. The results are given in terms of the polynomials $T_k \in \mathbb{Z}[x]$ such that

$$T_k(Z + \frac{1}{Z} - 2) = Z^k + \frac{1}{Z^k} - 2.$$

There is a unique such polynomial for each positive integer k.

Let ε be the trivial 1-dimensional quaternionic vector bundle, and ξ the canonical quaternionic line bundle over \mathbb{HP}^n .

5.1. THEOREM. The ring $L(\mathbb{HP}^n)$ is generated by 1, ε and $\tau = c'\xi - \varepsilon$ with relations $\varepsilon^2 = 4$ and $\tau^{n+1} = 0$. Moreover, the Adams operations are given by:

$$\psi^k(au) = egin{cases} rac{arepsilon}{2} \, T_k igg(rac{arepsilon}{2} \, au igg) & k & odd \ T_k igg(rac{arepsilon}{2} \, au igg) & k & even. \end{cases}$$

The proof is as follows. First one shows easily that $L(\mathbb{HP}^n)$ is torsion free (induction on n using the long exact sequence of the cofibration $\mathbb{HP}^{n-1} \longrightarrow \mathbb{HP}^n \longrightarrow S^{4n}$). Then, by §4, $L(\mathbb{HP}^n) \subset LU(\mathbb{HP}^n)$. The Adams operations on $LU(\mathbb{HP}^n)$ can be computed using the map $f: \mathbb{CP}^{2n+1} \longrightarrow \mathbb{HP}^n$, and the results of [Adams, 1]. Then it suffices to study the $(\lambda$ -ring) inclusion $L(\mathbb{HP}^n) \subset LU(\mathbb{HP}^n)$ to get the result.

Let η be the canonical complex line bundle over \mathbb{CP}^n , and let $\mu = \eta - 1 \in KU(\mathbb{CP}^n)$. Let γ be a bundle such that $[\gamma]$ generates $\widetilde{K}U(S^2) = \mathbb{Z}$. Let μ_0 be the real vector bundle obtained from μ by forgetting the complex structure, and let μ_2 be the real vector bundle over $\mathbb{CP}^n \wedge S^4 \approx \mathbb{CP}^n \wedge S^2 \wedge S^2$ obtained from $\mu \cdot \nu^2$ by forgetting the complex structure. Finally, let $\nu_2 = B^{-1}(\mu_2) \in \widetilde{K}Sp(\mathbb{CP}^n)$ be given by the Bott isomorphism B.

5.2. THEOREM. (i) Let n be even. $\widetilde{L}(\mathbb{CP}^n)$ is the free abelian group generated by μ_0 , μ_0^2 , ..., $\mu_0^{n/2-1}$, ν_2 , $\nu_2\mu_0$,..., $\nu_2\mu_0^{n/2-1}$. The multiplicative structure is completed by $\nu_2^2 = \mu_0^2$.

(ii) Let n=2t+1. $\tilde{L}(\mathbb{CP}^n)$ is the direct sum of the free abelian group generated by μ_0 , μ_0^2 , ..., $\mu_0^{(n-1)/2}$, ν_2 , $\nu_2\mu_0$, ..., $\nu_2\mu_0^{(n-3)/2}$, and the cyclic group of order two generated by μ_0^{t+1} if t is odd or $\nu_2\mu_0^{t+1}$ if t is even. The multiplicative structure is completed by $\nu_2^2=\mu_0^2$.

The Adams operations on $L(\mathbb{CP}^n)$ are given by:

$$\psi^{k}(\mu_{0}) = T_{k}(\mu_{0}) \qquad k = 1, 2, \dots$$

$$\psi^{k}(\nu_{2}) = \begin{cases} T_{k}(\mu_{0}) & k = 2, 4, \dots \\ \frac{\nu_{2}}{\mu_{0}} T_{k}(\mu_{0}) & k = 1, 3, \dots \end{cases}$$

S. Araki (see [Fujii]) computed the ring $KO^*(\mathbb{CP}^n)$. This gives the structure of $L(\mathbb{CP}^n) = KO^\circ(\mathbb{CP}^n) \oplus KO^{-4}(\mathbb{CP}^n)$. For n even, $L(\mathbb{CP}^n)$ is torsion free, and therefore the Adams operations ψ^k are determined by the complex Adams operations $\psi^k_{\mathbb{C}}$ on $LU(\mathbb{CP}^n)$; the latter were computed in [Adams, 1]. For n odd, one observes that the natural inclusion $\mathbb{CP}^n \to \mathbb{CP}^{n+1}$ induces an epimorphism $\tilde{L}(\mathbb{CP}^{n+1}) \to \tilde{L}(\mathbb{CP}^n)$. The ψ^k 's on $\tilde{L}(\mathbb{CP}^n)$ are then obtained by naturality.

5.3. Remark. The cofibration $\mathbb{CP}^l \longrightarrow \mathbb{CP}^{n+l} \longrightarrow \frac{\mathbb{CP}^{n+l}}{\mathbb{CP}^l}$ induces an embedding

$$\pi^!: \widetilde{L}(\mathbb{CP}^{n+l}/\mathbb{CP}^l) \longrightarrow \widetilde{L}(\mathbb{CP}^{n+l}).$$

From theorem 5.2 and this remark, one gets the Adams operations on $L(\mathbb{CP}^{n+l}/\mathbb{CP}^l)$.

The author wishes to thank Dr. U. Suter for the numerous conversations leading to the completion of this paper.

BIBLIOGRAPHY

[Adams, 1] J. F. Adams, Vector Fields on Spheres, Annals of Math., Vol. 75 (1962), pp. 603-632.

[Adams, 2] J. F. Adams, Lectures on Lie Groups, W. A. Benjamin, inc., New York (1969).

[Atiyah and Tall] M. A. ATIYAH and D. O. TALL, Group Representations, λ-Rings and the J-Homomorphism, Topology, Vol. 8 (1969), pp. 253-297.

[Bott] R. Bott, Quelques remarques sur les theoremes de périodicité, Bull. Soc. Math. France, Vol 87 (1959), pp. 293-310.

[Fujii] M. Fujii, KO-Groups of Projective Spaces, Osaka J. Math., Vol. 4 (1967), pp. 141-149.

[Husemoller] D. HUSEMOLLER, Fiber Bundles, McGraw-Hill, New York (1966).

[Sigrist and Suter] F. Sigrist and U. Suter, Eine Anwendung der K-theorie in der theorie der H-Raume, Commentarii Math. Helvetici, Vol. 47 (1972), pp. 36-52.

University of British Columbia Vancouver — Canada