Poincaré-Bendixon Theorem for RZ-actions*

C. CAMACHO

§1. Preliminaries

Let o: R* x M - M be a C', r > 1, action on a differentiable manifold M.
This means that ¢(0,p) = p and @(r; + r,,p) = o(r, ,@(r,,p)) for any pe M
and r,, r,e€R" The orbit of a point pe M is the set 0, = {o(r, p) | r e R*}.
The isotropy group of p is defined as G, = {re R*| ¢(r, p) = p}. Fixing pe M,
the map R* —» M given by r — ¢(r, p) induces an injective immersion of the
homogeneous space R*/G, into M whose image is O, . Thus any orbit of ¢
is the image by an injective immersion of R™ or R™ x T" where m, n are in-
tegers, m >0, n>1, m+ n < k and R° denotes a point.

A minimal set of ¢ is a nonempty invariant closed subset u = M such that
no proper subset of u has these three properties.

A version of the Poincaré-Bendixon theorem for flows (k = 1) states that if
M = R? or S? then any minimal set of ¢ is an orbit. We generalize this theorem
as follows. An invariant subset A = M is called a locally finite collection of
orbits if for any point p € A there is a neighborhood U = M of p intersecting
finitelv many orbits in A.

THEOREM. Let ¢: R* x M — M be an action on a simplv connected, 3-manifold
M, compact or not, satisfving.
(i) Anyv orbit of dimension one is embedded in M.
(ii) The union of all orbits of dimension less than two is a locally finite collection
of orbits.
Then anv minimal set of ¢ is an orbit.**

COROLLARY. Let ¢: R?* x R* — R? be a locally free R*-action. Then no orbit
of ¢ is dense in R>.

*Recebido pela SBM em 21 de novembro de 1973.

**In a paper of J. Plante [7] we just received, appears a version similar to the above of the Poin-
caré-Bendixon theorem for actions of nilpotent Lie groups on compact manifolds. His method
however does not hold for noncompact manifolds.
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Recall that G. Hector [4], proved that there are codimension one foliations
of R*® such that all leaves are everywhere dense.

Another version of the Poincaré-Bendixon theorem for flows on R? carac-
terizes the w-limit set w(p) of a point p as follows: Suppose w(p) is bounded
and contains at most finitely many fixed points of the flow. Then either w(p)
is a periodic orbit or it is an embedded graph whose vertices are fixed points
and whose sides are 1-orbits.

One could be tempted to conjecture that the w-limit set of a point is an in-
variant embedded complex of dimension < 2 provided the action has finitely
many orbits of dimension < 1.

At the end of §2 we show that this is false. There we define an R?-action on
S3 satisfying these conditions and exhibiting orbits which are dense in an
embedded solid torus.

§2. Proof of the Theorem

Given p e M define 00, = 01 W—E where each K, = 0, is a compact neigh-

borhood of p in 0,, K, < K,+,,and |) K, =0,. Clearly 0, = 0, L 80,,.
=1

n

Let u be a minimal set of ¢ and pep. If u# O, then O, is not embedded.
In fact, 0, = u = 0, > 0,. Therefore for dim@, > 2, u=0,.

Suppose now that u # @, and dim ¢, = 2. Call £ the union of orbits of di-
mension less than two. The 2-orbits of ¢ define a C" foliation % of codi-
mension one of the manifold M — X. It is clear that one can find a closed path
a: S' - M —X passing through p transverse to the leaves of #. Since M is
simply connected there is a map ¥: D> - M such that ¥/0D* = a. We can
assume (see [2]), that ¥ is a C° immersion s > 2. We prove now that arbi-
trarily C* close to W there is an immersion ®: D> —» M which is transverse
to all orbits of dimension less than two.

Since the fixed points of ¢ are isolated we take ¥ such that W(D?*) does not
contain fixed points of ¢. The set of orbits of dimension one intersecting
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W(D?) is finite and partially ordered by the relation: 0, > @100, >:0;.
Let @' be a minimal element under this relation. We have then 80 N ¥(D?) =
={J. Thus by Thom’s transversallity theorem, we can finde ¥!: D> - M
arbitrarily C* close to W such that ¥! is transverse to ©'. Repeating the same
argument for all minimal elements we take W' transverse to all of them.

Call Z° the union of all fixed points of ¢ and X! the union of X° with the
1-orbits minimal under the relation defined above. Clearly ! n WY(D?) is
finite and since ¢ is C! there is a neighborhood W! o ! A ¥W(D?) such
that for any 1-orbit @ intersecting W' we have W' transverse to ¢ N W',
Let 0% be a l-orbit such that 0> n WY(D?) # @ and 30 < X'. This means
that (¢ is immediately above some orbit of L' in the order relation. Let
K? < 0% be an embedded compact cell such that all points of intersection
of 0? - K? with ¥!(D?) are in W'. Modify ¥! outside (¥!)"}(W?!) to find
¥2: D* » M C* close to W! and transverse to K2 This implies K n W2(D?)
is finite and so there is a neighborhood W2 5 K2 n W*(D?) such that for
any l-orbit @ touching W? one has W? transverse to O n W2

Repeating this construction process we find maps ¥!, ¥2, W3... Since the
set of 1-orbits intersecting W(D?) is finite this process comes to an end for
some n yielding a map ® = V" : D> » M which is arbitrarily C* close to ¥
and transverse to all 1-orbits of ¢.

From the definition of ® one obtains a neighborhood N(®) of ® in the C*
topology such that any ® e (N)® is transverse to all 1-orbits of ¢.

Given ® € N(®) the foliation # of M —X induces via @ a foliation with sin-
gularities of D?. Call #(®) this foliation and S(®) = D? the set of singula-
rities of #(®). Then S(®) can be written as S@) = S;(®) U S,(®) where S;(®)
is the union of points of tangency of ® with the leaves of # and S,(®) is the
union of points of intersection of ® with the orbits of dimension one. It follows
from [2] page 316 that there is an immersion y: D> » M, y € N(®) such that:

(a) Any point ge S;(y) is a nondegenerate point of tangency, i.e. there is a
system of coordinates (x; , x,) in a neighborhood W of g = (0,0) such that
the leaves of Z(y)/W are the level curves of a function f of one of the types
oty %) = XTH%% £, 2 ==5udiiod or: flxy e o xd.
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(b) x(D?) is tangent at most once to the same orbit. It is inmediate that S,(y)
is finite and using partition of unity one shows there is a C"~! vector field
X on D? tangent to Z () such that X(q) = 0 if and only if g e S().

Assume X is entering on dD* and fix g, € 0D? such that y(go) = pe . The
w-limit set of gy, w(gy), cannot contain points of S,(y) because otherwise
u would contain a 1-dimensional orbit and so by minimality y < ! which
is absurd.

Since S;(y) is finite we can assume by perturbing y if necessary that w(q,)
is not a point. By (a) and (b) and the theorem of Poincaré-Bendixon for
flows w(q,) is then a periodic orbit of X or a graph with only one vertex which
is a saddle point.

The set y(w(q,)) is the image of a closed curve y: S* — M lying on an orbit
O of dimension two. The curve y is not homotopic to a constant map because
the element of the holonomy group of # associated to y is not the identity.
Therefore ¢ is homeomorphic to R x S* or S* x S*. Since O < pand O # p,
O cannot be a torus. Thus @ is an immersed cylinder R x S! and 00 > 0.
We show now that this is impossible.

We follow arguments of Lima in [5]. Take we @. Since G, # O there are
numbers a, , a, such that the orbit I' of Z = a; X, + a,X, passing through
w is periodic, here X; and X, are commuting vector fields generating o.
Fixing a Riemannian metric on M call C the union of small integral curves
passing through I' of the vector field normal to #. Since u # @ the orbit
Oreturns infinitely many times to the fence C leaving as intersection a sequence
{I',} of closed simple curves in C arbitrarily close to I for large n.

Suppose the vector field X, is not tangent to I'. Then there is a tubular neigh-
borhood T(I') = C of T" such that X, is not tangent to C at points on T(I').
Let n be the flow induced by X, . For ze T call t*(z) the smallest ¢t > 0 such
that n(t,z)e C and assume {n(t*(z),z)|zel} =T* < T(). Similarly let
t™(z) < 0 be the largest t <0 such that #(t, z)e C and suppose {n(t~(z),z)|ze '}
=TI~ < T(T'). Eventually I'* or I'" is empty but not both.

Let 6 > 0 be the distance between I’ and I'* U I'". Given ¢ = 8,2 there is
zo€ I and 1 such that #(t,z,) e C is ¢-close to T.
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Suppose 7 > 0 and call C, the part of C between I" and I'*. Then the union
of C, and the piece of O given by D = {x(t, z) |0 <t <t*(2), zeT} is a topo-
logical torus bounding an open set ¥ of M. The vector field X, is tanget to
D and at points on C, it points toward V. Thus we have #(t, z,) € V for every
t > t*(zo). Therefore n(t,z)e C implies that the distance between #(t, Zg)
and I' is greater than § which is absurd.

One deals with the case 7 < 0 in a similar manner. This finish the proof of
the theorem.

ExaMmpPLE. Define on D? x S' = R? x R? the following vector fields:

X(xqy, x5, e;:e) = (p(r) x; — Bx, ,ﬂxg + p(r) x, ,0)
Y(xl > X2, elo) = (_ X, , 08Xy, 2mi ela)

where r = /x} + x3 and p(r) is a C* nonnegative function satisfying,
p(r) =0iffr =1, p™(1) =0foralln > 1 and p(r) = 1 for rin a neighborhood
of zero. p = ./a® + 4n? and « is rationally independent of n. The vector
fields X, Y commute and so they define an R%-action on D? x S'. One easily
verifies that 4(D* x S') and {0} x S' are orbits of this action. The remaining
orbits are immersed planes dense in D? x S'.

Using the decompositon of $* in two solid tori we obtain from this example
an RZ-action on S3.

§3. Remarks on Locally Free R2-actions

In what follows ¢: R? x R® —» R? denotes a locally free action i.e. all orbits
have dimension two.

(a) One shows that any orbit of ¢ is a closed subset of R3. Thus from a theorem
of Haefliger [3] ¢ admits a first integral. Moreover any orbit of ¢ is embedded
and homeomorphic to R? (see [5] page 77).

(b) Let ZZ(R?, R®) be the space of locally free C’, r > 1, R2-actions on R?
endowed with the uniform C" topology. In a forthcoming paper we show
using techniques of [1] that the set of structurally stable R2-actions is dense
in ZZ(R* R®) (see [6] for definitions).
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