Poincaré-Bendixon Theorem for R2-actions*

C. CAMACHO

§1. Preliminaries

Let $\varphi\colon\mathbb{R}^k\times M\to M$ be a C^r , $r\geq 1$, action on a differentiable manifold M. This means that $\varphi(0,p)=p$ and $\varphi(r_1+r_2,p)=\varphi(r_1,\varphi(r_2,p))$ for any $p\in M$ and r_1 , $r_2\in\mathbb{R}^k$. The orbit of a point $p\in M$ is the set $\mathcal{O}_p=\{\varphi(r,p)\,|\,r\in\mathbb{R}^k\}$. The isotropy group of p is defined as $G_p=\{r\in\mathbb{R}^k\,|\,\varphi(r,p)=p\}$. Fixing $p\in M$, the map $\mathbb{R}^k\to M$ given by $r\to\varphi(r,p)$ induces an injective immersion of the homogeneous space \mathbb{R}^k/G_p into M whose image is \mathcal{O}_p . Thus any orbit of φ is the image by an injective immersion of \mathbb{R}^m or $\mathbb{R}^m\times T^n$ where m,n are integers, $m\geq 0$, $n\geq 1$, $m+n\leq k$ and \mathbb{R}° denotes a point.

A minimal set of φ is a nonempty invariant closed subset $\mu \subset M$ such that no proper subset of μ has these three properties.

A version of the Poincaré-Bendixon theorem for flows (k=1) states that if $M=\mathbb{R}^2$ or S^2 then any minimal set of φ is an orbit. We generalize this theorem as follows. An invariant subset $\Lambda \subset M$ is called a *locally finite collection of orbits* if for any point $p \in \Lambda$ there is a neighborhood $U \subset M$ of p intersecting finitely many orbits in Λ .

THEOREM. Let $\varphi: \mathbb{R}^2 \times M \to M$ be an action on a simply connected, 3-manifold M, compact or not, satisfying.

- (i) Any orbit of dimension one is embedded in M.
- (ii) The union of all orbits of dimension less than two is a locally finite collection of orbits.

Then any minimal set of φ is an orbit.**

COROLLARY. Let $\varphi: \mathbb{R}^2 \times \mathbb{R}^3 \to \mathbb{R}^3$ be a locally free \mathbb{R}^2 -action. Then no orbit of φ is dense in \mathbb{R}^3 .

^{*}Recebido pela SBM em 21 de novembro de 1973.

^{**}In a paper of J. Plante [7] we just received, appears a version similar to the above of the Poincaré-Bendixon theorem for actions of nilpotent Lie groups on compact manifolds. His method however does not hold for noncompact manifolds.

Recall that G. Hector [4], proved that there are codimension one foliations of \mathbb{R}^3 such that all leaves are everywhere dense.

Another version of the Poincaré-Bendixon theorem for flows on \mathbb{R}^2 caracterizes the ω -limit set $\omega(p)$ of a point p as follows: Suppose $\omega(p)$ is bounded and contains at most finitely many fixed points of the flow. Then either $\omega(p)$ is a periodic orbit or it is an embedded graph whose vertices are fixed points and whose sides are 1-orbits.

One could be tempted to conjecture that the ω -limit set of a point is an invariant embedded complex of dimension ≤ 2 provided the action has finitely many orbits of dimension ≤ 1 .

At the end of §2 we show that this is false. There we define an \mathbb{R}^2 -action on S^3 satisfying these conditions and exhibiting orbits which are dense in an embedded solid torus.

§2. Proof of the Theorem

Given $p \in M$ define $\partial \mathcal{O}_p = \bigcap_{n=1}^{\infty} \overline{\mathcal{O}_p - K_n}$ where each $K_n \subset \mathcal{O}_p$ is a compact neighborhood of p in \mathcal{O}_p , $K_n \subset K_{n+1}$, and $\bigcup_{p=1}^{\infty} K_n = \mathcal{O}_p$. Clearly $\overline{\mathcal{O}}_p = \mathcal{O}_p \cup \partial \mathcal{O}_p$.

Let μ be a minimal set of φ and $p \in \mu$. If $\mu \neq \mathcal{O}_p$ then \mathcal{O}_p is not embedded. In fact, $\partial \mathcal{O}_p = \mu = \overline{\mathcal{O}}_p \supset \mathcal{O}_p$. Therefore for $\dim \mathcal{O}_p > 2$, $\mu = \mathcal{O}_p$.

Suppose now that $\mu \neq \mathcal{O}_p$ and $\dim \mathcal{O}_p = 2$. Call Σ the union of orbits of dimension less than two. The 2-orbits of φ define a C^r foliation \mathscr{F} of codimension one of the manifold $M - \Sigma$. It is clear that one can find a closed path $\alpha \colon S^1 \to M - \Sigma$ passing through p transverse to the leaves of \mathscr{F} . Since M is simply connected there is a map $\Psi \colon D^2 \to M$ such that $\Psi/\partial D^2 = \alpha$. We can assume (see [2]), that Ψ is a C^s immersion $s \geq 2$. We prove now that arbitrarily C^s close to Ψ there is an immersion $\Phi \colon D^2 \to M$ which is transverse to all orbits of dimension less than two.

Since the fixed points of φ are isolated we take Ψ such that $\Psi(D^2)$ does not contain fixed points of φ . The set of orbits of dimension one intersecting

 $\Psi(D^2)$ is finite and partially ordered by the relation: $\mathcal{O}_p > \mathcal{O}_q$ iff $\partial \mathcal{O}_p \supset \mathcal{O}_q$. Let \mathcal{O}^1 be a minimal element under this relation. We have then $\partial \mathcal{O}^1 \cap \Psi(D^2) = = \emptyset$. Thus by Thom's transversallity theorem, we can finde $\Psi^1 \colon D^2 \to M$ arbitrarily C^s close to Ψ such that Ψ^1 is transverse to \mathcal{O}^1 . Repeating the same argument for all minimal elements we take Ψ^1 transverse to all of them.

Call Σ^0 the union of all fixed points of φ and Σ^1 the union of Σ^0 with the 1-orbits minimal under the relation defined above. Clearly $\Sigma^1 \cap \Psi^1(D^2)$ is finite and since φ is C^1 there is a neighborhood $W^1 \supset \Sigma^1 \cap \Psi^1(D^2)$ such that for any 1-orbit $\mathscr O$ intersecting W^1 we have Ψ^1 transverse to $\mathscr O \cap W^1$. Let $\mathscr O^2$ be a 1-orbit such that $\mathscr O^2 \cap \Psi^1(D^2) \neq \varnothing$ and $\partial \mathscr O \subset \overline{\Sigma}^1$. This means that $\mathscr O^2$ is immediately above some orbit of Σ^1 in the order relation. Let $K^2 \subset \mathscr O^2$ be an embedded compact cell such that all points of intersection of $\mathscr O^2 - K^2$ with $\Psi^1(D^2)$ are in W^1 . Modify Ψ^1 outside $(\Psi^1)^{-1}(W^1)$ to find $\Psi^2 \colon D^2 \to M$ C^s close to Ψ^1 and transverse to K^2 . This implies $K^2 \cap \Psi^2(D^2)$ is finite and so there is a neighborhood $W^2 \supset K^2 \cap \Psi^2(D^2)$ such that for any 1-orbit $\mathscr O$ touching W^2 one has Ψ^2 transverse to $\mathscr O \cap W^2$.

Repeating this construction process we find maps Ψ^1 , Ψ^2 , Ψ^3 ... Since the set of 1-orbits intersecting $\Psi(D^2)$ is finite this process comes to an end for some n yielding a map $\Phi = \Psi^n : D^2 \to M$ which is arbitrarily C^s close to Ψ and transverse to all 1-orbits of φ .

From the definition of Φ one obtains a neighborhood $N(\Phi)$ of Φ in the C^s topology such that any $\tilde{\Phi} \in (N)\Phi$ is transverse to all 1-orbits of φ .

Given $\tilde{\Phi} \in N(\Phi)$ the foliation \mathscr{F} of $M - \Sigma$ induces via $\tilde{\Phi}$ a foliation with singularities of D^2 . Call $\mathscr{F}(\tilde{\Phi})$ this foliation and $S(\tilde{\Phi}) \subset D^2$ the set of singularities of $\mathscr{F}(\tilde{\Phi})$. Then $S(\tilde{\Phi})$ can be written as $S(\tilde{\Phi}) = S_1(\tilde{\Phi}) \cup S_2(\tilde{\Phi})$ where $S_1(\tilde{\Phi})$ is the union of points of tangency of $\tilde{\Phi}$ with the leaves of \mathscr{F} and $S_2(\tilde{\Phi})$ is the union of points of intersection of $\tilde{\Phi}$ with the orbits of dimension one. It follows from [2] page 316 that there is an immersion $\chi: D^2 \to M$, $\chi \in N(\Phi)$ such that:

(a) Any point $q \in S_1(\chi)$ is a nondegenerate point of tangency, i.e. there is a system of coordinates (x_1, x_2) in a neighborhood W of q = (0, 0) such that the leaves of $\mathscr{F}(\chi)/W$ are the level curves of a function f of one of the types $f(x_1, x_2) = x_1^2 + x_2^2$, $f(x_1, x_2) = -x_1^2 + x_2^2$ or $f(x_1, x_2) = -x_1^2 - x_2^2$.

(b) $\chi(D^2)$ is tangent at most once to the same orbit. It is immediate that $S_1(\chi)$ is finite and using partition of unity one shows there is a C^{r-1} vector field X on D^2 tangent to $\mathcal{F}(\chi)$ such that X(q) = 0 if and only if $q \in S(\chi)$.

Assume X is entering on ∂D^2 and fix $q_0 \in \partial D^2$ such that $\chi(q_0) = p \in \mu$. The ω -limit set of q_0 , $\omega(q_0)$, cannot contain points of $S_2(\chi)$ because otherwise μ would contain a 1-dimensional orbit and so by minimality $\mu \subset \Sigma^1$ which is absurd.

Since $S_1(\chi)$ is finite we can assume by perturbing χ if necessary that $\omega(q_0)$ is not a point. By (a) and (b) and the theorem of Poincaré-Bendixon for flows $\omega(q_0)$ is then a periodic orbit of X or a graph with only one vertex which is a saddle point.

The set $\chi(\omega(q_0))$ is the image of a closed curve $\gamma\colon S^1\to M$ lying on an orbit $\mathscr O$ of dimension two. The curve γ is not homotopic to a constant map because the element of the holonomy group of $\mathscr F$ associated to γ is not the identity. Therefore $\mathscr O$ is homeomorphic to $\mathbb R\times S^1$ or $S^1\times S^1$. Since $\mathscr O\subset \mu$ and $\mathscr O\neq \mu$, $\mathscr O$ cannot be a torus. Thus $\mathscr O$ is an immersed cylinder $\mathbb R\times S^1$ and $\partial\mathscr O\supset\mathscr O$. We show now that this is impossible.

We follow arguments of Lima in [5]. Take $w \in \mathcal{O}$. Since $G_w \neq 0$ there are numbers a_1 , a_2 such that the orbit Γ of $Z = a_1 X_1 + a_2 X_2$ passing through w is periodic, here X_1 and X_2 are commuting vector fields generating φ . Fixing a Riemannian metric on M call C the union of small integral curves passing through Γ of the vector field normal to \mathscr{F} . Since $\mu \neq \mathcal{O}$ the orbit \mathscr{O} returns infinitely many times to the fence C leaving as intersection a sequence $\{\Gamma_n\}$ of closed simple curves in C arbitrarily close to Γ for large n.

Suppose the vector field X_1 is not tangent to Γ . Then there is a tubular neighborhood $T(\Gamma) \subset C$ of Γ such that X_1 is not tangent to C at points on $T(\Gamma)$. Let η be the flow induced by X_1 . For $z \in \Gamma$ call $t^+(z)$ the smallest t > 0 such that $\eta(t,z) \in C$ and assume $\{\eta(t^+(z),z) \, | \, z \in \Gamma\} = \Gamma^+ \subset T(\Gamma)$. Similarly let $t^-(z) < 0$ be the largest t < 0 such that $\eta(t,z) \in C$ and suppose $\{\eta(t^-(z),z) \, | \, z \in \Gamma\} = \Gamma^- \subset T(\Gamma)$. Eventually Γ^+ or Γ^- is empty but not both.

Let $\delta > 0$ be the distance between Γ and $\Gamma^+ \cup \Gamma^-$. Given $\varepsilon = \delta/2$ there is $z_0 \in \Gamma$ and τ such that $\eta(\tau, z_0) \in C$ is ε -close to Γ .

Suppose $\tau>0$ and call C_1 the part of C between Γ and Γ^+ . Then the union of C_1 and the piece of $\mathcal O$ given by $D=\{\eta(t,z)\,|\,0\leq t\leq t^+(z),\,z\in\Gamma\}$ is a topological torus bounding an open set V of M. The vector field X_1 is tanget to D and at points on C_1 it points toward V. Thus we have $\eta(t,z_0)\in V$ for every $t>t^+(z_0)$. Therefore $\eta(\tau,z_0)\in C$ implies that the distance between $\eta(\tau,z_0)$ and Γ is greater than δ which is absurd.

One deals with the case $\tau < 0$ in a similar manner. This finish the proof of the theorem.

Example. Define on $D^2 \times S^1 \subset \mathbb{R}^2 \times \mathbb{R}^2$ the following vector fields:

$$X(x_1, x_2, e^{i\theta}) = (\rho(r) x_1 - \beta x_2, \beta x_1 + \rho(r) x_2, 0)$$

$$Y(x_1, x_2, e^{i\theta}) = (-\alpha x_2, \alpha x_1, 2\pi i e^{i\theta})$$

where $r = \sqrt{x_1^2 + x_2^2}$ and $\rho(r)$ is a C^{∞} nonnegative function satisfying, $\rho(r) = 0$ iff r = 1, $\rho^{(n)}(1) = 0$ for all $n \ge 1$ and $\rho(r) = 1$ for r in a neighborhood of zero. $\beta = \sqrt{\alpha^2 + 4\pi^2}$ and α is rationally independent of π . The vector fields X, Y commute and so they define an \mathbb{R}^2 -action on $D^2 \times S^1$. One easily verifies that $\partial(D^2 \times S^1)$ and $\{0\} \times S^1$ are orbits of this action. The remaining orbits are immersed planes dense in $D^2 \times S^1$.

Using the decompositon of S^3 in two solid tori we obtain from this example an \mathbb{R}^2 -action on S^3 .

§3. Remarks on Locally Free R²-actions

In what follows $\varphi \colon \mathbb{R}^2 \times \mathbb{R}^3 \to \mathbb{R}^3$ denotes a locally free action i.e. all orbits have dimension two.

- (a) One shows that any orbit of φ is a closed subset of \mathbb{R}^3 . Thus from a theorem of Haefliger [3] φ admits a first integral. Moreover any orbit of φ is embedded and homeomorphic to \mathbb{R}^2 (see [5] page 77).
- (b) Let $\mathscr{LF}(\mathbb{R}^2, \mathbb{R}^3)$ be the space of locally free C^r , $r \ge 1$, \mathbb{R}^2 -actions on \mathbb{R}^3 endowed with the uniform C^r topology. In a forthcoming paper we show using techniques of [1] that the set of structurally stable \mathbb{R}^2 -actions is dense in $\mathscr{LF}(\mathbb{R}^2, \mathbb{R}^3)$ (see [6] for definitions).

REFERENCES

- [1] C. CAMACHO and R. Mañé, Stability theorems for flows on open two dimensional manifolds. To appear.
- [2] A. HAEFLIGER, Structures feuilletées et cohomologie à valeur dans un faisceau de grupoids, Comm. Math. Helv. 32 (1958), 249-329.
- [3] A. HAEFLIGER, Sur les Feuilletages des Varietés de dimension n par des feuilles fermées de dimension n 1, Colloque de Topologie de Strasbroug, 1954/55.
- [4] G. HECTOR, Sur un théorème de Structure des feuilletages de codimension un, Strasbourg, 1972, These.
- [5] E. Lima, Commuting vector fields on S³, Ann. of Math. 81 (1965), 70-81.
- [6] S. SMALE, Differentiable Dynamical Systems, Bulletin of the Amer. Math. Soc. 73 (1967) 747-817.
- [7] J. Planté, A generalization of the Poincaré-Bendixon theorem for foliations of codimension one, Topology vol. 12 (1973), 177-181.

Instituto de Matemática Pura e Aplicada Rio de Janeiro - Brasil