Existence, Uniqueness and Approximation of Fixed Points as a
Generic Property*

GIOVANNI VIDOSSICH**

A generic property about points of a topological space is a property which
holds for all points which compose a subsete of second category. Since second
category is the topological analogue of almost every-where, a generic property
is a property which is true for most points of the given space. Orlicz [9]
proved trat uniqueness of solutions of the Cauchy problem for ordinary
differential equations is a generic property in the space of bounded continuous
mappings R"*1— R". Alexiewicz-Orlicz [1] later proved the same result
for hyperbolic equations, while recently Lasota-Yorke [8] proved (apparently
with some deficiency) that existence, uniqueness and continuous dependence
of solutions of the Cauchy problem for ordinary differential equations in a
Banach space X a generic property in the space of continuous maps
I xX — X.

The aim of this paper is to prove a general theorem about fixed points of
monlinear operators which includes all the above mentioned results as special
cases. The general theorem not only achieves this goal, but also allows us to
solve in full generality the uniqueness problem studied by Cafiero [4], and
provides an application to fixed points of nonexpansive mappings.

The following two considerations may motivate the interest in a subset
M* of a given space M of nonlinear operators such that M* is of second
category in M and all fe M* has a unique fixed point:

(i) In the application if the subspace M* of M is also a linear topological
space, then one may use all the category theorems of linear analysis (Ba-
nach-Steinhaus theorem, open mapping theorem, etc.).

*Recebido pelo SBM em 3 de dezembro de 1973.
**Parts of this research were made while the author was at Scuola Normale Superiore, Pisa,
Italy, and the University of Cape Town, Rondebosch, South Africa.
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(ii) Actually, we prove that M* is a G,-set in M which contains a given dense
set M. Therefore, by a theorem of Mazurkiewicz, M* admits a complete
metric d*. Consequently M* contains the complement of M, under
every metric finer than the restriction d, of d* to M o X My, and coincides
with the completion of (My, dy). This may perhaps help to solve the
problems of characterizing the continuous maps f for which the Cauchy
problem x' = f(t,x), x(a) = x,, has a solution in a given infinite dimen-
sional Banach space, and of the existence of fixed points of nonexpansive
mappings.

This paper is divided into four sections:

Section 1 proves the general theorems. Their basic assumption is the exis-
tence of a dense subset M,, of M such that each member of M, has a unique
fixed point and that there holds a sort of continuous dependence of the fixed
points of the members of M,

Section 2 applies the general results to the still unsolved problem of the exis-
tence of fixed points of nonexpansive mappings. We prove the genericity
of existence and uniqueness of fixed points, as well as of their approximation
according to the theory of Browder [3].

Section 3 applies the general results to prove, in a much simpler and shorter
way (mainly because of the topological viewpoint of the problem) the results
of Orlicz [9] and Lasota-Yorke [8]. As another application, Caﬁeros uni-
queness problem [4] is solved for R" with n > 1.

Section 4 shows how to carry over the methods of § 3 to other situations, as

to integral or to hyperbolic equations. Moreover, an open problem is pointed
out.

The author is grateful to G. Prodi and S. Salbany for useful conversations and
comments on the subject of this research.

§ 1. General results

The main result of this paper is the following:

THEOREM 1. Let X be a complete metric space and M a set of continuous maps
X — X endowed with any metric topology finer than the topology of uniform
convergence on X. If M, is any subset of M such that
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(a) Every f e M, has a unique fixed point x;
(b) If fe My, (f,). is a sequence in M converging to fin M, and x, is a fixed point
of f, neN, then lim, x, = x;;

then there exists a Gsy-set M* of M such that M* 2 M, every fe M* has a
unique fixed point x; and f — x, is a continuous map M* — X.

In applications, it is useful that the topology of M is finer than the topology
of uniform convergence (cf. § 3). We shall see in the sequel that Condition
(b) holds when M, is any class of contractions or of codensive operators with
unique fixed point or of integral operators arising from ordinary differential
equations with a locally Lipschitz second member. We recall that a Gs-set
is a countable intersection of open sets. The relation between G;-sets and the
concept of generic property is that a dense G4-set in a second category space
is of second category (since the complement of a dense G;-set is a first category
set, while in a second category space the complement of a first category set
is of second category). Then it follows at once the following

COROLLARY 1. Under the hypotheses of Theorem 1, if M, is dense in M and if
M is of second category, then “existence, uniqueness and approximation of
fixed points by fixed points of members of M” is a generic property in M.

In particular, if M is closed under uniform limits, then M is a complete metric
space, hence of second category, for the topology of uniform convergence.

Proof of Theorem 1: Let T: M, — X be the map defined by f — x,. By(a) T
is well defined, while by (b) T is continuous. Therefore from the statement
and the proof of Theorem xiv.8.1 of Dugundji [ 7] we derive that Thas a con-
tinuous extension T over a G,-set M* contained in the closure M, of M,
in M. We claim that every f e M* has a fixed point. In fact, given fe M¥
we can find a sequence (f,), in M, converging to f in M. The continuity of
T implies lim, T(f,) = T(f). This means that (x,,), converges to T(f). Mo-
reover, (f;), converges to f even uniformly. Then [12. Lemma] shows that
T(f) is a fixed point of /. For each f'e M¥ let F(f) be the set of all fixed points
of £ Define ® : M¥ — R by

O(f) = sup d(x,v) (= diamF(f)

x,yeF([)
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where d is a fixed bounded, complete metric for X (it is well known that every
metric is equivalent to a bounded metric). The proof rests on the following
statement :

(*) For every f e M, and every neZ™ there exists a neighborhood Ul ~f fin

M#% such that @(g) < % for all ge UYL

To prove (*), assume the contrary and argue for a contradiction: Then there
are feM,, neZ" and (M being metric) a sequence ( f), in M such that

lim f, = f in M and ®(f) > % for all x. By ®(f)) >%, for every x

there are x,, v, € F(f,) such that d(x,_, v,) >%~ Since lim, f_ = f in M and

feM,, (b) implies
lim, x =x;,=1lim y,

a contradiction. Therefore (*) holds. Then

i

JSeMo

is an open subset of M¥. Therefore
Mt L

n=1

is a Gy-set in MY, hence in M : for, there are two sequences (V,),, (W,), of open
sets of M such that
MY =[NV U MEOW, (all n).
n=1

Consequently M* is the intersection of the sum of two sequences (V,,),, (W,)a.
Each f € M* has a unique fixed point since M* = ®~!(0) by (*). The mapping
f — x, coincides with T on M* because we shaw at the beginning of the
proof that T(f) was a fixed point of f, and each member of M* has a unique
fixed point. Therefore f — x, is continuous. q.ed.

An interesting corollary of Theorem 1 is the following, which allows us to
speak about generic properties as in Corollary 1.

COROLLARY 2. Let X be a bounded complete metric space and M a set of conden-
sive maps X — X endowed with the topologv of uniform convergence on X.
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If there exists a dense subsets M, of M such that every fe M, has a unique fixed
point, then (every f € M has a fixed point and) there exists a Gz-set M* con-
taining M, whose members have a unique fixed point. Moreover, if a sequence
(f)n in M converges uniformly to f € M* and if x, is a fixed point of f, for everv
n, then (x,), converges in X to the unique fixed point of f.

Recall that a condensive map is a continuous map f: X — X such that

WSf(4) < p(A4) (4 <X)
where p(A) denote the measure of non-compactness of A:

7(A) = inf{e > 0|4 can be covered by a finite number
of sets of diameter < &}.

Very important examples of codensive maps are furnished by the k-set-con-
tractions. These are continuous maps f : X — X with the property

NS (A) < ky(A) (4 < X).

If k < 1, a k-set-contraction is condensive. This type of mappings was in-
troduced by Darbo [6] under a different name. For recent contributions
to their theory cf. Petryshyn [10] and Sadovskii [11]. We only note that
the sum of a compact map and a contraction is a condensive map.

Corollary 2 does not require explicitly Condition (b) of Theorem 1 about
the “continuous dependence” of fixed points. However this conditions holds
in the class of condensive mappings with unique fixed point:

LEMMA. Let X be a bounded complete metric space, f:X —> X a condensive
map, (f,), a sequence of arbitrary maps X — X converging uniformly to f.
If x, is a fixed point of f, for everv n, then {x,|neZ™*} is a relatively compact
set, and the limit of every convergent subsequence of (x,) is a fixed point of f.
In particular, if f has a unique fixed point x;, then lim,x, = x,.

PrOOF. By a well known theorem of Kuratowski, X is isometric to a bounded
subset Y of a suitable Banach space B. Since X is complete, Y must be too.
Thus Y is a closed subset of B. We identify the mappings f, f, under conside-
ration to the corresponding mappings ¥ — Y Let I be the identity map
of Y. By a well known property of condensive maps, I-fis a proper map Y — B.
It is clear from the uniform convergence of (f,), to fthat

(1) llmn Xy — f(xn) =0
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Therefore K = {0} U {x, — f(x,)|ne Z*} is a compact set, and hence
=5 =3t

Q(K), too, is a compact set. Since {x,|neZ*} c I/:?(K), {x,|nez*}
is relatively compact. That the limit of every convergent subsequence of
(x,), is a fixed point of f can be derived easily from (1) by the continuity of f.
If f has a unique fixed point x,, then every subsequence (X, of (x,), has a
subsequence which converges to x . Then lim, x, = x by a well known theorem
on limits. q.e.d.

Proof of Corollary 2. We have only to apply the above lemma and Theorem 1.
q.e.d.

If Condition (b) of Theorem 1 is weakened to a continuous dependence of
fixed points with respect to members of M, only, then we can guarantee only the
genericity of the existence of fixed points, as shown by the following result.

THEOREM 2. Assume the same hypotheses as in Theorem 1, except that (b) is
substituted by the weaker condition

(b)* If fe Mo, (fu)n is a sequence in M converging to f, and x, is a fixed point
of fu, then lim, x, = x;.

Then there exists a Gs-set M* of M containing M, such that everyv f € M* has
a fixed point and only one can be approximated bv members of M,,.

The statement
a fixed point x of f € M can be approximated by fixed points of members of M,

means by definition that there is a sequence (f,), in M, converging to f in
M such that lim, x, = x.

Sketch of the proof of Theorem 2. We proceed as in the proof of Theorem
1 to obtain M¥. For eachfe M¥, we define Fy(f) to be the set of all fixed points x
of f such that there is a sequence (f,,), in M, with the property

lim, ., =f and lim, x, = x.

(Note that Fy(f) may not be the whole set of fixed points of f : for example,
the identily map of I of [0,1] has all points as fixed points, but only one of
them can be approximated by the fixed points of the contractions in

M, ={<1 s i—)”nél*}) Defining @ : M¥ — R by

O(f) = sup d(x,v)

x,yeFo(f)
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where d is a fixed bounded, complete metric for X, we prove statement (*)
in the proof of Theorem 1 as follows. Assume (*) is false. Then there are fe M,
and keZ™ such that to every ieZ™" there corresponds f'e M* for which

2 < and @) > -

d' being any metric for M. Since ®(f’) > % for every i there are x,

: | f :
v, € Fo(f') such that d(x;,v;,) > L By definition of Fy(f"), for every i there
are two sequences (f, ), (f,, »),in M, which converge to f* such that
lim, Xpyow = %o lim, Xgyn = Vi

There is n; such that
it i I T 1 .
d(f *fxi,n,-) < l.—’ d(f ’-f:Vi;"i)<T (IEZ )
and
1 i
(**) d(xfx_ et Xpy n_) > g . (ieZ™).

Since lim; f,, ,. =lim; f, ,. = fin M, (b)* implies

lim; x, =x = lim; x;
Yi,ni XN

which contradicts (**). Thus (*) holds. Then we conclude like in the proof

Theorem 1. q.ed.

§ 2. Application to fixed points of nonexpansive mappings

In this section, the general results are applied to a fixed point problem which has
received much attention during the last years. Recallthatamapf:4 < X — X,
X a metric space with metric d, is said to be nonexpansive if

d(f(x), f(v) < d(x,v) (x, ve A).

There exist nonexpansive mappings on suitable bounded subsets of a Banach
space which do not have a fixed point (cf. for example [13, § 3.6]). Moreover,
it is not yet known whether a nonexpansive map on a convex and weakly
compact subset of a Banach space has a fixed point, cf. Belluce-Kirk [2, p. 144].
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The following theorem shows that most nonexpansive mappings must have
a fixed point in convex or, more generally, star-shaped with respect to a point,
bounded sets of an arbitrary Banach space. (Recall that a subset 4 of a Banach
space is said to be star-shaped with respect to a point x, € A if for every xe A,
the segment joining x to x, is contained in A4). The approximation of fixed
points of nonexpansive mappings by fixed points of contractions has been
studied by Browder [3]. His results are valid only for Hilbert spaces or for
uniformly convex Banach spaces X with X* strictly convex and with a weakly
continuous daulity map. The following theorems show the genericity of
this approximation for comvex subsets of arbitrary Banach spaces.

Note that if a set A4 is bounded and star-shaped with respect to a point x, € 4,
then A satisfies the approximation condition of the following theorem. For,
the contractions f, : 4 — A defined by

y 1 1 b
Tax <1—7>x+nxo (nez™)
satisfy to the inequality
diam (A
llx—f,,(x)lls—n( ; (x e A)

and hence the requirement. Therefore Theorem 3 applies to bounded, con-
vex or, more generally, star-shaped subsets of arbitrary Banach spaces.

THEOREM 3. Let X be any complete metric space whose identity mapping is
approximated by contractions X — X. Then in the set M of nonexpansive
mappings X — X endowed with the topology of uniform convergence, “exis-
tence, uniqueness and approximation of fixed points by fixed points of con-
tractions” is a generic propertv. More precisely, there is a dense Gzset M*
of M such each fe M* has a unique fixed point x;, and if (f,), is a sequence in M*
converging uniformly to fe M*, then lim, x, = x,.

PRrOOF. Let M, be the set of contractions X — X. By hypotheses, for every
neZ” there is f,e M, such that

dox, f0) < (xeX)
where d is the metric of X. Therefore
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d(f (%), fulf(x) < (ks X o0 ™)

for every f:X — X. If feM, then f,f is a contraction X — X. We
conclude that M, is dense in M. It is well known that every fe M, has a
unique fixed point x,. Therefore, to apply Theorem 1, we have only to verify
Condition (b). But this is a consequence of the lemma above since a contrac-
tion is a condensive map. q.ed.

:'»—‘

§3. Applications to the Cauchy problem for ordinary differential equations.

We show now how the main results of Orlicz [9] and of Lasota-Yorke [8]
(whose analogue for “almost every-where” are proved in Cafiero [5]) follow
from Theorem 1. Wo do this for bounded functions f'while Lasota and Yorke
avoid this restriction (however, their proof is based on a lemma, namely
[8, Lemma 2], the proof of which is not clear to me unless we add the addtional
hypothesis of the boundedness of f. In fact, it seems to me we need first to show
that the sequence (x,), is equicontinuous. For this purpose I do not see any
other way than the boundedness of /). The argument presented here is much
simpler and shorter than the arguments of Orlicz and Lasota and Yorke
mainly because of a topological viewpoint of the problem. We notice that
the topology we need on M is finer than the topology of uniform convergence.
Let X be a Banach space, x,€ X. I the interval [a,b] or [a,b[ of R, and B
the Banach space of all bounded continuous functions f:I x X — X with
the sup norm. We derive from Theorem 1 that existence on I, uniqueness
and continuous dependence from data of the solutions of the Cauchy problems

x( = f(t’ X), x(a) - xO
with f € B, is a generic property on B. For, let Y be the topological space
obtained by endowing C(I, X), the set of all continuous functions x : I — X,
with the topology of uniform convergence on compact subsets of I. Since
I is locally compact with a countable base and X metric, Y is a metrizable

space. Since X is a complete metric space, Y admits a complete metric. For
every fe€B, define T,:Y — Y by

T €)= %o + f (5. x(s)ds.

a

It is easily seen that T} is a continuous map Y — Y. If f # g, then T, # T}:
for, the continuity of f — g implies the existence of an open interval J = I and
a point xe X such that

f(ta x) # g(ta X) (t € J)
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Thus for X the constant map t — x we have Ty(x) # T/(X) since their deriva-
tives differ on J. T hen we define on M = {T,| f € B} the metric topology t
which makes T : f — T, a homeomorphism. Since lim, T;, = T, in (M, 1)
means lim, f, = f uniformly, 7 is finer than the topology of uniform con-
vergenceon Y. Let L be the set of bounded, locally LipschitzmapsI x X — X.
By Lemma 1 of Lasota-Yorke [8], L is dense in B. Therefore M, ={T,| fe L}
is dense in (M, 7). By a well known result, the Cauchy problem x' = f(t, x),
x(a) = X, has a unique solution on I for every f e L. By Lemma 8 of [14],
Condition (b) of Theorem 1 holds. Therefore, by Theorem 1, existence, uni-
queness and “continuous dependence” of fixed points is a generic property
in (M, 7). Since T; has a fixed point if and only if the Cauchy problem

xl o f(t’ x)’ x(a) = xO

has a solution on I and since T : B — (M, 1) is a homeomorphism, we have
proved the result of Lasota-Yorke [8] claimed at the beginning.

In [4] the following problem has been considered for X = R:

CAFIERO’S PROBLEM: Given f :1 x X — X, I an interval of R and X a Banach
space, suppose that the Cauchy problem

x = f(ta X), x(tO) = Xo

has a unique solution for (to, xo) running over a dense subset A of I x X. Then,
what about the uniqueness outside A?

Cafiero [4] answers this question for X = R in the following manner: Uni-
queness holds almost everywhere in I x R if f satisfies Caratheodory hypo-
theses. His methods seems to be peculiar to X = R, since it is based on the
order relation of R via the use of maximal and minimal solutions. Noticing
that

X — Xo + J\f(s, x(s))ds (tel)
to
is a compact operator on C(IR") if f is bounded and continuous or, more

generally, if f satisfies the Caratheodory hypotheses, the following theorem
solves Cafiero’s problem in full generality for finite dimensional spaces.

THEOREM 4. Let I be an interval of R, X a Banach space andf : I x X — X
such that ||f(t,x)|| < h@) with he L}, (I,R) and, for everv (ty, xo)el x X,
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X — Xo + J f(s, x(s))ds (tel)
to

is a compact operator in the space C(I, X) endowed with the topologv of uniform

convergence on compact subsets of 1. If there is a dense subset A of I x X

such that the Cauchy problem

(1) X = f(ta x)’ x(to) = Xp

has a unique solution on I for every (t,, x,) € A, then “existence on I, uniqueness
and continuous dependence of solutions” of the Cauchyv problem (1) is a generic
property on I x X

PrROOF. Let Y be the space C(I, X) of all continuous functions I — X with
the topology of uniform convergence on compacta. As seen in the beginning
of § 3, Y is a complete metric space. For every (to, xo) €l x X, let F(t,, x,)
be the operator Y — Y defined by

Flto, xo) {) (6) = %o + J (s x(s)ds.

By hypothesis, each F(t,, x,) is a compact operator Y — Y. Define
M = {F(to, xO) l (to, XO)E I X X}, Mo = {F(to, XO) ’ (to, XO) € A}.

Let M be topoligized by the topology of uniform convergence. It is easily
seen that M, is dense in M. Then, by Corollary 2 to Theorem 1, there is a
Gs-set M* of M such that M, € M* and every member of M* has a unique
fixed point. Since the map F :I x X — X defined by (to, Xo) — F(tg, Xo)
is continuous, A* = F~!(M*)is a G-set and is dense since A* 2 4. Moreover,
(1) has a unique solution for every (¢, xo) € A*. By Lemma in § 1 we have
the continuous dependence. g.ed.

When X is infinite dimensional, Cafiero’s problem splits into an existence and
a ‘uniqueness problem. In other words, in the infinite dimensional case we
have the following existence problem analogous to Cafiero uniqueness problem:

Given f :I x X — X, I an integral of R and X a Banach space, if

X' = f(t. %), x(to) = xo

has a solution for (t,, x,) running in a dense subset 4 of I x X, what about
the existence outside A?
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Of course, Peano’s theorem solves this problem for X = R". For the infinite
dimensional case, the author has no idea at present how to solve it.

§ 4. Remarks on further applications

The arguments of §3 can be easily carried over to other situations as, for
example, to integral equations and to hyperbolic equations.

In the case of integral equations, we can prove the analogue of Theorem 4
on Cafiero’s problem, which should be a new result. However, it is an open
problem if the results of Orlicz and Lasota-Yorke on the genericity of uni-
queness can be extended to integral equations.

For hyperbolic equations

i B, LA
Dlay ¥ RV RIGRIaR
we can generalize Theorem 4 of Alexiewicz-Orlicz [ 1] to arbitrary continuous f

by proving also the continuous dependence of solutions. Moreover, we can
prove the analogue of Cafiero’s problem for the equation above.
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