Foliations of Knot Complements in the Bicylinder Boundary*
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Abstract

In this expository paper, we shall analyze a particularly important class of
examples of surfaces and hypersurfaces in Euclidean 4-space, namely those
which arise by considering real 4-space as the space of two complex variables
z and w, and by taking geometric loci of the form f(z, w) = 0 or hypersur-
faces associated with such loci. Such surfaces and hypersurfaces are important
in the study of the singularities of algebraic curves, as described for example
in the book of Milnor [3], and they have been used recently in the construction
of foliations of the 3-dimensional sphere by Lawson [2]. The examples of
this paper were first presented at the International Symposium of Dynamical
Systems and Foliations at Salvador in the summer of 1971, and the author
expresses his gratitude for the opportunity to participate in that conference.

The examples constructed in this paper are closely related to another paper
of the author [1] concerning minimal surfaces in the bicylinder boundary.

1. Introduction. Often when we are studying a surface in space in the neigh-
borhood of a point, it is useful to see how the surface cuts the boundary of
a small ball around the point. The nature of the intersection curve can often
yield important topological and geometric information, and this process re-
duces the problem from the study of a surface in 3-space to the study of a curve
on a 2-dimensional surface where it may be easier to picture the behavior
of the function.

When we work with surfaces or hypersurfaces in a 4-dimensional space, such
a method of reducing dimensions is almost essential if we are to get a good
picture of what is happening in the neighborhood of a point. The device most
often used is that of intersecting the hypersurface or surface with the boundary
of a 4-dimensional ball about the point. This reduces the problem to an

*Recebido pela SBM em 18 de janeiro de 1974.
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analysis of an ordinary curve or surface in something 3-dimensional, the
boundary of the 4-ball

There is still a difficulty however in visualizing exactly what is happening
ina a 3-dimensional ball, even though the space we inhabit is itself 3-dimen-
sional. In a way, the problem is analdgous to that of getting a truly accurate
picture of curve on a round 2-sphere if we wish to do this by means of re-
presentations on a flat page. There are various methods of making maps
which serve different purposes, but each one must make some compromises.

In many problems, however, it may be possible to study a surface in the neigh-
borhood of a point by intersecting the surface with a small ball that is not
perfectly round. A differently shaped ball may in fact be better suited to the
problem under consideration. If for example the problem concerns a surface
which is the graph of a real-valued function of a complex variable, then the-
re is no reason at all to prefer a metric ball which treats all of the dimensions
alike. We can do better to work with a cylindrical metric, where we refer
all of 3-space not to the three real coordinates x, v, u, but rather to the coor-
dinates z, u where u is still a real number but z = x + iv is a complex number.
We then introduce the metric which measures the distance from a point
z.u to the origin by setting d(z, u) = max{|z|,|u|}, where |u| is the absolute
value of the real number u and |z| stands for the modulus of the complex
aumber z, i.e. its distance to the origin. If we take the “sphere” in this metric
with radius 1, then we want all points z,u whith max{|z|,|u|} = 1, and this
sphere is a cylinder consisting of two flat dises {|z| < 1,u =1}, {lz| <1,
u = —1}, a circular cylinder {|z| =1, |u| < 1}, and a pair of circles {lgdee= 1
u =1} and {|z| = 1, u = —1}. The advantage of working with such spheres
is that the parts can be cut apart and developed into the plane with no dis-
tortion whatsoever within each piece.

For example, the graph of the function f(u) = real part of z would meet the
cylinder with |z| =1 in the curve (€, cos 0), 0 < 0 < 2n, where we have set
2 — ¢ since the modulus of z is 1 on this cylinder. Since the absolute value
of the real part of z is never greater than 1 in this ball, there will be no inter-
section of this graph with either the top or bottom discs.

In this last example, it turned out to be useful to introduce polar coordinates
in the description of the complex variable, setting z = re. Using this no-
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tation we may describe the three parts of the cylinder boundary as follows:
two discs {(re?,1)|0 < r <1}, and {(re"’,—1)|0 < r < 1}, and open cylinder
{(¢®,u)|-1 <u <1}, and two circles (¢, 1) and (e”,~1). (Unless specified
other wise, we automatically assume that 6 runs between 0 and 2m.)

For another example, if we take the locus u> = |z|% then we must have
|u| = 1 = |z| where the locus meets the cylinder boundary, and this set con-
sists precisely of the two edge circles of the cylinder. If we take the locus
u? = 2|z|% then the locus does not intelsect the lateral cylinder at all, and
the intersection with the top and bottom discs will be circles (V/ihe"’, 1)
and (V/E/Z & 1)

We shall now apply this same sort of analysis to loci in 4-dimensional space
which involve two complex variables.

2. The geometry of the bicylinder boundary. We will be treating loci defined
in Euclidean 4-space by considering it as the space of two complex variables,
z and w, and we introduce a metric on 4-space by setting d(z, w) = max{|z|, |w|}.
The unit ball in this metric consists of all points with d(z, w) < 1, and this
is really the product of the two discs |z| < 1 and |w| < 1, called the bicy-
linder in the study of two complex variables. The unit sphere in this metric
is the bicvlinder boundarv B*, a 3-dimensional object which has the advan-
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tage that it can be described as three parts, each of which can be cut apart
and developed into ordinary 3-space without distortion. By studying the way
surfaces and hypersurfaces intersect these pieces of B?, we can get an idea
of the way these objects are situated in 4-space.

To describe the pieces of the bicylinder boundary, we write the complex
coordinates in polar form as z = re’, w = pe'®, w = pe'® where r and p are
non-negative real numbers and 6 and ¢ are always assumed to run between
0 and 2n. We then have max{|z|, |[w|} =1 either if r =1 and p <1, or if
r<1land p=1,orif bothr=1and p =1 The set (re?,¢'?), 0 <r <1,
is then the product of an open disc and a circle, i.e. an open solid torus. We
may cut along one disc of the product and unwind the circle into a segment,
so the solid torus is represented as a solid cylinder in 3-space with its end
discs identified. Similarly we may represent the other component (e, p*’?),
0 < p < 1, as a solid cylinder with end discs identified. The third piece, where
r =1 = p, is then the product of two circles, (e, ¢'®), and it is the so-called
flat torus in 4-space. We may cut this torus along two circles and fold it down
into the plane so that it becomes a square with opposite sides identified. All
three pieces may be placed next to one another in 3-space so that the iden-
tifications are clearly indicated. This is the model which we shall use for our
study.

3. Knots and singulatities of complex curves. By a complex curve we¢ mean
the locus of points in C? which are the zeros of a polynomial function in z
and w. Setting a complex number equal to zero imposes two real conditions,
so the set V, ={(z,w) in C|f(z,w) =0} is a surface. We assume that
f(0,0) =0, and we now consider the intersection of such a surface ¥, with
the bicylinder boundary B3. '

ExampLE L. If f(z,w) = z, then f(z,w) = 0 only when z = 0. Thus the surface
V; meets B® in just one curve, the center curve of the solid torus (re”, ¢'®),
0 <r <1, ie. the curve (0, '®).

ExampLE 2. If f(z,w) = z—w, then f(z, w) = 0 only when z = w. In particular
|z] =|w| so V; meets B* only in the flat torus, so ¢” = ¢'® and 6 = ¢ since
both 6 and ¢ are between 0 and 2.
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EXAMPLE 3. If. f(z, w) = z*>—w?, then f(z,w) = O only whenz = worz = —w,
so again e'® = ¢” or ¢'® = ¢®*™), Thus we get two curves on the flat torus:
0=¢ and ¢ =0 + 7.

EXAMPLE 4. If f(z,w) = z° ~w?, then f(z,w) = 0 only if |z* = |w|* so again
|z| =1 = |w| and (¢")* = (¢')2 Thus 30 = 2¢ or more generally 30 — 20 +

2n7. Thus either 6 = %»q) orf = %(p + 2;’1_7r’ and the intersection is a single

curve on the flat torus known as (3,2) torus knot.

(o, 2m) (m, 2w)

09 «—og —— (21 0)

More generally, if f(z,w) = z°— w9, then the curve V; n B® is contained in
the flat torus, and the number of components of the curve is the greatest com-
mon denominator of p and g. Such a curve is known as a (p, q) torus knot.

4. Fibering the complement of a knot. In the previous section, we considered
the locus K, = V; n B> = {(z,w)e B*| f(z,w) = 0}. The complement of this
curve K, in B* can be decomposed into a family of surfaces F «» one for each
angle 0 < a < 27, each with the same boundary curve K s+ We shall examine
these surfaces and show how B* can be rotated around the curve K s so that
any one of these surfaces can be transformed into any other.

In the complement B - K s> f(z,w) # 0 so we may divide by the modulus

of this value. We define the map h : B> - K r— S' by h(z,w) = %,
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where S' = {¢”|0 < « < 2} is the circle of complex numbers of unit mo-
dulus. The surface F, is defined to be h™'(e™). We describe this family expli-
citly for the examples of the previous section.

ExampiE 1. If f(z,w) =z, then h(z, w) =|ﬁ = ¢ Thus h™'(a) = {(z, w)
zZ

eB}| =€} ={(re®, €9, 0<r<1}u{(e® €9} u{(e® pe?|0<p<1l.

e

i

v AR
[[IITT]]]

\:

oc\

6

The fibre F, is then a cylinder attached to a disc, giving a figure that can be
represented precisely in 3-space as half of a closed circular cylinder.
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As o changes, the cylindrical parts rotate in the first solid torus and the discs
move along the second solid torus. The union of the surfaces F, and F, will
be a circular cylinder, and so will F, U F,,, for any a.
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ExampPLE 2. If f(z,w) =z—w, then h(z,w) :ﬁ. Consider a specific
value a =0, so h™'(e") = {(z,w) | h(z, w) is a positive real number}. Since

|z—w| is a positive real number, we want

Fo = {(z,w) | z—w is a positive real number}.

Note first of all that F, meets the flat torus only when ¢ —¢'® is a positive

real number t.

It follows that ¢ = ¢'® + ¢, ie. the positive horizontal ray from ¢'® meets
the circle again at ¢'®. This can occur only when ¢ = n—0 and n/2 < @ < 37/2
so 0<0<mn?2 or 3m2 <0 < 2n

(9, 27) ‘ (e, 2m)

,0) (amo)

Now we may ask as well for the intersection of F, with a disc {(re®, e'®)}
for some constant ¢, . As above, there will be a segment of values re® with
re’® = e'® + t for ¢, in the interval n/2 < ¢, < 3n/2, and no locus at all
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outside of this interval. Similarly for a fixed 0,. we have F, meeting {(e',
pe'®)} in a segment if and only if 6, is in one of the intervals 0 < 0, < /2
or-3m/2 < 0y:< 2m

Note that each of the segments in a disc of the solid torus has one endpoint
on the segment where F, meets the flat torus and the other endpoint on the
curve K ;. Thus F, meets each solid torus in a ruled surface with horizontal
segments with endpoints on two helices, 6 = ¢ and ¢ = 0.

If we consider h™'(a) for a # 0. again we get a ruled surface in each solid
torus with one endpoint on the helix K ; and the other on the helix ¢ =n + 2a-0.

As o changes. the leaves move up one solid torus and along the other. For
example, if « = —7n/2, we have F,, meeting the flat torus when ¢’ -~ ¢? is ima-
ginary of the form ¢, t < 0.
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This locus consists of all points on the helix ¢ = 2n—0, with 0 <¢ < =,
and the ruled surfaces in each solid torus have segments with one endpoint
on this helix and the other on K. In each case, the surface F, is topologi-
cally a disc with K, as boundary.

EXAMPLE 3. If f(z,w) = z> —w?, then h(z, w) = z* —w?/(|z2 — w?|), so h™ 1(0) =
{(z,w) | z2 —w? is a positive real number}. The surface F, meets the flat torus
when e*? = ¢ + ¢ for some positive real number t. It follows that 2¢ =
n—20 + 2nm, so ¢ =(2n + 1) /2 -0.
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Also we must have 7/2 < 2¢ < 3n/2, so n/4 < ¢ < 3n/4 or Sn/4 < @ < Tn/4.

A

The intersection of F, with the disc ¢ = ¢, in the solid torus will be the set
of points {(re”, ¢'*)} with r?e?® = ¢2% 4 ¢ and this consists in two arcs
whenever /2 < 2¢, < 3r/2, except that for 29, = 27, we have r2e?® =¢ + 1,
for t > 0, and this occurs whenever 6 = n/4, 3n/4, 5n/4, or Tn/4. This is the
only case where F, meets the center curve of the solid torus, when ¢, = 0 or 7.
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The intersection of F, with the solid torus (re', ¢'®) then consists of a pair
of saddle-shaped discs with two boundary edges on K, and two on Fyn
(S; x S,). The same configuration occurs in the other solid torus, so that
the entire boundary of the set F, is K.

We can determine the topological nature of the surface F, by computing
its Euler characteristic. There is a natural cell decomposition of the surface
with four open 2-cells given by the discs in the solid tori, eight vertices, and
twelve edges on the flat torus. The Euler characteristic is then 8 — 12 + 4 = 0.
Since K, is a curve with two components, it follows that the surface F, is
topologically a cylinder.

Note that F, U F, will be a union of two cylinders, giving a torus.

EXAMPLE 4. In the case f(z,w) = z> —w?, the O-locus K, is a single curve,
and h™(0) = {(¢”, €'®) | €% = ¢'2® + ¢ for some positive ¢} consists of points
where 30 = n—2¢ + 27n, and where n/2 < 29 < 3n/2 so n/4 < ¢ < 3n/4 or
Sn/d < ¢ < Tn/d.

In the solid tori we get different phenomena since z and w appear unsymme-
trically in the defining equation f. In S; x D,, we have three surfaces each
with four edges, as in the previous example, but for a disc § = 6, constant
in D; x S,, we have 30, =n + 2nn—2¢ so 2¢ = (2n + 1) 736, and we
must have 0 < 360, < 7/2 or 3n/2 < 30, < 2n. For such 6,, the intersection
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of the disc with F, consists of three arcs, except when 30, = 27mm, when
the intersection consists of three straight lines through the central curve of
Dyt 085

In this example, we have a cell decomposition with five 2-cells, eighteen 1-cells,
and twelve O-cells, giving an Euler characteristic of 12—18 + 5 = — 1. The
surface is then a torus with one disc removed, and the closed figure formed
by taking F, U F, is a surface of characteristic —2 and genus 2.

Similarly we may analyze the fibres F, for the complement of a knot f(z, w) =
zP—w? We get a surface F, with p + g 2-cells, 2pq 0-cells, and 3 pq 1-cells,
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giving Euler characteristic 2pg—3pg+p+q=—pq+p+q=1—(1—p) (1— q).
If we denote the greatest common divisor of p and g by m, then the surface
F, and be considered as a closed surface of Euler characteristic 1 (1 - p)(1 —g)
+ m from which m discs have been removed. In any case, the union of F,
and F, will be a closed surface of Euler characteristic 2 —2(1 - p)(1—g) and
genus (1-p)(1-q).

REMARK. We may deform the bicylinder boundary outward along radial
segments to the 3-sphere S3(\/§) of radius V/i so that the flat torus remains
fixed. The images of the surfaces constructed above in the bicylinder boun-
dary with approximations of the surfaces obtained by intersecting ¥, with $3,
and in particular they have the same topological properties. In this way the
simpler geometry of the bicylinder boundary leads to a better understanding
of the intersection with S of loci related to functions f(z, w).
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