A Generator Theorem for Flows*

ERNST EBERLEIN**

Let (Q, &, m, (T,),.x) be a flow on a Lebesgue measure space. We call a
partition = = {P;| jeJ} of Q into measurable sets a generator of finite type
(for (T)),cg) if (1) there is a ty € R such that = generates under T, , (2) for every
P; there is an a; > 0 such that every orbit entering P; will stay there during a
time-interval of length at least a;, (3) orbit-pieces of finite length intersect

only a finite number of the P; (for a more formal definition see [1]).

This concept of generator for flows has shown its usefulness in [1], [2]. We
prove the following theorem.

THEOREM. Let (Q, &, m, (T,),.g) be an aperiodic flow on a Lebesgue measure
space with finite entropy h((T)),.g). Then there exists a (countable) generator of
finite tvpe ¢ having finite entropy H(o).

We remark that the real number ¢, # 0 such that o generates under T; can
be prescribed in advance.

The theorem above was proved by Ornstein [2] under the additional as-
sumption that the flow is mixing. The new result will come out from a com-
bination of Ornstein’s proof with ideas developed in [1], where we showed
the existence of countable generators of finite type for aperiodic flows in the
absence of considerations of entropy.

1. Preliminaries. We repeat only some of the notation of [1]. For two coun-
table measurable partitions 7, y we denote by d(r, y) the distance given by
the measure of the symmetric difference. If Be % is a set with m(B) > 0 and =
a partition one of whose elements is EB (the complement) then we say: = is
a partition on B.
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Examples of such partitions are the partitions
nnB={PnB(Pen). B
induced by a 7 on sets B with m(B) > 0. If I is an interval of finite length

|1, B = Qand we B, then we write T;w for the finite orbit-piece {T,w |t I},
and we define

(B, w) =sup {s>0|3] = R, Gel, |I| =s and Tw = B}

and

I(B) = in{; (B, w).

Then I(P)) is the sup of all possible a; occurring in (2) in the definition of a
generator of finite type.

" Every aperiodic flow is proper (see [1!) and therefore can be represented as
a flow under a function. An essential part of our proof is lemma (2.4) of [1].
It reads

LeEmMA. Let (M, £, m, (T)),.g) be an aperiodic flow under a function, t, > 0,
ard (&,)nens €ns1 < €m & > 0 a sequence converging to 0. Then there are sets
R, € % and nonnegative integ rs N,, L, (neN) such that

(1) mR,) <e, (neN)
(2) the sets T,, R, (—N, < i < L,) are disjoint and
L,
m( Z ’I;!o Rn)>l_8n (nEN)

i=—Nn
3) R"f\R",:g (n:/_-m)

@ KR) = to, K[R) > (N, + Lo, (5 R) > 1627 (neN)

ReMARrk. The inductive cc astruction shows immediately that R,, L,, N, do

not depend on ¢, (m > n) and N, can be chosen arbitrarily large.
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2. Proof of the theorem. (1) First we note the following (see [2]), using the
fact that an aperiodic flow has a representation as a flow under a function:
If = is a countable partition such that H(r) < oo, then for any ¢ > 0, there
exists a finite partition #’ = {P}, ..., P,} such that H(z') < 2H(n), d(n, ') < ¢,
I(P}) >0 (1 <i< n), and there exists a partition p such that H(p) < ¢ and
TANRIPH DT

(2) Let t, # 0 be given. Then T,  is an aperiodic discrete-time transformation
with finite entropy h(T;)). Thus — by Rohlin’s theorem ([3]) — there exists a
countable generator = = {P,, P;, ...} for T, having finite entropy H(n).
We fix © and some ¢ > 0.

We choose ¢; > 0such that the following holds: if 7 is a partition with d(t, 7) <
< ¢,, then there exists a partition p’ such that t v p’ o n and H(p') < &
Let n be sufficiently large so that

n—1

(a) n"tHON Towym) — W(T, m) <271,
k=0

and

(b) —t logt— (1—1¢) log(l —¢t) < 27! te[0, n7 Y.

We choose R, € ¥ and integers N,, L, according to the lemma above.

We can assume that N, > n, and denote

Ly
n(N,, Ly) = \/ T,

i=-N;

Ly
D, —_—Q\ Z T,y Ry,

i=—N,
71 = {Dy, Ty Ry (= Ny <i < Ly)}

and v = {Q}, i.e. v is the trivial partition. Then the following equation holds:

L,
Y, HmN,, L)n T, R |va T, R) =

k=—N1
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Ly
= z [H(N,, Ly)~ T,,, Ry) — Hv N T, R})] =

k=ZN;
= H(n(N,, L,) v v,) — H#r(Ny, L;) n D) + H(vn D;) — H(y,).

At least one term of the sum on the left-hand side cannot exceed the right-hand
side divided by N, + L, + 1. We can assume that this is the term given by
k = 0. But

H(n(N,, Ly) v y,) — H(y,) =

Ni+L;
= Hm(Ny, L) | y) < H(\/ Ty, m)

i=0

and
H(v n D,) — Hn(N,, Ly)nD;) <0
and therefore ;
Hi®N Lan R, 1 vo R) <
NitLi
<N, ¥ LS "0 "y ey B e e

i=0
< H(m) + 271,
From m(R,) < n~! follows H(v n R;) < €2~ !, and we conclude
H(n(N,, L))" R)) | < H(n) + ¢

Furthermore we have

L
\/ 7;10 (n(Nla Ll) N Ry) 5 T,

I=-N;
Which means that there is a t such that

Ly
V T;to (n(Np Ll) N Ry) ? T

= —Nl

and d(z, n) < 81; By the choice of ¢,, there exists n; such that H(r,) < ¢ and
t v n; o n. Therefore

L,
V Tl'to [(n(Nu L1) N Ry v 7!1] :_‘J .

l=—N;
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Using (1) we can replace n(Ny, L;) n R, by afinite partition o, = {S],...,S; ,
[R,} on R, such that H(s,) < 2H(r) + 2¢. I(S}) >0 (1 < k < r,) and

0

V Tyl vm)om

l=—-o

(3) We now repeat the procedure in (2), using =, instead of 7 and ¢, instead
of ¢, in order to get a finite partition o, = {S},...,57 , ERz} on a set R,
(disjoint from R,) such that

(a) H(o,) < 2¢ + 2s,,
(b) . I(S3) >0 1<k<r,)
and

(c) There exists a partition 7, such that H(w,) < ¢; and
a0
V Ty (6, vV o, vV ) D1
I="=00

(4) Continuing this process we get finite partitions o, on sets R, (k > 1).

Define ¢ = \/ o, By the disjointness of the R, (n > 1), ¢ is a countable
. k=1

0
partition consisting of the sets S¥ (k >.1, 1 <i < r,) and E( > R,). Since
k=1

K((Y Ry > t,27", we conclude I(S) >0 for all Sea. IR,) =t, (1> 1)
k=1

implies that any orbit-piece of finite length intersects only a finite number of
the R,, each of them consisting of a finite number (namely r,) of elements of .
This verifies (3) in the definition of generator of finite type. Since ¢, (k > 1)
can be chosen such that Y. & < oo we conclude

k=1

H(o) < i H(g,) < .

k=1

0
Furthermore we have \/ T,, o o n, and since = was chosen to be a
I=—o00

generator for T, we are through.
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