Almoét Surely Convergent Versions of
Sequences which Converge Weakly*

PEDRO J. FERNANDEZ
1. Introduction

A.V. Skorokhod established in [5] the following theorem, Let (S, d) be a
complete separable metric space, {u,} n = 1, 2,... a sequence of Borel proba-
bility measures which converge weakly to a probability measure u. There
exists a probability space (Q, ./, P), (which can be taken as the interval [0, 1],
with the Borel g-algebra and the Lebesgue measure on it) and a sequence of

....  on this space taking values in S such that,
the distribution of X, is u,, the distribution of X is u, and such that X, — X
[a.s.P]. This result was extended by Dudley in [2] to the case of separable
metric spaces. In [4] Pyke posed the question of whether this result could
be extended further to the case in which the mode of convergence of the pro-
bability measures is the one used in [2].

This extension was obtained by Wichura in [6]. The purpose of this paper
is to give a different proof of that result by properly modifying the arguments
used by Dudley in [2]. Briefly, the methods used in [2] work in the general
case.

The proof is full of measurability difficulties which seem to be unavoidable.
Theorem 3.2 is an extension of Theorem 3.1. The proof is very close to that
of Theorem 3.1 and therefore only the steps of the proof are indicated. One
could of course prove Theorem 3.2 directy but we have chosen to prove Theo-
rem 3.1 and sketch Theorem 3.2 in order not to complicate the proof even
further with difficulties of a different nature.

The results are stated and proved for the case of sequences of measures. With
the obvious modifications they are valid for nets.

*Recebido pela SMB em 14 de fevereiro de 1974.
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2. Basic Notation and Terminology

Throughout this paper the pair (Q, /) and the triple (Q, <, P) will denote
a measurable space and a probability space respectively. For 4 = Q, I,
will denote the function which takes the value 1 on 4 and 0 in the comple-
ment of A. We write P(A) for the probability of the event A4 € &/, and [fIP
for the integral of an ./-measurable, P-integrable, real valued function f
defined on Q. Let R denote the set of all real numbers.

For f: Q — R we define f* fdP = sup{[gdP : g o/-measurable, g < f, [gdP
is defined} Similarly we define ["fdP. If A = Q we will write instead of [*1,dP
and [, I,dP, p*(A) and p,(A) respectively.

If X :Q— @ and o and &' are two c-algebras in Q and Q respectively
we say that X is ./-/' measurable when for all 4’ € o', X " }(4')e o/. We
will often use the notation [X € A'] to indicate the set X~ !(A).

If (Q, &, P) and (Q, /', P') are two probability spaces P x P’ will denote
the product probability on (Q x Q, &/ x «'). Given (Q, &, P), (¥, «') and
X :Q— Q o — o measurable, we denote by PX~! a probability on
(@, ') defined by PX~'(A') = P(X~'(A’)). We will also use the symbol.
Z(X) for PX~'. Let now (S, d) be a metric space, with distance function d.
Let C(S) denote the set of all bounded real valued continuous functions on
S. We write B, , (resp. B, ) for the open (resp. closed) ball centered at x € S
of radius r > 0:

B,,={yeS:dx. y)<r} B, ={y dx y < r)

For A = S, we let A°, A, 04 and A° denote respectively the complement of A,
the closure of A, the boundary of A and open d-ball {y : y € S, d(y, 4) < 6}
about A. We let # denote the Borel o-algebra of S; this is the o-algebra gene-
rated by the topology induced by d. It coincides with the minimal ¢-algebra
that makes measurable the bounded continuous real valued functions on S.
Let S, denote the g-algebra generated by the balls of S. If the metric space
is' separable then clearly £ = S,

It is easily seen that if K is compact d(-, K) is S,-measurable, from which it
follows that any compact set K € S, and for any 6 > 0 also K°e S, If ¢

is a o-algebra, S, = ¥ < # and p is a probability measure on ¥ we say that

2%

u is tight iff V& > 0, there exists K a compact such that u(K) > 1 — ¢ A4
subset A4 of S is said to be a P-continuity set (P defined on %) iff P(6(4)) = 0.
The class of all P-continuity sets is easily seen to be an algebra.

For basic results and definitions concernin the weak convergence of measures,
the reader is referred to [1] and [3].

3. Almost Surely Convergent Versions of Sequences which Converge Weakly

We pass now to the study of a problem posed by Pyke in [4]. For applications
of this kind of results to processes whose laws converge weakly see also [4].

Let (S, d) be a metric space, # the Borel g-algebra, S, the g-algebra generated
by the balls, {2,},-1.2, . a sequence of o-algebras each of them con-
tainning S, and contained in %, p, a probability measure defined on Z,, 1 a
probability measure on 4. We have the following theorem.

THEOREM 3.1. If u, -°> u and the supportof p is separable, then there exist a
probability space (Q, o, P) and a sequence of random elements  {X,}n=0.1,. .
such that X, is o/ — B measurable, X, is o/ — 9, measurable, (X,) = p,
Z(X,) = p, and X, — X, [as. P].

PrROOF. Let {nk}k=l,2,.,. o {8k}k:l,2,,,, be three
sequences such that 1> #, >0, 1 > ¢ >0, §,>0, 6,—> 0, ¢, — 0 and

.....

Y. n < . Let F be the support of u, (Fe &, uF) = 1).

k=1

Let B, , = {y :d(x, y) < r,} be an open ball such that u(d(B,,, ) = 0 with
r, <&, Since () B,, 2 F and F is separable we can select a countable

xeF
subcovering {B

xn,rx"}n =1,2

If G, =B,

2 Txy

n—1 a0
™
ad'C, = Bl = U B.,,, We have 3 L=
i=1 i

i=1

=8

B, ... = F. Since the class of all sets A such that j4(0(4)) = 0 is an algebra,

n=1
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it follows that u(0(Cj ;) r 0 for all i. Clearly also C; ;€ S, for all i. Select
k

ii, in such a way that u(C; ) > 1 — n, and disregard those C; ;'s such
k k, :
i=1 -

that u(C, ;) = 0. In this form we constructed a family of sets {Cy ;}i=1 2, . i,
i, < i, with the following properties: C, ;N Cy ; = & if i # j, u(Cy ;) > 0,
Ik

u(Cy ) =0, C, ; € Sy, Z w(Cy. ) >1—n and the diameter of C,; is
i=1

smaller than 5, Let Q, =S x [0, 1], n =0, 1,.... Consider in Q, the
o-field # x #' where #' is the Borel o-field of [0, 1] and in Q, n > 1, the
o-algebra 9, x A

Let @ ) =([] O (@ x #) x [] @, x &)

n=0 n=1

Take X, € F and define h: S— S by

x: b e R
Ha i {xo i d P

Ifw = ((xg, to), (x4, t1),...) € Qthen let X (w) = h(x,) and forn > 1 X (w) =
= x, It is easy to check that X, is & — # measurable and X, is &/ — 2,
measurable. Let

Ay i =Cpi Va9

B, = Cgi X [ o, Borid

where o, ,; and B, , ; are determined by the equations:

MCh ) A palCr) = wCy, oy i i

(3.1)
#(Ck, ) A Hn(Ck, )= .un(ck, i)ﬂn, ki
Define Ao =80~ A
i=1
and B, ko = Q, - z B, .
i=1
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Determine n; < n, < ... such that for n > n,

max. ey 3 — u(Ck,i)|<8klr<n_ig_ ucC,
and
min  p,(Cy ;) > 0.

1<i<i

Define k(n) as equal to 1 if n < n, and equalto lifn, < n >n;,,. Let D,

= A, um.: and E, ; = B, ., . 1ii 4 is the Lebesgue meac = on %’ (’eﬁne
o =pu X Aand g, =p, x L on B x % an ive.
Let 4 = D, o

{n:polDn, o) =0}

Notice that D, ;, E, ; and A selong to Sy x # a to (3.1),

Po(Dy, i) = tolAn kiny,)) = Un(Ba, kimy, ) = b,
Also po(D, ;) > 0 for i > 1. LCefine t(wy, n) =i if wy € D, ;, and for w, ¢ A
wwy, n), a probability measure on 9, x # by

(G N En Tlwo, n))

I
Hao, m(G) = B

n,tlwo,n))

Notice that py(E, we.m) = Ho(Dy, wy.m) > 0 because w, ¢ A.

Now define a probability on. ( T[ O, || 2, x %) by
= n=1

n=1

Q for wy e A

[T o, n) for wo g 4

n=1

where Q is a fixed probability measure on ([| @, n 2 X B)).

n=1

We will show now that for all G € [| (2, x #), P-(G) is # x # measu-

n=1

rable. Itisenough to show it for G of the form F; x F, x ... x F, x Q.| X ...
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where F, € 9, x #,i = 1,2,...,n, because this is a semi-algebra of sets which

generates the o-field [] (2, x #)).

n=1

Since PodFy X FgX...x Fox Qoo X..)=
= Le (wo)uwo, 1)(Fy) X ... X plwg, n)(F,) + I4(wo)Q(G)

it is enough to show that for all n u(-, n)(F,) is measurable on 4. But

4 ik(n) ’
Ml Fo O Ep o, n) Ul(F, " E, ;)

by n)(F) = Sl Cudagl Hnlln O Bni) poo
:u )( ) uO(Dn, (. ,w)) i:z() #O(Dn, i) Dy, 1( )

and this equation clearly indicates that u(-, n)(F,) is S, X %' measurable
on A°. Let P be the unique probability on (€, <) such that for Fy € # x #'

and G e ﬁ (@, x &), P(Fy x G) = [g, Po, (Gptodwo).

n=1

We will check now that #(X,) = p and £(X,) = u, for all n. If C € # and
[ ']., indicates the section determined by w,, we have

(3.2) P(X, € C) = [ Poy [Xo € Cl,, oldw,) =
= .[F X011 1 o [Xoe Fn C]wo Holdwy).

If wy = (xp, to) € F x [0, 1], then it is easy to show that [X,e F n C],,

equals [] Q;if x, € F n C and it is empty otherwise. Therefore (3.2) equals
i=1

Hol(F 1 ©) x [0, 1] = u(F n C) = u(C)
which proves that #(X,) = p.
Now to check that £(X,) = p, we proced as follows:
P(X, € C) = [, Puy[X,€ Clutoldw)

=J4c #ao, n)(C x [0, 1])uo(dwo)

k) ./ ;
= f Z ml(C XFE(:’D 1]30 E,.) Lic p, Mo(dwy)
A n,i

c i=0
ik(n)
Y w(C x [0, 1) N E, ) = m(C x [0, 1])
i=0

2aAC)-
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We will show now that X, — X, [as.P].
ik(n)

Since Z us — Z Crmy, ) < Z Himy = Z M < O
p=i = a=t k=1
Ikn)
if B =1lim sup (S — Y, Cym,) x [0, 1]
n i=1

then py(B) = 0.

It is easy to see that if n > n, then

min o,.; A mn B,,;=1-—¢
1<i<i, it 1<i<i, i

If wy ¢ B, wg = (x, t), and t < 1 determine ny(w,) such that Y n > ny(w,),
Li(n)

1 —gyy >tand xe Y Cyy,i- If x€ Cyy,; since
i=1

mln an,kin),i = o Hk(n)’
11 Sipey

(,00 = (X, t) € Ckfn),i X [Oa an,k(n),i) i An,kln),i = Dn, i

This is, for n > ny(w,), we € D, ; for some i > 1.

The result will follow if we prove that for all n, and all a > 0 the set
[d(X,, X,) > a] is measurable and then that

P(lim,sup [d(X,, X,) > Oyn)) = 0.

Let F' be a countable dense subset of F, and (X,, X,) be the mapping which
sends w into (Xy(w), X, (w)). Now

{w 1 d(Xo(w), X, () > a} = {w:dXw), X, () > a} n[X,€F]
= B ou XN 108 ¥) : O P E S5 8 K3, 9) > 8}  (F.x 8)
= (Xo, X! (UF a8

= (Xo, X7 (U ({x} x B,.9)

xeF’

but () ({x} x B,,) €S, x S, (since it is a countable union of sets in
xeF’!
So X Sp)- Since (X, X,)is o — B x 9, measurable and S, x Sy = # x 9,
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it follows that the set [d(X,, X,) > a] is measurable. Now
P(lim,sup [d(Xo, X,) > Oin))

J‘ Pwo (limnsup [d(XOs Xn) > 6kt_n)])wg ﬂo(dwo)
ASNB¢A(F x[0,1))

= J\ Pwo ((llmnsup [d(n(w())» Xn) > 6k(n)]wo)
ASABCn(F x[0,1))

= (TT En.ceop,m)oldede)

n=1

where n(wy) = x4 if Wy = (X, to):

If n > ny(w,) then Wy € D, 110y, ny With T(wg, n) > 1. If (wy, w,,...) belongs to

(limnsup [d(n(wo)’ Xn) > 5ktn)]) N (n En,tf.u)o,n))
n=1

we have wg € D, 1oy and @, € E, ., .. Therefore n(w,) and n(w,) belong
t0 Cimy.eiwo,m Which implies d(m(w,), m(w,)) < Oy, for n > ny(w,). This is

e ]

(lim,sup [d(n(wo), X,) > pm]) N ( E, cioo.n) = &

n=1

which proves the result.

Now let (S, d) and (S, d') be two metric spaces, Sp and Sy the o-algebras ge-
nerated by the balls in S and S’ respectively, {Z,}u=1,2, .. and {Z},=1,2
sequences of o-algebras in S and S’ such that for alln 9, 2 Sy and &, = S,
{ttn}n=1,2. .. a sequence of probability measures where p, is defined on Z,,.
Let u be another probability measure defined on %, the Borel g-algebra of
S,and g: S — S’ be a continuous function such that for all n, g~ Lg c @,
Then g induces a sequence of probability measures {u,g~'}s=1,, . and a

probability ug~' on the sequence of c-algebras {Z,}u=1,2 and on the
Borel o-algebra of S’ respectively. We have the following result.

Seae

e e

1 1

THEOREM 3.2. If u,g~! @ — ug~?' and the support of ng~" is separable, then
there exists a probability space (Q, </, P) and a sequence of random elements
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5 T defined on Q and taking values in S such that X is of — B
measurable, £(X,) = p and for all n = 1,2, ... X, is o — D, measurable,
LX) = m, and o(X,) — g(X,) [asP]

PrOOF. Since the argument follows the one used in Theorem 3.1 we will
only prove those claims which are new or require further argument. Take
sequences {Mi}k=1,2,... . {Okfk=1,2,... and {gli=1,2,... as before.
Let F' be the support of ug™". Let F = ¢~ '(F'). Wehave F € # and u(F) = 1.

- Select xo € F and define h: S — S by

x.  Hf xeF
h(x)z{sco if x¢F

Clearly h is # measurable.

with the following pro-

Now construct as before sets {Ci, i}k=1,2
: o S

perties:
ng~ ' (Ci.) >0, ug~ ' (A(Cy. ) = 0,

ik
Ci,i € S,, diameter of C, ; smaller than 8, and Y pug '(Ci) >1 — 1,
i=1

Define then C, ; = g~ '(C;,,). We have that the sets {Cy, i}x=1,2,...  have
Gl IRRY ix
the same properties as the sets {Ci ifk=1,2,. . the only difference being
i=1: 0000k
that now C, ;e () 2, Define {Q} i=0,1,..., Q and ¢ as in Theorem
n=1

construct 4, , ;, B,  ;, and determine

vtk

3.1. With the sets {C} ;}i=1.,
2 i=1,.

Seee

{Nk}k=1,2.... asbefore. Then define sets{D,, i}n=1,2 and{E, )25

i=0/1,., .., ix i=0,51, 58 i
and probability measures po and {fty}n=1,2, ... . Set A = U s N
{n: uo(Dn,o0) = 0}
Notice that now D, ;, E, ; and 4 belong to (() 2,) x %' and po(D, ) =
n=1
WAE, ). If @ = ((xq, to), (x4, ty), ...) € Q define Xy(w) = h(x,) and for all n
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X,(w) = x,. Finally define 7, u(w,, n) for w, ¢ A, P, and P as in the proof
of Theorem 3.1. With these definitions it follows as in that theorem that
Z(Xo) = n and L(X,) = p,. Define B and for w, ¢ B determine ny(w,) as
before. If (g(X,), g(X,)) is the mapping which sends o — (y(X (), g(X (w)))
then the following formula is easy to check

[d(g(X,), 9(X,) > a] = (g(Xo), g(X,)" (U ({x )]

xeF’

where a > 0 and F' is a countable set dense in F. This equality shows that
[d'(4(Xo), g(X,) >a] e /. We have to show that

P(lim,sup [d'(a(X,), a(X,)) > dy]) = O.

The proof of this equality is the same as the corresponding one in Theorem
3.1 provided we replace X,, X, and d by g(X,), y(X,) and d' respectively.

REMARKS. Theorem 3.2 could prove useful for example in situations in which
the function g determines the convergence in S, in the sense that x, — x(x,
and x € ) iff g(x,) — g(x). This is equivalent to the following: &, Z Oy
iff' 6, g1 ot 8,9~" where §,, for ve S, denotes the probability measure
which concentrates all its mass at the point v (5({v}) = 1). Theorem 3.2
says, that what is true for sequences of points is true for sequences of measures

if we assume that the limit measure has separable support. Because if x, 2

then g™ ' S ug™'. I g™ ! % pug=! we construct by Theorem 3.2 a se-
quence {X,}n=o, 1, . such that #(X,) = u, #(X,) = u,and such that g(X,) —
— g(Xo) [as.P] which in tu n implies w, = Z(X,) — L(Xo) = u

Let (E, ||-||) be a separable, reflexive Banach space such that there exists a
countable family of continuous linear functionals {y;}x=1, 2. [vie]] <
such that ||x|| = sup|<x vy |,andiif||x,|| — ||x||, and forall k {x,, vk>——+

— (%, ¥ then [|x, — x|| — 0. By defining »(x) = (||x||, {x, v,).,..
g: E— R™, it is possible to use our result to prove that if a sequence of

probability measures is such that p, || ||~ 2, — u||"||”* and for all veE

s = w
#ay~' — py~! then p, — p
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This application was suggested to me, in a personal communication, by
Professor P. Bickel.
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