On an Existence Theorem of Grunwald's Type*

JURGEN NEUKIRCH

Let k be a number field, S a finite set of primes of k and k the completions of k at the primes $p \in S$. Then the existence theorem of Grunwald-Hasse-Wang asserts:

If $K_{\mathfrak{p}} \mid k_{\mathfrak{p}}$ are given cyclic extensions, $\mathfrak{p} \in S$, then there always exists a global cyclic extension $K \mid k$ having the local extensions $K_{\mathfrak{p}} \mid k_{\mathfrak{p}}$ as completions for $\mathfrak{p} \in S$. In this note we prove.

THEOREM. If $K_{\mathfrak{p}} \mid k_{\mathfrak{p}}$ are arbitrary (solvable⁽¹⁾) galois extensions, $\mathfrak{p} \in S$, then there always exists a solvable galois extension $K \mid k$ having the given local extensions $K_{\mathfrak{p}} \mid k_{\mathfrak{q}}$ as completions for $\mathfrak{p} \in S$.

PROOF. It suffices to prove the theorem in the case that $K_{\mathfrak{p}} = k_{\mathfrak{p}}$ for all but one prime \mathfrak{p} of S. The general case is obtained from this in the following way: For every $\mathfrak{q} \in S$ let $K^{(\mathfrak{q})} \mid k$ be a solvable galois extension whose completion is $K_{\mathfrak{q}}$ at \mathfrak{q} and is $k_{\mathfrak{p}}$ at $\mathfrak{p} \neq \mathfrak{q}$. Let K be the composite of the $K^{(\mathfrak{q})}$, $\mathfrak{q} \in S$. The completion of K at \mathfrak{p} is then the composite of the completions of the $K^{(\mathfrak{q})}$ at \mathfrak{p} , $\mathfrak{q} \in S$, and this composite is in fact $K_{\mathfrak{p}}$.

Let now $K_{\mathfrak{p}} = k_{\mathfrak{p}}$ for $\mathfrak{p} \neq \mathfrak{q}$. We first prove the theorem in the case that the galois group $A = G(K_{\mathfrak{q}} \mid k_{\mathfrak{q}})$ of $K_{\mathfrak{q}} \mid k_{\mathfrak{q}}$ is cyclic of prime degree p, that there even exists a global cyclic extension $K \mid k$ of degree p. Let G resp. $G_{\mathfrak{p}}$ be the absolute galois group over k resp. $k_{\mathfrak{p}}$, i.e. the galois group of the algebraic closure \bar{k} resp. $\bar{k}_{\mathfrak{p}}$. If we imbed \bar{k} into $\bar{k}_{\mathfrak{p}}$ we obtain $G_{\mathfrak{p}}$ as a subgroup of G by restricting the automorphisms of $\bar{k}_{\mathfrak{p}}$ to \bar{k}

^{*}Recebido pela SBM em 25 de abril de 1974.

⁽¹⁾ Note that every local extension $K_{\mathfrak{p}} | k_{\mathfrak{p}}$ is solvable.

We now look at the diagrams

where $\psi_{\mathbf{q}}: G_{\mathbf{q}} \longrightarrow A = G(K_{\mathbf{q}} \mid k_{\mathbf{q}})$ is the canonical homomorphism and $\psi_{\mathbf{p}}$ is the trivial homomorphism for $\mathbf{p} \neq \mathbf{q}$. The problem is then to find a homomorphism $\psi: G \longrightarrow A$ with $\psi \mid G_{\mathbf{p}} = \psi_{\mathbf{p}}$ for all $\mathbf{p} \in S$, since the fixed field K of $Ker(\psi)$ then obviously has the required properties. Hence it suffices to prove the surjectivity of the map

$$Hom(G, A) \longrightarrow \prod_{\mathfrak{p} \in S} Hom(G_{\mathfrak{p}}, A)$$

Viewing A as a G-module with trivial G-action, this can be written

(1)
$$H^{1}(G, A) \longrightarrow \prod_{\mathfrak{p} \in S} H^{1}(G_{\mathfrak{p}}, A).$$

Now by the duality theorem of Tate and Poitou (cf. [3]) we have the exact sequence

$$H^1(G,A) \longrightarrow \prod_{\mathfrak{p} \in S} H^1(G_{\mathfrak{p}},A) \times \prod_{\mathfrak{p} \in S} H^1(G_{\mathfrak{p}},A) \longrightarrow H^1(G,A')^*$$

where $A' = Hom(A, \bar{k}^*)$ is the dual G-module of A and X^* denotes the Pontrjagin-dual of X. A moment's reflection shows that the map (1) is surjective if the map

$$\prod_{\mathfrak{p}\in S}H^1(G_{\mathfrak{p}},A)\longrightarrow H^1(G,A')^*$$

is surjective. Going over to the dual map and identifying $H^1(G_{\mathfrak{p}},A)^*$ with $H^1(G_{\mathfrak{p}},A')$ by the local duality theorem we have to prove the injectivity of

$$H^1(G, A') \longrightarrow \prod_{\mathfrak{p} \in S} H^1(G_{\mathfrak{p}}, A').$$

$$1 \longrightarrow \mu_p \longrightarrow \bar{k}^* \stackrel{p}{\longrightarrow} \bar{k}^* \longrightarrow 1$$

yields the exact cohomology sequence

$$k^* \xrightarrow{p} k^* \longrightarrow H^1(G, \mu_p) \longrightarrow H^1(G, \bar{k}^*)$$

in which $H^1(G, \bar{k}^*) = 1$ by Hilbert's theorem 90. We therefore have $H^1(G, A') = k^*/k^{*p}$ and analogously $H^1(G_{\mathfrak{p}}, A') = k^*/k^{*p}_{\mathfrak{p}}$, i.e. we have to prove the injectivity of

$$k^*/k^{*p} \longrightarrow \prod_{\mathfrak{p} \in S} k_{\mathfrak{p}}^*/k_{\mathfrak{p}}^{*p}.$$

Let $a \in k^*$ such that $a \in k^{*p}$ for all $\mathfrak{p} \notin S$. Let ζ be a primitive p-th root of unity and $k' = k(\zeta)$. We then look at the extension $k'(\theta) \mid k'$, where θ is a root of $x^p - a = 0$. Since $a \in k^{*p}$ for $\mathfrak{p} \notin S$ this equation splits totally over almost all completions of k', i.e. almost all primes of k' split totally in $k'(\theta)$. By Kronecker's density theorem we obtain $k'(\theta) = k'$, i.e. $\theta \in k'$. Since the degree [k' : k] is prime to p we have moreover $\theta \in k$, i.e. $a \in k^{*p}$ q.e.d.

Now let $K_{\mathfrak{q}} \mid k_{\mathfrak{q}}$ be an arbitrary galois extension. The proof in this general case will be by induction over the degree $[K_{\mathfrak{q}}:k_{\mathfrak{q}}]$. If $K_{\mathfrak{q}}=k_{\mathfrak{q}}$ we can take K=k. Otherwise, the solvable extension $K_{\mathfrak{q}} \mid k_{\mathfrak{q}}$ contains a subextension $L_{\mathfrak{q}} \mid k_{\mathfrak{q}}$ which is cyclic of prime degree p. We have already shown that there exists a cyclic extension $L \mid k$ of degree

$$[L:k] = [L_{\mathfrak{q}}:k_{\mathfrak{q}}] = p$$

such that $L_{\mathfrak{Q}} \cong L_{\mathfrak{q}}$ and $L_{\mathfrak{P}} = k_{\mathfrak{p}}$ for $\mathfrak{p} \neq \mathfrak{q}, \, \mathfrak{p} \in S$. Here \mathfrak{Q} denotes the (only) prime of L above \mathfrak{q} and \mathfrak{P} is any prime of L over \mathfrak{p} , while $L_{\mathfrak{Q}}$ resp. $L_{\mathfrak{P}}$ means the completion of L with respect to \mathfrak{Q} resp. \mathfrak{P} . Let S be the set of all primes of L lying above S. Since $[K_{\mathfrak{q}}:L_{\mathfrak{q}}]<[K_{\mathfrak{q}}:k_{\mathfrak{q}}]$ we can assume by induction that there exists a solvable galois extension $K_1 \mid L$ such that

$$K_{1}_{\mathfrak{Q}^{1}} \cong K_{\mathfrak{q}} \text{ and } K_{1}_{\mathfrak{P}^{1}} = L_{\mathfrak{P}} \text{ for } \mathfrak{P} \in \overline{S}, \ \mathfrak{P} \neq \mathfrak{D},$$

where \mathfrak{Q}_1 res. \mathfrak{P}_1 is any of prime K_1 over \mathfrak{D} resp. Now let K_1, K_2, \ldots , be the conjugates of K_1 over k and K their composite. Then $K \mid k$ is a solvable galois extension. Let $\widetilde{\mathfrak{D}}$ resp. $\widetilde{\mathfrak{P}}$ be a prime of K above \mathfrak{q} resp. $\mathfrak{p} \neq \mathfrak{q}$, $\mathfrak{p} \in S$, and let \mathfrak{Q}_i resp. \mathfrak{P}_i be the prime of K_i under $\widetilde{\mathfrak{D}}$ resp. $\widetilde{\mathfrak{P}}$, $i=1,2,\ldots$ Then

$$K_{\widetilde{\mathfrak{Q}}} = \prod_{i} K_{i \mathfrak{Q}_{i}}$$
 and $K_{\widetilde{\mathfrak{P}}} = \prod_{i} K_{i \mathfrak{P}_{i}}$

Let σ_i be an automorphism of K such that $\sigma_i K_i = K_i$, $i = 1, 2 \dots$ The isomorphism $\sigma_i^{-1}: K_i \longrightarrow K_1$ maps the prime $\mathfrak{P}_i = \mathfrak{P} \mid \sigma_i K_1$ of $\sigma_i K_1 = K_i$ onto the prime $\mathfrak{P}'_1 = \sigma_i^{-1} \mathfrak{P} \mid K_1$ of K_1 . Therefore we have in case $\mathfrak{P}/\mathfrak{p}$, $\mathfrak{p} \neq \mathfrak{q}$,

$$K_{i\mathfrak{P}_i} \cong K_{1\mathfrak{P}_1}$$

and consequently $K_{i\mathfrak{P}_i}\cong K_{{}^1\mathfrak{P}_1'}=L_{\mathfrak{P}'}$ $=k_{\mathfrak{p}}$ where $\mathfrak{P}'=\mathfrak{P}_1'\mid L$, i.e. $K_{\widetilde{\mathfrak{P}}}=k_{\mathfrak{p}}$. Analogously we have

$$K_{i\mathfrak{Q}_i} \cong K_{1\mathfrak{Q}_1}$$
 , where $\mathfrak{Q}_1' = \sigma_i^{-1} \, \mathfrak{\tilde{Q}} \, \big| \, K_1$.

Since $\mathfrak Q$ is the only prime of L over $\mathfrak q$ we have $\mathfrak Q_1' \mid L = \mathfrak Q$, i.e. $K_{i\mathfrak P_i} \cong K_{1\mathfrak Q_1'} \cong K_{\mathfrak q}$ for every i, and this yields $K_{\mathfrak Q} = \prod K_{i\mathfrak Q_i} \cong K_{\mathfrak q}$, which proves the theorem.

REMARK. Although the above theorem seems to be a very far reaching generalization of Grunwald's version, it is actually not very profound. The original formulation of Grunwald's problem requires the additional condition

$$[K:k] = l.c.m. [K_{\mathfrak{p}}:k_{\mathfrak{p}}]$$

for the degree of the cyclic extension $K \mid k$. With this additional requirement the cyclic problem is unsolvable in a special case (which does not occur if the degrees $[K_{\mathfrak{p}}:k_{\mathfrak{p}}]$, $\mathfrak{p} \in S$, are odd). The correct formulation of the general existence problem should be the following:

Let $K_{\mathfrak{p}} \mid k_{\mathfrak{p}}$ galois extensions with galois groups $G_{\mathfrak{p}}$, $\mathfrak{p} \in S$, G a finite group and $G_{\mathfrak{p}} \longrightarrow G$ imbeddings. Does there exist a galois extension $K \mid k$ satisfying the following conditions:

1) $K_{\mathfrak{p}} \mid k_{\mathfrak{p}}$ are the completions of $K \mid k$ at the primes $\mathfrak{p} \in S$.

It is known that the answer is positive in the case that $k = \mathbb{Q}$ and G is nilpotent of odd order (see [1]).

LITERATURE

- [1] J. NEUKIRCH, Über das Einbettungsproblem der algebraischen Zahlentheorie, Inventiones math. 21, 59-116 (1973).
- [2] J. NEUKIRCH, Eine Bemerkung zum Existenzsatz von Grunwald-Hasse-Wang, J. reine angew. Math. 262/263. (1973).
- [3] G. Poitou, Cohomologie galoisienne des modules finis, Paris, Dunod 1967.

Universität Regensburg Regensburg Germany