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1. If M is a smooth closed simply connected manifold and oM —M
is a diffeomorphism, then the mapping torus S 'xoM is a smooth mani-
fold which carries some information about the diffeomorphism ¢. Thus
we may expect to obtain a homomorphism from 7,Diff(M) into some
cobordism theory via the mapping torus construction. A technical pro-
blem arises in that the mapping torus construction does not produce a
map S'x,M — X into some space X which act as the base space of
the cobordism theory. One way to circumvent this problem is to study
pairs (¢, h) where ¢: M — M and h is a homotopy from @ to the identity.
Then the mapping torus construction produces a map S'x,M — M,
and we obtain a homomorphism-with-indeterminacy(one to many)from
noDiff * (M) to, for instance, the oriented bordism group Q. (M); here
n = dim M and n,Diff" (M) is the group of isotopy classes of diffeomor-
phisms of M homotopic to the identity.

Instead of noDiff* (M), we will study m,Diff\(M), the group of isotopy
classes of difftomorphisms M -2» M which are regularly homotopic to
the inclusion when restricted to a neighborhood of a A-skeleton of M.
In this case, the mapping torus construction produces a homomorphism-
with-indeterminacy 7oDiffA(M) - Q, . 1(v,), where v,: X, — BSO is the
fibration such that M — X, 4 BSO is the A-th Moore-Postnikov facto-
rization of the normal classifying map M — BSO, and Q,(v;) is the
Lashof cobordism theory associated with that fibration. More precisely,
we construct a certain group D*M) toghether with an epimorphism
D*M) — moDiffM) and a homomorphism D*(M) £ Q,+1(v;). Then our
main theorem is the following.

n+3

THEOREM. For n > 6 and 1 > [ :l there exists a short exact se-

quence of groups
Ly+2(1) - DM) £ Q,(v;)—S Ly 4(1).
*Recebido pela SBM em 26 de marco de 1975.
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Here Li(1) is the i-th Wall group of the trivial group; if “concordance”
is substituted for isotopy, and (M) is assumed only to satisfy

WH(ri(M)) = Ko(Z[n:(M)]) = O,

one expects the same theorem. The sequence of the theorem is a surgery
exact sequence, but the surgery involved differs from ordinary surgery
in that the target space is not a Poincaré duality space — it merely has
a “top class” which induces a Poincaré isomorphism only in the middle
dimension. It turns out that this weak Poincaré¢ duality property suffices
for the theorem.

To contrast the groups m,DiffY(M) and n,Diff " (M), here is an example:
Let r be even and > 4. Then K. Wang’s trick [4] with the usual surgery
exact sequence shows that 7oDiff*: SU(r) is isomorphic modulo finite

2
groups to ), H*(SU(r)). On the other hand, for any 1 > %

above shows that moDiffA(SU(r)) is finite. That is, almost every diffeo-
morphism of SU(r) homotopic to the identity is non-trivial near any
2

the theorem

>
7—skeleton.

For another application of the theorem consider the homotopy behavior
of meDiff"" M) for M simply connected, s-parallelizable and n > 6.
Since each representative is homotopic to the identity on M-pt., the only
non-trivial homotopy behaviour occurs in the top cell. This behavior
is completely described by a homomorphism-with-indeterminacy
O: nyDiff*" (M) — m,(M). In the case that, in addition, n = 2I with
[ # 0 mod 4, an argument based on the theorem shows that the sequence

noDIff" ™ (M) & (M) — my(M)
is exact in the obvious sense, when 7,(M) — (M) is stablization.
From now on dimM = n > 6 and n;(M) = 1 always.
2. Weak Poincaré Duality Spaces. We will need to surger maps of mani-
folds into spaces which are not Poincaré duality spaces. However, these
spaces will be sufficiently like Poincaré duality spaces to enable us to

carry over the machinery of surgery.
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DEFINITION. A weak PD space of dimension n is a pair (Y, y), where
Y is a space, ye H,(Y) and

F%d 1)

yn:H —s.H . (Y)

[3]
is an isomorphism. A map f:M — Y of a closed oriented n-manifold
M will have degree 1 into (Y,y) if f,[M] = y, where M is the orientation
class of M. The map f is normal if it is covered by a bundle map of a normal
bundle of M to some vector bundle over Y. For a normal map f of de-
gree 1, we may define the simply connected surgery obstruction o( f) € L,(1)
algebraically as in [1]. If 7,(Y) = 1, then o(f) = 0 iff, there is a surgery
from f to f': M’ — Y such that a fibration homotopy equivalent to il
has its fiber [gr]-connected. For pairs, we have the corresponding si-

tuation:

DEFINITION. A weak P.D. pair of dimension n is a triple (Y, Y, y) with

n+1
y€H,(Y,Y’) such that y n: H[T](Y, Y) — H_ _(Y)isanisomorphism.
If f:M,0M — Y,Y  is a map of a oriented i-manifold M,0M with
orientation class [M,0M], we say f has degree 1 if f,[M,0M] = y.
For f normal of degree 1 we may define the surgery obstruction a( /) L,(1)
algebraically again. Then if 7,(Y) = 1 and f|0M:0M — Y’ is a homo-
topy equivalence, o(f) =0 iff f/ may be surgered mod boundary to
n

J'*M’,0M" — Y, Y’ such that the fiber of /": M’ — Y is [?]-connected.

Now suppose that M is a simply connected oriented smooth n-manifold.
Let M — BSO be a classifying map for its oriented normal bundle and

M ’ M

\J

a commutative diagram with_M — BSO a fibration and i: M — M a
homotopy equivalence. Let. M 4> X -% BSO be the A-th stage in the
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Moore-Postnikov factorization of M — BSO; that is, the fiber of M -4 X
is A-connected and the last possibly non-zero homotopy group of the
fiber of v is ;. Then S!' x M 2*4 S' x X "¢ BSO is the A-th Moore-
Postnikov stage of S' x M — BSO. Let [S'] be the orientation of S*

and suppose 4 > Bl . Then (S* x X, [S'] % g.1.[M]) is a weak PD
2 KUk

space. More generally, we have the following proposition.

PROPOSITION 1. ([S'] x gute[M]) n: H(S' x X) — H,+1-«S* x X)
is an isomorphism for n + 1 -2 < i < . It is a monomorphism fori = A + 1
and an epimorphism for i = n—A. '

However, we have many more weak PD spaces associated with S! x X,
PROPOSITION 2. Let x€ H,+1(X). Then for n + 1 -1 < i < 4 the map
([S*] x gutx[M]) + 1 x x) n: H(S* x X) — H,y1-(S* x X)

is an isomorphism.

PROOF. Write y = ([S'] X g4tx[M] N, so we have to show that
94 (1 x xyA: H(S* x X) — Hyo 4S8 x X)

is an isomorphism for n + 1-1 <i < A Let pr:S! x X — X be pro-
jection on the second factor, and let j: X — S! x X be the standard
inclusion. Let Se H'(S') be such that S N [S'] = 1. Set A’ = pr*H(X)
and B' = § x H1(X). Then H(S' x X) = A'® B'. Set

An+1—i = j*Hn+1—i(X)

and B,y =[S'] x H,—X). Then H,;_(S' X X) =Bt 1-; ® Aps1-;
and y: A" — B, _; is an isomorphism-call it § — and y: B — A, _;
is an isomorphism — call it . Then y(a, b) = (B(a), (b)) for (a, b)e A' ® B'.
Define S: A' — A,+1-; by S(y) = 1 x (x N y), so that

(y + (1 x x) n)(a, b) = (B(a), «b) + S(a)).
But then ;
¢+ 1 xx)n)" (b, a) = (BB o (a -SSP (D),

and the proposition is proved.
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3. The Mappng Torus Construction. As above we have the commutative

diagram
F
/
M ! M F
g
X F’
v
BSO

with F the fiber of v . g, and F’ the fiber of v, and F” the fiber of both g
and F — F'. We may assume that M — BSO is the Gauss map of an

embedding of M in Euclidean space, and we assume 1 > [n ; 2]'

Let ¢:M — M be a diffoomorphism and
hi(I x M* 1 x M%) — (I x M,I x M)

a Eegular homotopy from the inclusion of some regular neighborhood
M? of a Z-skeleton of M to ¢ | M*. Then h defines an immersion

H:S' x M* — S' x .M

into the mapping torus of ¢. Let v, :S' x , M — BSO be any Gauss
map extending 1 x M — M — BSO. Thus we obtain the diagram

SEXM*U1lx McS! x M5 St x M

l H U incl. 1 dxg
St xo M St x X
U(P ‘ Uop}"z
BSO
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which commutes up to homotopy mod 1 x M. The fiber of vopr, is
S! x F" and n(F’) = 0 for i > A. Thus

HH St xa M. S' s MUl x Mimg(St,x F) =10
for all i and HYS X , M, 8! x M*U 1 x M:m(S* x F)) =0 for all i
But then there is a unique lift S' x , M — S' x X of v, making the
diagram

SIx M*UlxM—S'x M

i |

S'xoM — St x X

commute up to homotopy mod 1 x M. Let t:S' x,M — X be any
such lift; the orientations of S* and M determine an orientation [S' x , M]
of S* x o M. Then t,[S' x ,M] = x(¢,h) is an element of H,:(X) in-
dependent of the choice of v, (subject to the condition that ve|1 x M
be the composition 1 x M -4 M -4 X %> BSO). Similarily t represents
an element t(¢p,h) of the (n + 1)-st Lashof cobordism group Q,.(v),
independent of the choice of v, . In the same way again,

t[S' x yM]eH,+1(S' x X) and (@, h)€Qyi1(vopra)

are independent of the choice of v,, where t'(p, h) is the element of
Q,+1(v o pry) represented by any t. However, we may say a little more.
Let j: X — S* x X be the standard inclusion as above. Then the commu-
tative diagram of fibrations

QRN LRV

U\\ K VoDpr3

BSO
induces a map j,:Q,+1(0) — Q4 1(vo pra).

PROPOSITION 3. i) t[S! x o M] = ([S'] X gutx[M]) + (1 x x(¢p, h)).
i) t'(p, h) = I + jut(p, h), where 1 €Q, 1 1(vo pr,) is the cobordism class of
the composition

ShsM LA g1 « M 4§ % X,
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PROOF-. Clearly ii) implies i). To prove ii), we replace X by a sufficiently
high dimensional skeleton, but still call it X, and we replace v by a k-plane
bundle ¢ for k sufficiently large. Let Pry :Qui1(vopry) — Q1 1(v) be the
map induced by the commutative diagram of fibrations

Ix X —22, x

S
Vopr, \ /v
BSO

By the Thom transversality theorem, we may replace the sequence
Q,+1(v) 2, Qu+1(v o pra) 25 Q, 4 1(v)
with the sequence

Tn+ 1 +:(T(E)) — w1 (TS x &) — i 24+(T(E))

of stable homotopy groups, where T denotes Thom space, the map
T(&) — T(S' x &)isinduced by the vector bundle inclusion 1 x Ec St x ¢
and the map T(S' x &)— T(¢) is the map of Thom’s spaces induced by
the map of vector bundles S* x ¢ — ¢ However, the cofibration sequence

T(1 x ) — T(S' x & — ST(®)

induces a long exact sequence in stable homotopy groups, which DTy
above splits. Thus we have a short split sequence,

0 —Qi(0) 2 Quisvopra) 5 Q) — 0,
where T(x) is obtained geometrically by choosing a representative
f:T — 8" x X transverse along 1 x X; then T(x) is represented by
/71 x X) — X. Then T(t(e, h)) is represented by M —> M 4 X as is
T(I), so T(¢(p, h)) = T(I) = T(I + j4t(p, h)). On the other hand, by defi-
nition pryt'(e, h) = t(p, h). But pr, I = 0, and the proposition is proved.

4. The Groups D(M, M'l) and D(Mi). To each pair (p, h) consisting of
a diffeomorphism ¢: M — M and a suitable regular homotopy h, we
have associated an element t(¢p, h)eQ,, ;(v). We would like ¢ to be a
homomorphism, and indeed it is. We begin by defining the domain of ¢:
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We let M be a smooth closed n-manifold and M* a smooth regular neigh-
borhood of some A-skeleton of M. Set

DM, M*) = {(¢,h)| p: M — M is a diffeomorphism,
hilx M* I x M*»—1x M,Ix Mis
an immersion s.t. (h(0, x) = (0, x) and
h(1, x) = (1, o(x)) for all xeM*}.

Then define D(M, M*) to be the quotient set of D(M, M*) by the equivalen-
ce relation (@, h) ~ (Y, k) iff. there is a pair (@, H) such that
OMxI, MxI—MxI, MxI

is a diffeomorphism with ®(x, 0) = ((x),0) and D(x, 1) = (Y(x), 1) for all
xeM, and

H: IXM*XLIXM*XLIXxM*x1 —IxMxIIxMxI,IxMxI
is an immersion such that H(t, x, 0) = (h(t, x), 0),
H(t, x, 1) = (k(t, x), 1), H(0, x, t) = (0, x, t),
and
H(1, x, t) = (1, ®(x, t))

for all xe M* and teI. We will denote the class of (¢, h) by [, h]. We
define an operation

DM, M*) x D(M, M*) <= D(M, M*)

as follows: For o, f € D(M, M*) we may choose representatives o € [¢, h]
and = [y, k], such that h(t, x) = (t, ¢(x)) for ¢ near 1 and k(, x) = (t, x)
for t near 0. Then ((p x 1) ok + h)(x, ) = h(x,2t)fort < and= (¢ x 1)-
o k(x,2t—1) for 4+ <t defines an immersion

(@ x Dok +hIxM IxM —IxM IxM

such that (¢ x 1)o k + h)o is the inclusion M* = M and (¢ x 1)ok + h),
=@oy. Set aoff=[@oth, (¢ X 1)ok + h]. Then - is a well-defined,
associative map. The map o has a two-sided identity e = [1, const.].
Define r(t) = 1 -t and rev(h) = (r x id)o ho(r x id). For a= [, h] define
{o=[¢ "¢~ " x 1)orevh]. Then { is well defined and clearly a o (o =
= {aoa = e so that D(M, M%) is a group.
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Now we have t: D(M, M*) — Q,, 1(v), which clearly factors through the
quotiente map D(M, M*) — D(M, M*) to define t: D(M, M*)— Q, . 1(v).
We could prove directly that ¢ is a homomorphism, but it is convenient
to introduce another group D*(M) at this point, and to show that ¢ factors
into two homomorphisms 7 and f,

DA(M)
T
t

DM, MY —- Q.1 (0).

As we shall see, DY(M) is a more “canonical” version of D(M, M*) inde-
pendent of the choice of regular neighborhood M*.

As with D(M, M%), we begin with a set

D M) = {(p,])| @: M — M is a diffeomorphism,
I:S' x M — X is a lifting of a
Gauss map S' x , M such that
1|1 x M =goLoprs}.

We introduce an equivalence relation ~ defined by (¢, lo) ~ (¢4, 1) if
there is a concordance ®: M x I — M x I from ¢, to ‘¢ , and a lifting
L:S* x4 (M x I) — X of a Gauss map, such that 1) L| S x, (M x 0) = ¢,
and L|S' x,(M x 1)=¢,, and 2) L|1 x M x Ego1opr,. Then the
relation {((¢, h), (¢, t(p, h))|(p, hye D(M, M*)} is compatible with the
two equivalence relations ~ and =, and on passing to the quotients
D(M, M*) and D*(M)= D*M)/ ~, it defines a map 7: D(M, M*) — D*(M).
A map f:D*M).— Q,+,(v) is obtained by factoring through the quo-
tient map D*(M) — D*(M) the map D*(M) — Q,, (v) which assigns to
(¢, I) the Lashof bordism class of I. Clearly t = f - 7. To define the product
xoy of two elements x,ye DYM), let (¢o,lo) represent x and (¢, , 1)
represent y. The complex.

ST X oM x 0)U (M x I) U S* x o, (M x 1),

where 1 x M x 0 is glued to M x 0 by the identity and M x 1 to
1 x M x 1 by the identity, is a strong deformation retract of the manifold

F=S1 X(¢0xid)M X [*I,O:IU(S};_ X M x I)USl X(‘Plxid)M X [1,2]
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which is glued in the same way, with S L the right half circle. Then Gauss

maps may be chosen, and a lift
L:S'XxooM x0) UM x I)US! xo;(M x 1) > X

such that L restricted to S* x¢, M is Iy, restricted to S Uxoy M itis Iy,
and restricted to M x T'itis M x I 2> M - M -4 X. Let S% . be the
part of S* in the first quadrant. Then L may be extended to

S xgeMx0UlxMxIuSi, x M x

éuSlxwlMx1=T

so that the restriction to 1 x M x TUSL . x M x % is

1xMquS1++xMx%ﬂ—>M—'+M—g>X.

Then that lift may be extended to all of I':

IxM
S X oM //'

S x oM
S’ ATWA\[ T N

Then the outer boundary of I is S x ¢, M for some diffeomorphism ¢, ,
the lift L restricts to I, : S! x 9, M — X, and by choosing the identifica-
tions correctly, we have that I |1 X M = go1opr,. Then we set x oy =
class of (¢, ,1,), and we leave to the reader the verification that - is an
associative map. Since 7 is epimorphic, we will know that DXM) is a
group as soon as we know that 7 is a homomorphism. And since (I', L)
is a cobordims from (S! X oo M, lo) LI (S X o, M, ;) to (S* x ¢, M, I,), it
is clear that f is already a homomorphism.
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PROPOSITION 4. 7:D(M, M*) — D*M) is a homomorphism.

PROOF: Let K be the displayed subset of the plane:

We obtain a manifold with boundary by starting with K x M and iden-
tifying as the above picture suggests.

Let Z be the resulting manifold; we will have canonically

0X = Sl X (o]\4 H_Sl XwAl JJ_SI X(polﬂ M.

We obtain another manifold from K x M* by identifying with identity

maps instead. Let Ybe the resulting manifold. We may fill in to immerse Y
in Z as the following picture suggests:

id x id

) Jixo -\ (
szq} k+l\\r’ |

1/_.~

Z
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There is a canonical map Y U *xM — M, where « is a suitable point
of 0K, so that we have a homotopy commutative diagram

YU*SKXM — > M

Z X

%3
N lv
BSO

and the obstructions are zero to lifting the Gauss map v, to a map Z — X,
making

Y—— M

bic at o

Z—X

homotopy comute. But the lift Z — X then restricts to the lifts
S'xyM — X, S' xy M — X, and S' x oy, M — X defining t(q, h),
(Y, k), and (on the outer boundary) t(e oy, (1x @)ok + h). Thus
Upoh, (1 x @)ok + h) = (e, h) - T(Y, k), and the propostion is proved.

Finally, D*(M) is not quite the group we want. The group we want will
correspond to the term hy (M x I,0) in the surgery exact sequence, and
we have not yet “divided out by the diffeomorphisms.” One way to do
so is to divide by #%(M) = D*M), the subgroup represented by lifts
I:S' x M — X of the form | = Iy -, where [, : S x M — X is a fixed
lift extending to a lift D> x M — X, and y ranges over all diffeomorphisms
Y:S' x M — S' x M which carry 1 x M — 1 x M by the identity
map. An alternate description is

HHM) = {[1,[]eDAM)|1:S*' x M — X extendes to a lift
L:T' — X of a Gauss map, where
OI' = S' x M and the inclusion
1 x M cT is a homotopy equivalence}.

Using the pictures in the proof of proposition 4, it is straightforward to

check that #*(M) is a normal subgroup of DA(M). Set DA(M)= DX M)/#'*(M).
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- the sequences

Clearly #4(M) is in the kernel of B: DAM) — Q,,(v) so that j factors
thus to define f:

eSS
= Qui1(v)
DHM) %

Let  be 7 followed by the quotient map D(M) — D*M). Thent = f o1
as we sought.

5. The Surgery Exact Sequence. Let L;( ) be the j-th Wall functor. Our
next objective is to define a homomorphism Q,,(v) % L,. (1) such that

D(M’ Ml) _t> Qn+ 1(1)) - Ln+1(1)
and
DA(M) £ Q,+1(v) = Ly 1(1)

are exact.

Let € Q,4(v) be represented by the lifting I' - X of the Gauss map
vr: I' — BSO. Then the inclusion j: X — S' x X gives us the element
Js2€Qyi1(vopry) represented by jo f, and (jo f)[I'] =1 x z with
z € H,+1(X). Recall that we have a homotopy equivalence i1: M — M and
fibration g: M — X. The map id x go-1:S* x M — S' x X represents
the element [id x go1], and (id x go1)[S' x M] = [S'] x gu1.[M].
Thus [id x g o1] + j,o represents an element of Q, (v - pr,) with homo-
logy characteristic class [S'] x g41,[M] + 1 x z. Now

(8 x X, [$'] x gutu[M] + 1 x 2)

is a weak PD space and

S'x MIT idx(goy) 1 x f Sl X

is a normal, degree one map. There is a surgery F;: A; — S! x X
from this map to f; : 9*A; — S' x X such that f; is homotopy equiva-
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lent to a fibration with [n ; 1]71 -connected fiber. We may assume

that the surgeries all miss 1 x M; that is, the first takes connected sum
of S* x M with I', with the “hole” in S! x M off 1 x M, and all thereafter
may be assumed to take place on the I'-side of a sphere that originally
separated “I"” from “S' x M”. For that reason, and because

fii0TA - St x X
has degree one, the kernel of

n[n_J%1 (0TA) — n[n_?](S
is free abelian on a generating set represented by a finite bouquet of sphe-
res. By attaching cells to these spheres, we obtain a Poincaré Duality
space P{ and a factorization

1'x X)

f+
At A s Pl SV 30 X

with f{ a normal degree one map. Notice that we already have a homo-
topy equivalence 1 x M — 1 x M < P;{ so that the only obstruction
to surgering f{ to a homotopy equivalence is the simply connected
surgery obstruction o(f{)e L, (1) = L,.(J), where J is the infinite
cyclic group. We set o(f) =a(f{), and the following proposition tells
us that a(f) is well defined.

PROPOSITION 5. If F, : A, — S! x X is another surgery as above from
idxgolﬂle to f2:5+A2—>S1><X

with <[n ; 1] 1>-c0nnected fiber, then o(f{) = a(f7).

PROOF. We may glue the two surgeries along id x g o1 LI 1 x fto obtain
acobordism F: A — §' x X fromd*A; L5 §' x X to9*A, L S x X.
But F may be factored through the map

(A;0%Ay,0*Ag) = (P; Py, Py),

where P{ and P3 are obtained by adding cells along spheres as above,
and P=AuUP{ UP,*. Then G is a cobordism of degree one in the
sense so that o(f{) = o(f7), and the proposition is proved.
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PROPOSITION 6. 0:9Q,41(v) — L,+1(1) is a homomorphism.

PROOF. Suppose we have f; : I'; — S' x X and f,: T, — S' x X
representing elements of O, ;(v.) Recall that the surgery A above started
by connected-summing S* x M and T, and continued by surgering only
on the I'-side. Let A; and A, be two such surgeries starting with

idxgolﬂlx fi

St x MIT; St x X,

for i=1 and 2 respectively. Then we may construct a new surgery
Ay« A, by starting with

S'x MIIT, IIT, idxgo1 Il x f1 11 x f, S'x X,

connected-summing I'; and I', to S' x M, and then performing the
surgeries of A; on the I'y-side, and the surgeries of A, on the I',-side.
Then A; = A, leads to

#
6+A1 *AZ = 5+A1 ]\#,; @+A2 ﬁ e f2 Sl X X,

where the connected sum is taken along M in the obvious sense. On the
other hand, there is a surgery A, as above, starting from

§1 % MTIT, T, B Gobllji'# j, on.

m
and leading to 6+A12ﬁ> S' x X with [n ; 1}» 1 J-connected fiber.

By gluing these two surgeries along their common base, we obtain a
bordism A 5 S x X from f{ 3 f3 to f{,. Now, the composition
A5 S' x X 5 St is transverse to 1€S?, with inverse image I x M.
Cutting along this inverse image we obtain a manifold A with lateral
boundary I x M 111 x M, bottom boundary - A = 0" A,, = result of
cutting 0" A, along0 x M x 1,and top boundaryd"A = 07 A, 7 0A, =
result of cutting 07 A; # 0A, along 1 x M. Let 0" A, and 0 A, be the
results of cutting 0*A; along M for i = 1 and 2 respectively. Then we
see that 0"A = d*A; U 0% A, where the component M x 1 of the lateral
boundary of 0*A; is canonically glued to the component M x 0 of the
lateral boundary of 0¥ A, .The sphere bouquets representing the kernels of
B el P ES L X X
i e =
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fori = 1,2 and 12 give rise to bouquets B;, B, and B, , with B; < int0*A ..

Then P; = 07A; U CB; is the Poincaré Duality pair obtained by

cutting along M the Poincaré Duality space P; of the definition of a(f;).

And then, according to Shaneson [2], the simply connected surgery
+

obstruction o(f;) of 6*A; — P, is the surgery obstruction of 0TA

M x {0,1} — P;, M x {0,1}. Let Q = dA U P; U P, U P,,. Then
C(A50-A AT X M x {0,1)) —> (Q; Prg, Py U Py I x M x {0,1})

is a degree one map of 4-ads, and by the usual addition theorem [3] we
see that o(f1) + o(f2) = a(f12). But v o(fi2)=0(f; 1 f,), so

a(f1) + o(f2) = a(f; U f,),

and the proposition is proved.

n+1
2

D(Ma Ml) - Qn+1(U) =5 Ln+ 1(0)

PROPOSITION 7. For n > 6 and n > J > [ }, the sequences

and

DA(M) L Qn+ 1(1)) s Ln+ I(U)
are exact.
PROOF. Since D(M, M*) — D*M) is an epimorphism, it suffices to
prove the second sequence is exact. According to proposition 3,
U@ h] =1 + jut[o,h] = [id x go1] + jxt[@. h]. But t'[¢, h] is repre-
sented by a map ¢":S' x , M — S' x X with [%—]-:,-connected fiber.
Thus o(t[¢, h]) = 0 and Image (t) < ker(o).
Now we have to show that ker(c) Image(t). Suppose f: I — X repre-

sents an element o of Q,  ;(v) such that o(x) = 0. Then there is a bordism
F:A— S!' x X from :

SA=S'xMnrdxgadlx foof 'y

to 0A L5 ' x X with ':n -5 1]—connected fiber. We may suppose that
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0*A L5 8! x X is transverse along 1 x X, with ' xX)=M
and f*|M = go1 Thus, there is a simply connected manifold 4 with
0A=M x 0IIM x 1 and 6* A obtained by gluing (x, 0) to (¢(x), 1) for

x€M. Moreover, H{A, M x 0) = H(A, M x 1) =0 for i < [n —;— 1] SO

2
Thus 07A = S* x , M for some diffeomorphism ¢: M — M.

H(A,M x 0) = H(A,M x 1) =0 for i > l:i] +1 and A=M x I.

Since the composition I x M = §' x M — S' x X — X is homotopy
equivalent to g o1, it follows that the fiber of f* is A-connected. Then
in the following diagram

I xM* < S'x,M
: J/*

S'x MAY— S' x X,

the obstructions are zero to finding S* x M* —s §! x o M making the
top triangle commute and the bottom one homotopy commute. But then
S' x M* — 8! x, M is a normal map, and by Hirsch’s Immersion
Theorem we may, up to homotopy, assume it is given by an immersion
St x M* — §' x, M such that 1 x M* — 1 x M by the inclusion.
But then this immersion determines an immersion

h:IxM'ﬂfo'*—»IxM,I.xM

such that ho=inclusion and h; =¢|M* And now it follows that
STi0TA — S* x X represents t(¢,h) = I + jst[@, h). But f* already
represents I + j,o S0 j,a = j t(p, h), and since j, is 1-1, & = (@, h). The
proposition is proved.

Finally, we would like to add one term to the second surgery exact se-
sequence above. Let a € L, 5(1). Then « is represented by a normal degree
one map(P, 0P) — (D"*2, §"*!) which is a homotopy equivalence on the
boundary. There is a diffeormorphism ¢, : D" —» D", identity near S" !,
and unique modulo concordance fixed near §"~1, such that the diffeo-
morphism ¢, : §" — S" it determines produces 9P via the pasting cons-

143



truction. The diffeomorphism ¢, determines a diffeomorphism Oy M — M
in the same way — extension by the identity outside some smooth D" = M.
We may assume D"n M* = ¢, and we set du = [ ¢, , const.]. Then
0: Ly+2(1) — D*M) is a well-defined homomorphism.

THEOREM. For n > 6 and n > A > [n ; 3], the following sequence is

exact:
sl 2(1) - DA(M) £ Q.+ 1(0) et 01 1(1).

PROOF. We havg only to check exactness at DX(M). To see that 1 o & = 0
notice that (S* x M) # 0P = §' x 4, M, and that D" n M* = ¢ gives us

St x M*
Jincl. fncl,

(S' x M) # 0P = S x0,M —— S' x M = (S! x M) # §"*1,

a commutative diagram, so that f(dx) is represented by

(S'x My# 0P — St x M 22, pp 9°L
which bounds (D?> x M) # P — D? x M — X.

)

Now suppose f[¢,[] = 0. Then the lift I:S! x oM — X extends to a
lift L: T — X for some manifold I" with oI" = S1 X ¢ M, and we obtain
the commutative diagram

g = §* ><¢,ML>S1 x X
N Ni
F—L—>D2xX

where I'=(pry,l) and L' = ({,L) for some extension (:T — D? of
:0I' — S'. The short exact sequence

O—»H,,+2(D X X,8" x X) 2> Hoy 4(S* x X) 4% H, . (D? x X) — 0
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gives us OL [T, 0I'] = [S'] x gu1,[M] + 1 x x for some
XEHn+1(X) = Hn+1(D2 X X)

But i, 0L,[I',0I'] = 0 and i ([S'] X gu1[M] +1 x x) = x, so x = 0.
On the other hand

(D x M,S* x M) 24921, (p2 » ¥ 51 x X)

has d(id x go1),[D* x M,S' x M] = [S'] x g,1,[M] so
(id x go1)[D* x M,S* x M] = L,[T,oI'].

Now, using 4 > [#jl, it is easy to check that
. 2 1 [%_3] 2 1 2
(id x go1)4[D* x M, S' x M]n:H D*xX,S8'xX)—H (D*x X)

[+57]

. 2
is an isomorphism. By assuming, as we may, that I' %> X has [n ; ]~ 1

-connected fiber, we see that the surgery obstruction o(L)e L, (1) to
making the fiber [n i 2]—connected is defined. Let @ = o(T) and consider

[@.[] o (o)™ ". First, B([, ] (@x) ") = 0-0 = 0. Second, [¢,] = 1[¢,h]
for some regular homotopy h, so

[, .00 = (o, h].[@s ", rev (const.)]) = 1[@. 0, ", h],
and we obtain the commutative diagram

gt =i
Slx¢oq];1]\4t_[(’iﬁu,glx)(
N N
| —£—>D2xx,

where I'y = I' # P for a suitable parallelizable manifold, such that

o(L}) = 0. Thus we may assume that the fiber of L] is [ 2]—connected

+
2
We may embedd I x MinT'; sothat 1 x M 41 x Mand 0 x M —
int I'y . Using this'embedding, the fact that L} is [*$2]-connected and the
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relative s-cobordism theorem in the simply connected case, we obtain a
diffeomorphism T';,dl;,1 x M — D? x M, S! x M, 1 x M which is
the identity on 1 x M. It follows immediately that ¢ - ¢, ! is concordant
to the identity, so that [¢ ., ', h] = [1,h].

This is the point at which we need D*(M) instead of the more attractive
D(M,M*): We have a commutative diagram
i S
IxM— 51 x M
N g

BB 6

N v

Ly

N —— > Dp?x X

St x M

with 1 x M — T a homotopy equivalence. It follows that (1,£(1, h)) re-
presents the identity element of D*(M); that is, t[1, h] = 1, which implies
Lo, ] = <[@,h] = 1[¢,, const.] = du, and the theorem is proved. On the
other hand, in D(M, M*) we have no guarantee that [Uh]=1,
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