On Completion and Shape*
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Dedicated to the memory of Carlos B. de Lyra.

O. Introduction. The purpose of this paper is to bring together two con-
cepts which appear in current work in algebraic topology, namely com-
pletion and shape. In [4] the completion of an object Yin a category 7
with respect to a functor h: .7 — .o/ was discussed and in [5] it was
generalised to the completion with respect to a family S of morphisms
in 7, and a close relationship between global S-completion and idem-
potent triples was established. In [8] Le Van introduced the notion of
shape category for a full embedding K: 2 — 7 between any two cate-
gories # and 7, generalising the notion of shape first introduced by
Borsuk [1] and further developed by many other authors, in the context
of topology.

For the sake of simplicity we shall restrict ourselves to global S—completion
or h-completion, i.e. to the case where every object in . admits a com-
pletion. We also restrict ourselves to considering shape for an embedding
K: 2 — 7 where 2 is a full reflective subcategory of .7, as this situation
is well suited to match with global completion.

In section 1 we condense from [4] and [5] what we need on global com-
pletion. Section 2 is devoted to the notion of shape of a full reflective
embedding K: 2 — 7. We emphasize its connection with the family
of morphisms rendered invertible by the left adjoint F to K and with
the (idempotent) triple T generated by the adjoint pair F - K. Some
of the properties established hold for more general functors K, but we
defer the study of the general situation to a forthcoming paper.

*Recebido pela SBM em 26 de marco de 1975.
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In section 3 we establish the link between completion and shape. If S
is a family of morphisms in .7~ (S may be defined as the family of morphisms
rendered invertible by some functor with domain ) such that S—com-
pletion exists globally, and E: 5 — 7 is the embedding of the full
subcategory consisting of the S-complete objects of 7, it turns out that
two objects X, Yof J have isomorphic S—completions if and only if they
are isomorphic in the shape category of E, i.e. they have the same E-shape.

Section 4 is devoted to examples. Any situation where completion exists
gobally serves as example; we describe a few situations of global com-
pletion.

In the course of the paper we make use of the category of fractions 7 [S™!]
of a category 7, with respect to a family S of morphisms in . If 7
belongs to a given universe, 7 [S™ '] belongs, in general, to a higher uni-
verse. In our case however, the assumption that S—completion exists
globally insures that 7 [S™'] belongs to the same universe as 7.

Everything described can, of course, be dualised: completion dualising
to cocompletion (see e.g. [4] section 2) and shape to coshape [8].

1. Global S-completion. Let 7 be a category and S a family of morphisms
in 7. We denote 7 [S™'] the category of fractions with respect to S and
Fs: 7 — 7[S™'] the canonical functor. As  and 7S] have the
same objects we will use the same symbols for them in both categories.
We assume S to be saturated, i.e. to contain all morphisms rendered inver-
tible by Fg; this immediately entails that S is closed under composition
and contains all isomorphisms in 7.

Given an object Yin 7, we say that Y is S-completable if the contrava-
riant functor I [S7'](—, V): 9 — Ens is representable, i.e. if there
is a natural equivalence t: [S71 (-, V) > J(-, Z). We then call
Z the S—completion of Y, and e = 7(1y): Y — Z the canonical morphism.
Thus, if it exists, S—completion is determined up to canonical isomor-
phism. If e is an isomorphism, we say that Y is S-complete.

Ith: 7 — o/ is any functor, let S be the family of morphism in .7 which
are rendered invertible by h. Then, by Proposition 1.1 of [4], S is saturated.

*The author is grateful to Peter Hilton for valuable conversations on shape theory.
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In this case the S-completion of Y is also called the h-completion of Y,
and one also speaks about h-complete objects.

Throughout this section we assume that every object in 7 is S—comple-
table, which is equivalent to assuming that the functor Fs has a right
adjoint Gg. By Proposition 2.3 of [4] Gs is fully faithful whenever it exists.
GsFsYis then the S-completion of Yand the unit ny: Y — GgFgY of the
adjunction is the canonical morphism. The S-complete objects are preci-
sely those Y for which #ny is an isomorphism. The S—complete objects
generate a full subcategory I of 7 and we denote E: 75 — 7 the
embedding. By Proposition 2.7 of [4] there is an equivalence Q: Z[S~ —
Js with EQ = Gs. The functor L = QFy is left adjoint to E, thus Ty
is a full reflective subcategory of 7. The situation is illustrated by the
diagram

f[S—l] Q g'_g

For later use we collect some facts about our situation in

THEOREM 1.1. If Fs has a right adjoint Gs with unit n and counit ¢ of
the adjuction, then:

(1) S has a calculus of left fractions.

(i) The triple T = (T, n, u) = (GsFs, 1, GseFs) induced by the adjoint
pair Gs — Fg is idempotent, i.e. u is an equivalence.

(ii) nx is in S, for all objects X in F.

(iv) If 7 *0> 7, S%, T s the Kleisli situation of the triple T, then there
is a unique isomorphism of categoriesI: T[S™'] — Iy WithlFs = Fr
and GTI = Gs.

(v) The adjoint pair L < E induces the Triple T of (ii).

(vi) The S—complete objects are precisely those which are isomorphic to
GsFsY, for some Y in 7.
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PROOF. (i) follows immediately from Theorem 2.6 of [4] and (ii) follows
from Theorem 2.2 of [5] as Gy is full.

(iii) follows from (ii) and Proposition 2.1 of 12

(iv) As Fr is onto objects, and T is idempotent, it follows, by Theorem
2.4 of [5], that Gy is fully faithful. But Gg is fully faithful as well, hence
both Fr and Fs render invertible precisely the morphisms in S. The as-
sertion then follows from the universal properties of Fg and Fr, Gr.

(v) follows from Proposition 1.1 of [5] as the functor Q, being an equiva-
lence, is fully faithful.

(vi) If X is S-complete then nyx: X — GsFsX = TX is an isomorphism.
On the other hand if X %> TYis an isomorphism, then Nx = TR it
But this is an isomorphism as uy#ry = 1 where Ux 1s an isomorphism.

REMARK. Notice that [S™!] and 7 have the same objects. Further-
more, for any pair X, Y of objects in 7 one has that 7S~ (X, Y)isin
one to one correspondence with 7(X, TY), thus 7[S™!] and 7 belong
to the same universe.

We have seen that whenever the S-completion exists globally it deter-
mines a full reflective subcategory 75 of 7. On the other hand given
any full reflective subcategory 7' of 7 with embedding E and left adjoint
Lto E, let S be the family of morphisms rendered invertible by EL. The
triple T = (T, n, p) induced by the adjoint pair L — E is idempotent as
E is full. By Theorem 2.4, (i), (iii) of [5] the S—completion exists globally
and the category J is plainly isomorphic to 7.

2. Shape. Let K: 2 — 7 be any functor. The shape category % of
K is defined by:

“% has the same objects as 7
and

S(X, Y) = Nat [7(Y, K—-), T(X, K-)].

The composition in % is simply the composition of natural transfor-
mations. Notice that in general % belongs to a higher universe than 7.
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We denote by D the canonical functor 77 — % defined by DX = X on
objects and by Df = 7 (f, K —) = f* on morphisms. We denote by K’ the
composite K' = DK: 7 — %.

Throughout this paragraph we assume that K is fully faithful and has a
left adjoint F. We write #, ¢ for the unit and counit of the adjunction, and
from Proposition 2.2 of [5] we immediately have:

PROPOSITION 2.1. The triple T = (T, n, p) = (KF, n, KeF) induced by
the adjoint pair F — K is idempotent.

For any X in 7, ny: X — KFX is rendered invertible by D, ie.
¢ Dnx)=n¥: J(KFX, K-) — J(X, K-)

is an equivalence. Indeed, in the commnutative diagram

T(KFX, KZ)« (K)

P(FFX, Z)

T (X, KZ)

of natural transformations (K) is an equivalence as K is fully faithful
and « is the adjunction-equivalence.

As n* is an equivalence; the diagram

FIREY Bl — — —— —— ) - J(KFX, K-)
ny nx
FTE BB =2 avom mmvp o — > JX, K-)

defines a 1-1 correspondence 6
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(@~ nh)

F(X,Y) = Nat [7(Y, K-), T(X, K-)] Nat[7(KFY,K-), 7 (KFX, K-)]

(K) . (K)™

2.1) 0 Nat [Z(FY, —), P(FX, —)]

@

ey <

> AFX, FY)

where % is the Yoneda equivalence. § clearly preserves the composition
of morphisms and the identities. With this we define a functor M: % —2
by

M(X) = F(X) on objects
and

M(w) = O(w) on morphisms,
which is plainly fully faithful.

As K is fully faithful, the counit ¢: FK — 1 of the adjunction F - K
is an equivalence. Thus every object X in 2 is isomorphic to FKX hence
to MKX, which shows that M is an equivalence of categories. A straight-
forward verification shows that MD = F. Thus MK’ = MDK = FK - |

is an equivalence. K'MZ = K'FZ = DKFZ 22 DZ = Z is an isomor-
phism for every object Z in % as shown above. Hence, M is a two sided
adjoint of K'.

Summarising we have:
THEOREM 22. If K: 2 — 7 is fully faithful and has a left adjoint F,
then there is an equivalence of categories M: % — P which is a two-sided

adjoint to K' and satisfies MD = F.

We denote by H the composite KM : % — 7 which is right adjoint
to D as K'F is equivalent to D.

COROLLARY 23. If K: 2 — 7 is fully faithful and has a left adjoint
F, then:
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. K \
D K
F H '
K’ L
P - P s T
M I

(i) The adjoint pair D — H induces the same triple T on I as K — F does
(and this triple is idempotent by Proposition 2.1).

(ii) The functors T, F and D render invertible the same family S of mor-

phisms in 7, and S is saturated and has a calculus of left fractions.

(i) If 7 ™= 7 %2> T is the Kleisli situation of T, then there is a unique

isomorphism of categories I': Sy — I3 withI'D = Fy and KI' = H.

(iv) The functor Fs: I — J[S™'] has a right adjoint Gs; the adjoint

pair Fs — Gg induces the triple T of (i), and there is a unique isomor-

phism of categories I: Iy — T[S~ '] with IFy = Fs and GsI = Fr.

The situation is illustrated by the diagram:

Gs
Fs
T Ts ]

1
equiv. iso iso

PROOF. (i) holds by the same argument as (v) of Theorem 1.1.

(i) T, F and D render invertible the same family S as T= KF, F = MD
where K and M are fully faithful. S is saturated by Proposition 1.1 of [4]
and has a calculus of left fractions by Proposition 2.5 of [4].

(iii) Y and Z; both have the same objects as 7. Thus we define I’ to
be the identity on objects. Furthermore % (X, Y) %> 2(FX, FY) %
J(X,KFY) = 7; (X, Y),where 0 is as in (2.1) and « is the adjunction-equi-
valence, is a 1-1 correspondence which carries the composition of mor-
phisms in .% to the one in ;. Thus we define I’ on morphisms by
I'(f) = al(f). I'isclearly an isomorphism satisfying I'D = Frand KI' = H.
It is unique with this property as its inverse is uniquely determined by
the universal property of the Kleisli situation.

(iv) The fact that Fy has a right adjoint Gs and that Fg < Gg generates T
follows from Theorem 2.4 of [5] as T is idempotent. The rest follows
from Theorem 1.1, (iv).
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REMARK. As the functor F has a right adjoint, by the remark in Section 1
T[S™'] belongs to the same universe as 7. But by (iii) and (iv) of the
corollary, % is isomorphic to Z[S™'], thus .% belongs to the same
universe as J .

From Proposition 3 on page 245 of [9] we infer that, whenever K: P — T
has a left adjoint F with counit e: FK — 1, then any functor Q: P — 4
has a right Kan extension Q = QF along K with universal transformation
Qe, and this Kan extension is preserved by any functor. Coming back
to our situation we have the following statement about functors with
domain 7 : -

PROPOSITION 2.4. Suppose that K is fully faithful and has a left adjoint
F,and let P: 7 — o/ be any functor. Then the following are equivalent:
(i) P renders invertible the morphisms of S rendered invertible by F and D.

(ii) P admits a (unique) factorisation P = PD.
(i) P is a right Kan extension of PK along K.

PROOF. (i)« (ii) by Corollary 2.3 (iii), (iv) and the universal property
of Fs.

() = (ili). nx is in S for any X in .7 by Proposition 2.1 (iii) of [5], thus
Pn: P — PKF is an equivalence. But PKF is a right Kan extension
of PK along K, and so is P.

(iii) = (ii). If P is a Kan extension of PK along K then there is a natural
equivalence P — PKF thus P renders invertible the elements of S as
F does.

Given any functor K: 2 — 7, K establishes an equivalence relation
in the class of objects of 7. More precisely

DEFINITION 2.5. Given a functor K: 2 — 7 we say that two objects
X, Yin 7 have the same K-shape or that they are K-shape equivalent
if DX and DY are isomorphic in % .

Shape equivalence is clearly an equivalence relation. Notice that equi-
valence in 7 implies shape equivalence, and that the two equivalence

154

relations are the same if and only if K is codense. (Proposition 2 on page
242 of [9)).

3. Shape and Completion. Let h: J — &/ be a functor, S the family
of morphisms rendered invertible by h. As in section 1 we assume that
S-completion exists globally and denote by E : 75 — 7 the embedding
of the S-complete and by L its left adjoint. By Corollary 2.3 (iii), (iv) the cano-
nical functor D: J — % renders invertible precisely the morphisms
148y

PROPOSITION 3.1. If two objects X, Y in  have the same E-shape,
then hX is isomorphic to hY.

PROOF. By Proposition 2.4, h factors as h = hD, hence DX =~ DY
entails hX = hY.

Notice that the isomorphism hX —s hY above is the image under h of
a morphism in % , but in general not the image under h of a morphism
in 7.

DEFINITION 3.2. We say that two objects X, Yin 7 are h-quisocon-
nected if there are morphisms X *> Z < Y in S§.

By Theorem 1.1 S has a calculus of left fractions, thus two objects X, Y
in J are quisoconnected if and only if they satisfy the apparently weaker
condition: there is a finite string

XSI'SZ‘SR' ‘S"Y

of morphisms in S.
PROPOSITION 33. Let h: 9 — o be a functor, S the family of mor-
phisms rendered invertible by h. Suppose that the S—completion exists

globally. Then two objects X, Y in I have isomorphic S—completions if
and only if they are h—quisoconnected.

PROOF. If X and Y have isomorphic S—-completions, then there is an
isomorphism ¢: GgFsX — GgFsY, and in X s GgFsX & GyFsY
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4= Y, ¢nx and ny are in S by Theorem 1.1 (iii). If X and Y are h-quiso-
connected and X - Z «— Yare morphisms in S, then (GsFst) ™! o GgFss:
GsFsX — GgFsY is an isomorphism.

The classification of the objects of 7 as given in Proposition 3.3 can also
be expressed in terms of shape, thus bringing together the notions of
completion and of shape.

THEOREM 34. Let h: I — o be a functor, S the family of morphisms
rendered invertible by h. Suppose that the S-completion exists globally
and denote by E : Jg — T the embedding of the firll subcategory Js of 7
generated by the S— complete objects. Then two objects X, Y in  have
isomorphic S-completions if and only if they are E-shape equivalent.

PROOF. Suppose that X and Y have isomorphic S-completions. Then
they are h-quisoconnected by Proposition 3.3. But D renders invertible
the morphisms in S, hence DX and DY are isomorphic. On the other
hand let ¢: DX — DY be an isomorphism. Then H¢: HDX — HDY
is clearly an isomorphism, but by Corollary 2.3, (i), (iv) HD =~ GgFs.

From Propositions 3.1 and 3.3 and Theorem 3.4 one infers immediately
that hX is isomorphic to hY whenever X and Y are K-shape equivalent.
In general it is not true that X and Y are shape equivalent whenever hX
and hY are isomorphic. However we have

PROPOSITION 3.5. Under the same hypotheses as in Theorem 3.4, if
S+ X — Yis a morphism in T, then the following are equivalent :
() h(f) is an isomorphism;
(i) GsFs(f) is an isomorphism, i.e. f induces an isomorphism on the comple-
tions of X and Y;
(ii) D(f) is an isomorphism, i.e. f induces a shape-equivalence between X
and Y.

PROOF. Evident, as h, Fs and D render invertible the same family S of
morphisms and Gy is fully faithful.

4. Examples. Adams completion. Let 7 be the category whose objects
are the based CW-complexes and whose morphisms are based homotopy

156

classes of base-point preserving maps. Let h be a generalised additive
homology (or cohomology) theory on 7 taking values in the category
of graded abelian groups. Let S be the family of morphisms in 7 which
are rendered invertible by h. Then in [3] 4. Deleanu shows that the
S-completion exists globally, provided that for every object Yin  the
subcategory Sy of (Y | T) consisting of morphisms in S has a small cofinal
subcategory. If K is the embedding of the full subcategory generated by
the S—complete objects, then two objects have isomorphic S-completions
iff they are K-shape equivalent iff they are h—-quisoconnected.

Cochain homotopy. Let A be an abelian category with enough injectives,

K (A) the category of positive cochain complexes over 4 and homotopy
classes of cochain maps. Denote h: K*(4) — A%+ the _cohomology
functor and S the family of morphism of K *(4) rendered invertible by h.
Then by Lemma 4.6 of [6] every object X in K *(A4) admits a map s:
X — Xsin S, where X; s consists of injectives. It turns out thit X is the
S-completion of X .

Localisation theories provide examples of completions. Often a locali-
sation theory is defined in the following way: Given a category 7 and
a family P of primes one defines a notion of P-local object in 7. A mor-
phism e: X — X, is said to be P-localising if X is P-local and for every
morphism f: X — Ywith Y P-local there is a unique morphism f” such
that

commutes. This determines (e, Xp) up to canonical isomorphism. If
every X in J has a P-localising morphism, the object-function X — X,
extends to a functor LL: J — 7, where % is the full subcategory of 7
generated by the P-local objects. The couniversal property of e entails
that L is left adjoint to the embedding E: 9, — Z with counit e of the
adjunction. The pair (L, e) where L = EL is then a P-localising theory.
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By the comment at the end of section 1, a localisation theory gives rise to
global S—completion with respect to the family S of morphisms rendered
invertible by EL. Furthermore the P-localising functor L= EL and
the S-completing functor GsFs:  — 7 are equal by Theorem 2.4,
(i), (iii) of [5]; the two adjoint pairs even generate the same triple.

Two localisation theories have recently been studied in great depth [7].

Nilpotent groups. Let A" be the category of nilpotent groups and P a fa-
mily of primes. A nilpotent group G (or any group) is said to be P-local
if x — x", x € G, is bijective for all n prime to P. The fundamental theorem
on page 7 of [7] then states that there is a P-localisation theory. The
family S of the corresponding completion consists of the P-isomorphisms,
i.e. of those homomorphisms ¢: G — K whose kernel consists of ele-
ments of finite order prime to P and have the property: for any ye K
there is an n, prime to P, such that )" is in the image of ¢.

Nilpotent spaces. A connected CW-complex X is said to be nilpotent
if m1(X) is nilpotent and operates nilpotently on r,(X) for every n > 2. A
nilpotent CW-complex X is said to be P-local (where P is a family of
primes) if 7,(X) is P-local for all n > 1. Let A" be the homotopy cate-
gory of nilpotent CW-complexes. Theorem 34 of [7] then asserts that
every X in A" admits a P-localisation, i.e. that there is a P-localisation
theory on A"##. The family S of the corresponding completion are those
morphisms ¢ in A" for which 7,(¢) is a P-isomorphism for all n > 1.

Bousfield-Kan R-completion. [2] For a discussion of the Bousfield-Kan
R-completion of groups and simplicial sets we refer to the examples in
section 4 of [5].
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