Pre-Zariski Topology*

MORIKUNI GOTO⁽¹⁾

Dedicated to Professor Carlos B. de Lyra.

1. Let $\mathbb R$ denote the field of all real numbers. Results on algebraic groups over $\mathbb R$ play important roles for Lie groups. However, when we use theorems of algebraic groups to study Lie groups, sometimes the unnaturalness of the Zariski topology in $\mathbb R^n$ causes some inconvenience. For example, the multiplicative group $\mathbb R^+$ of positive reals is not algebraic in $GL(1,\mathbb R)=\mathbb R-\{0\}$, although it is the connected component of an algebraic group. The concept of pre-algebraic groups was thus introduced for convenience, see e.g. Goto-Wang [1].

In this note, we shall show that the concept of pre-algebraic groups comes from a topology of \mathbb{R}^n , which we call pre-Zariski.

- 2. Unless specified otherwise, we consider $\mathbb{R}^n = \{(a_1, \ldots, a_n); a_i \in \mathbb{R}\}$ with respect to the usual euclidean topology. Let $\mathscr{E} = \mathscr{E}(n)$ and $\mathscr{L} = \mathscr{L}(n)$ denote the totality of closed sets, and the set of all algebraic (= Zariski closed) sets, in \mathbb{R}^n , respectively. Then $\mathscr{E} \supset \mathscr{L}$ and \mathscr{L} satisfies the following chain condition: for $Z_1, Z_2, \ldots, \in \mathscr{L}$,
- (*) if $Z_1 \stackrel{\neg}{\neq} Z_2 \stackrel{\neg}{\neq} \dots$, then the sequence is finite.

Let Z be in \mathscr{Z} . Then Z is known to be locally (arcwise) connected and every connected component of Z is open (and closed) in Z. Hence, every open and closed subset of Z is a union of connected components, and conversely, any union of connected components is open and closed in Z. Also, the number of connected components of Z is finite, by Whitney [2].

^{*}Recebido pela SBM em 26 de março de 1935.

⁽¹⁾Partially supported by grant \simeq NSF GP 439401.

Let us denote by $\mathscr{P} = \mathscr{P}(n)$ the totality of $P \subset \mathbb{R}^n$ which is open and closed in some $Z \in \mathscr{Z}$. Obviously, $\mathscr{E} \supset \mathscr{P} \supset \mathscr{Z}$.

3. First we given lemmas:

LEMA 1. If P_1 and P_2 are in \mathcal{P} , then $P_1 \cap P_2 \in \mathcal{P}$.

PROOF. Suppose that P_i is open and closed in $Z_i \in \mathcal{Z}$ for i = 1,2. Then $P_1 \cap P_2$ is a closed subset of \mathbb{R}^n and is closed in $Z_1 \cap Z_2 \in \mathcal{Z}$. Next, since P_i is open in Z_i , $Z_i - P_i$ is closed in \mathbb{R}^n . Therefore, by

$$P_1 \cap P_2 = Z_1 \cap Z_2 - ((Z_1 - P_1) \cup (Z_2 - P_2)),$$

 $P_1 \cap P_2$ is open in $Z_1 \cap Z_2$. Q.E.D.

LEMMA 2. P has the chain condition (*).

PROOF. Let $P_1 \stackrel{?}{\neq} P_2 \stackrel{?}{\neq} \dots$ be a descending chain in \mathscr{P} . We choose $Z_i \in \mathscr{Z}$ such that P_i is open in Z_i ($i=1,2,\ldots$) and we set $Z_1 \cap Z_2 \cap \ldots \cap Z_i = Z_i'$. Then $Z_1 \supset Z_2 \supset \ldots$ and $\mathscr{Z} \in Z_i' \supset P_i$. Since P_i is open in Z_i , we have that P_i is open in Z_i' . Since \mathscr{Z} has the chain condition, we can find j with $Z_j' = Z_{j+1}' = \ldots$. Then P_j, P_{j+1}, \ldots are all closed and open in Z_j' , and by the Whiney's theorem mentioned above, there are only finitely many such sets. Q.E.D.

PROPOSITION 1. \mathscr{P} is the totality of closed sets with respect to a certain T_1 -topology of \mathbb{R}^n . (We call the topology pre-Zariski.)

PROOF. Let $\{P_{\lambda}; \lambda \in \Lambda\}$ be a subset of \mathscr{P} . By the chain condition $\bigcap P_{\lambda} = P_{\lambda_1} \cap \ldots \cap P_{\lambda_k}$ for some $\lambda_1, \ldots, \lambda_k \in \Lambda$, and by Lemma 1, $\bigcap P_{\lambda} \in \mathscr{P}$.

Next, let P_1, \ldots, P_k be in \mathscr{P} . Then $P_1 \cup \ldots \cup P_k$ is a closed set of \mathbb{R}^n . Suppose that P_i is open and closed in Z_i ($i=1,2,\ldots,k$). Then $Z_i-P_i\in\mathscr{E}$, and we have $\bigcap_i (Z_i-P_i)\in\mathscr{E}$. Hence $P_1 \cup \ldots \cup P_k=Z_1 \cup \ldots \cup Z_k-\bigcap_i (Z_i-P_i)$ is open in $Z_1 \cup \ldots \cup Z_k$. Hence $P_1 \cup \ldots \cup P_k \in \mathscr{P}$.

Since \mathscr{Z} gives a T_1 -topology, so does \mathscr{P} . Q.E.D.

Now the following proposition is obvious:

PROPOSITION 2. A member P of \mathcal{P} is connected with respect to the pre-Zariski topology if and only if P is connected.

4. In \mathbb{R}^{n^2+1} , we consider a hypersurface \mathscr{G} defined by $det(x_{ij})x_0=1$, where x_{ij} $(i,j=1,\ldots,n)$ and x_0 are independent indeterminates. For $(a_{11},\ldots,a_{nn},a_0)\in G$, we have $det(a_{ij})\neq 0$, and so we have a one-to-one map $(a_{11},\ldots,a_{nn},a_0)\longrightarrow (a_{ij})$ from \mathscr{G} onto the general linear group $GL(n,\mathbb{R})$. After this, we identify $GL(n,\mathbb{R})$ with \mathscr{G} by the map.

By the pre-Zariski topology of $GL(n, \mathbb{R})$, we mean the induced topology of $\mathcal{G} = GL(n, \mathbb{R})$ in \mathbb{R}^{n^2+1} with the pre-Zariski topology. Let us call a subgroup of $GL(n, \mathbb{R})$ pre-algebraic if it is closed with respect to the pre-Zariski topology of $GL(n, \mathbb{R})$. Obviously, a subgroup G of $GL(n, \mathbb{R})$ is pre-algebraic if and only if G is of finite index in a suitable algebraic group G of $GL(n, \mathbb{R})$, and this gives the equivalence of the definitions of pre-algebraic groups in this note and in Goto-Wang [1].

Bibliography

- [1] M. GOTO and H. C. WANG, Non-discrete uniform subgroups of semisimple Lie groups, Math. Ann. 198 (1972), 259-286.
- [2] H. WHITNEY, Elementary structure of real algebraic varieties, Annals of Math. 66 (1957), 545-556.

University of Pennsylvania Philadelphia, Pennsylvania U.S.A.