Houses with Chimneys: A Curious Periodicity in H*(MO)*

ARUNAS LIULEVICIUS(1)

In memory of Carlos B. de Lyra

The algebraic results described in this note arose from the investigation of a filtration on the unoriented cobordism ring associated to the geometric problem of immersing manifolds in Euclidean space up to cobordism ([1], [2], [4], [5]). The key algebraic result is as follows: let $A = 1 + a_1t + a_2t^2 + \ldots$ be a power series with coefficients in the polynomial ring $\mathbb{Z}[a_1, a_2, \ldots, a_n, \ldots]$, A_s^k the coefficient of t^s in A_s^k , and set $v(A_s^k) = r$ if $A_s^k \equiv 0 \mod 2^r$, $A_s^k \not\equiv 0 \mod 2^{r+1}$. We have: $v(A_s^k) = \max (0, v(k) - v(s))$. It is unreasonable to suppose that this result in 2-adic arithmetic had not been noticed before — indeed a reason for circulating this note is to find out who had noticed this phenomenon first.

The paper is organized as follows: in the first section we give the background of the problem and exhibit a periodicity result in $H_*(MO; \mathbb{Z}_2)$. This periodicity is then related to the problem in 2-adic valuation mentioned above. The second section is purely algebraic and devoted to the examination of several questions in 2-adic arithmetic.

I am grateful to T. tom Dieck for pointing out that a generalization of the Schoolboy Multinomial Theorem is the key to the solution (indeed, the current proof of Theorem 5 is essentially a rearrangement of a proof sketched by tom Dieck). I am also grateful to J. F. Adams for an exchange of letters which clarified the experimental fact that m_2r_{-1} is the element in the basis of $H_2r_{-1}(MO; \mathbb{Z}_2)$ dual to the basis of monomials in Stiefel-Whitney classes corresponding to w_2r_{-1} .

1. Background and statement of results. Let $H_*(\)$ henceforth denote homology with coefficients in the integers modulo 2. We let MO be the

^{*}Recebido pela SBM em 26 de março de 1975.

⁽¹⁾Research partially supported by NSF grant GP-38875 X.

Thom spectrum for the orthogonal group and $\varphi_*\colon H_*(MO) \to H_*(BO)$ the Thom isomorphism, $h\colon \pi_*(MO) \to H_*(MO)$ the Hurewicz homomorphism. We let $\lambda_s\colon \tilde{H}_{*+s}(MO(s)) \to H_*(MO)$ be the map into the direct limit and define the filtration on $\pi_*(MO)$ by the pullback diagram

$$F_{s} \longrightarrow \pi_{*}(MO)$$

$$\downarrow \qquad \qquad h \qquad \qquad \downarrow$$

$$\tilde{H}_{*+s}(MO(s)) \xrightarrow{\lambda_{s}} H_{*}(MO).$$

The filtration F_s and the structure of the associated graded group has been studied in [4] and [5]. The main algebraic difficulty in that study is this. Let b_n be the non-zero element in $H_n(MO)$ which is in the image of λ_1 , then $H_*(MO)$ is a polynomial algebra on b_1, \ldots, b_n, \ldots over \mathbb{Z}_2 and it is very easy to decide whether a given y in $H_*(MO)$ is in the image of λ_s : express y as a polynomial in the b_n — if its algebraic degree in the generators b_i is at most s then it lies in the image of λ_s . However there is an unfortunate aspect — it turns out that the b_n are far from the image of the mod 2 Hurewicz homomorphism h-polynomial generators for $\pi_*(MO)$ tend to have ever more complicated expressions in terms of the b_n under the monomorphism h. Clearly a more convenient set of generators for $H_*(MO)$ is needed, and it is furnished by the elements m_n which are defined as follows: consider a power series in t defined by

$$\omega = t + b_1 t^2 + b_2 t^3 + \ldots + b_n t^{n+1} + \ldots$$

and define the m_n as the coefficients of the inverse power series

$$t = \omega + m_1 \omega^2 + m_2 \omega^3 + \ldots + m_n \omega^{n+1} + \ldots$$

Notice that this process makes sense over \mathbb{Z} , not just over \mathbb{Z}_2 as in our application. There is a formula for the coefficients m_n (originally due to Burmann and Lagrange — see Hurwicz [3], p. 139, and rediscovered in the cobordism context by Miscenko — see Novikov [6], p. 936): let $\omega = tB$, then

$$m_n=\frac{1}{n+1}\ B_n^{-n-1}.$$

Notice that B^{-1} makes sense (the multiplicative inverse) since B has 1 as its constant term. Our m_n are obtained by taking these modulo 2. Notice that $m_{2n} = h(\text{class of }RP^{2n})$, so these elements are indeed close to the image of h. Since $m_n = b_n$ modulo decomposable elements of $H_*(MO)$ we have that the m_n will serve as polynomial generators of $H_*(MO)$. If they are to be of use for our purposes we must have a test for deciding whether a polynomial belongs to the image of λ_t — a test in terms of the m_n . This is furnished by a homomorphism of algebras

$$\Delta: H_*(MO) \longrightarrow H_*(MO)[s]$$

of degree 0 (if we let grade s = 1) which is defined by setting $\Delta(x) = \sum_{i} \Delta_{i}(x)s^{i}$

where Δ_i is the dual homomorphism to cupping with the i-th Stiefel-Whitney class w_i (when we identify $H^*(MO)$ with $H^*(BO)$ under the Thom isomorphism). An element x in $H_*(MO)$ is in the image of λ_t if and only if the degree of $\Delta(x)$ as a polynomial in s is at most t. Here is a table of Δm_n for low values of n.

TABLE 1

Δm_n for $n \leq 15$

$$\Delta m_1 = m_1 + s$$

$$\Delta m_2 = m_2 + sm_1$$

$$\Delta m_3 = m_3 + s^3$$

$$\Delta m_4 = m_4 + s\mu_3 + s^2v_2 + s^3m_1$$

$$\Delta m_5 = m_5 + sm_2^2 + s^2v_3$$

$$\Delta m_6 = m_6 + s\mu_5$$

$$\Delta m_7 = m_7 + s^7$$

$$\Delta m_8 = m_8 + s\mu_7 + s^2v_6 + s^3v_5^\# + s^4\omega_4 + s^5\mu_3 + s^6v_2 + s^7m_1$$

$$\Delta m_9 = m_9 + sm_4^2 + s^2v_7 + s^4\omega_5 + s^5v_2^2 + s^6v_3$$

$$\Delta m_{10} = m_{10} + s\mu_9 + s^4\omega_6 + s^5\omega_5^\#$$

$$\Delta m_{11} = m_{11} + s^3m_2^4 + s^4\omega_7$$

$$\Delta m_{12} = m_{12} + s\mu_{11} + s^2v_{10} + s^3v_9^\#$$

$$\Delta m_{13} = m_{13} + sm_6^2 + s^2v_{11}$$

$$\Delta m_{14} = m_{14} + s\mu_{13}$$

$$\Delta m_{15} = m_{15} + s^{15}$$

Notation:
$$\mu_{2i+1} = m_{2i+1} + m_1 m_{2i} + m_2 m_{2i-1} + \dots + m_i m_{i+1},$$

$$v_k = m_k + m_1^2 m_{k-2} + m_2^2 m_{k-4} + \dots,$$

$$\omega_k = m_k + m_1^4 m_{k-4} + m_2^4 m_{k-8} + \dots,$$

$$v_k^\# = \mu_k + m_1^2 \mu_{k-2} + m_2^2 \mu_{k-4} + \dots,$$

$$\omega_k^\# = \mu_k + m_1^4 \mu_{k-4} + m_2^4 \mu_{k-8} + \dots.$$

The reader has noticed the presence of a lot of zeroes in the table and the beginnings of a periodicity along the diagonal. The next table exhibits in a schematic way the occurences of non-zero entries in Δm_n for $n \leq 32$.

TABLE 2

Pattern of Nonzero Entries In Δm_n

The pattern of nonzero entries can be described in terms of houses with a chimney. The r-th house will have 2^r stories; its top floor will be at row 2^r and its chimney will be in row $2^r - 1$ and column 2^r . If A_r denotes the r-th house, the (r+1)-st house is obtained by the scheme

$$A_{r+1} = \begin{bmatrix} A_r^- & A_r \\ A_r & 0 \end{bmatrix}$$

where A_r^- indicates the house A_r with its chimney knocked off and 0 indicates a $2^r x 2^r$ block of zeroes. Thus

This pattern was noticed experimentally when Δm_n was being computed using a recursive formula in [5] (Theorem 5 of that note): let $S = 1 + st + sm_1t^2 + \ldots + sm_kt^{k+1} + \ldots$, S_j^i the coefficient of t^j in S^i , then

$$m_k = \sum_{i=0}^k (\Delta m_i) S_{k-i}^{i+1}.$$

It turned out that this recursive formula tended to give an ever more complicated presentation of zero for many $\Delta_i m_n$. To understand this pattern of zeroes it was found to be helpful to give an explicit formula for Δm_n , namely

$$\Delta m_n = \sum_{k=0}^{n} (-1)^k \frac{\binom{n+k}{k}}{n+1} B^{-n-1}_{n-k} s^k.$$

The reader may notice with surprise the presence of $(-1)^k$ in the formula - we put it in to signal that the formula is valid over the integers (that is, in $H_*(MU; \mathbb{Z})$) and our formula for $H_*(MO)$ is the reduction of this one modulo 2. Our next table gives the maximum power of 2 dividing the coefficients in the integral formula.

TABLE 3 2-Adic Valuation of $\frac{\binom{n+k}{n}}{n+1} B^{-n-1}_{n-k}$

If the reader treats Table 3 as instructions to color by number he will find that there is a beautiful periodicity (we see only its bottom layer when we reduce modulo 2 to obtain Table 2), moreover the table extends via this periodicity to all values of k (not just for $k \le n$ as in our definition). The author is currently unable to explain this.

2. Some results in 2-adic arithmetic. Let G be a free abelian group. We define a function $v: G \to \mathbb{N} \cup \{\infty\}$ (called "the greatest power of 2 in") to the natural numbers together with ∞ by setting v(g) = r if g determines the zero coset in $G/2^rG$ and determines a nonzero coset in $G/2^{r+1}G$. We set $v(0) = \infty$.

Here are some useful trivialities: if $f: G \to G'$ is a homomorphism of abelian groups, then $v(f(g)) \ge v(g)$ for all g in G. If we let $\mathbb{Z}_{(2)}$ be the subring of the rational numbers consisting of all a/b where a and b are relatively prime and b is odd (that is $\mathbb{Z}_{(2)}$ is the localization of Z at the prime 2) and set $G_{(2)} = G \otimes \mathbb{Z}_{(2)}$, then G is embedded in $G_{(2)}$ and v extends uniquely to a function on $G_{(2)}$. We put the two remarks together for future reference:

LEMMA 1. If $h: G \longrightarrow G'$ is a homomorphism of free abelian groups then $v(h(g)) \ge v(g)$ for all g in G. Moreover if h induces an isomorphism of $G_{(2)}$ with $G_{(2)}$ then v(h(g)) = v(g).

Our next task is to investigate the special case $G = \mathbb{Z}$. If k is a natural number, we let $\alpha(k)$ be the number of ones in the dyadic expansion of k. Our next lemma gives a relation between ν and α .

LEMMA 2. If n is a natural number then $v(n+1) = 1 + \alpha(n) - \alpha(n+1)$.

PROOF. Let $n+1=2^r(2a+1)$, so v(n+1)=r, and $\alpha(n+1)=\alpha(a)+1$. However $n=2^{r+1}a+2^r-1$, so $\alpha(n)=\alpha(a)+r$, and the lemma follows by solving for $\alpha(a)$.

COROLLARY 3. $v(n!) = n - \alpha(n)$.

PROOF. Induction on n. For n = 0 the result is trivially true. Suppose it is true for n, then

$$v((n+1)!) = v(n!) + v(n+1)$$

= $n - \alpha(n) + 1 + \alpha(n) - \alpha(n+1)$
= $n + 1 - \alpha(n+1)$

and we are done.

COROLLARY 4.
$$v\binom{n+k}{n} = \alpha(n) + \alpha(k) - \alpha(n+k)$$
.

REMARK. It seems that this result is due to Lagrange. I am grateful to Donald Davis for this piece of historical intelligence.

Since Corollary 4 gives complete information about the greatest powers of 2 in binomial coefficients, we now plunge into the investigation of the 2-valuation of multinomial coefficients subject to certain constraints. Let $P = \mathbb{Z}[a_1, a_2, \ldots]$ be a polynomial ring in a countable number of indeterminates a_i , and consider the power series

$$A = 1 + a_1t + a_2t^2 + \ldots + a_rt^r + \ldots$$

Denote by A_s^k the coefficient of t^s in A^k . We wish to examine $v(A_s^k)$ – in other words

$$v(A_s^k) = \min \left\{ v\left(\begin{pmatrix} k \\ j_0, j_1, \dots, j_t \end{pmatrix} \right) \middle| \sum_{n=1}^t n j_n = s \right\}.$$

It is instructive to plot $v(A_s^k)$ as a function of k and s in order to obtain an idea of what to expect. We do this in Table 4.

TABLE 4

 $v(A_s^k)$ for $k, s \le 16$

S	k	\longrightarrow															
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	0	1	0	2	0	1	0	3	0	1	0	2	0	1	0	4	
2	0	0	0	1	0	0	0	2	0	0	0	1	0	0	0	3	
3	0	1	0	2	0	1	0	3	0	1	0	2	0	1	0	4	
4	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	2	
5	0	1	0	2	0	1	0	3	0	1	0	2	0	1	0	4	
6	0	0	0	1	0	0	0.	2	0	0	0	. 1	0	0	0	3	
7	0	1	0	2	0	1	0	3	0	1	0	2	0	1	0	4	
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
9	0	1	0	2	0	1	0	3	0	1	0	2	0	1	0	4	
10	0	0	0	1	0	0	0	2	0	0	0	1	0	0	0	3	
11	0	1	0	2	0	1	0	3	0	1	0	2	0	1	0	4	
12	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	2	
13	0	1	0	2	0	1	0	3	0	1	0	2	0	1	0	4	
14	0	0	0	1	0	0	0	2	0	0	0	1	0	0	0	3	
15	0	1	0	2	0	1	0	3	0	1	0	2	0	1	0	4	
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

One can already make some educated guesses about the behavior of $v(A_s^k)$ from this table — first: it is really a function of v(k) and v(s), so in particular it should be enough to know the columns for $k=2^n$ which exhibit an interesting kind of periodicity. Second: the basic periodicity block becomes twice as long when we pass from 2^n to 2^{n+1} and is obtained by taking two periodicity blocks for 2^n , leaving the initial entry 0, and adding one to the remaining entries. We sum up these experimental results:

THEOREM 5.
$$v(A_s^k) = \max(0, v(k) - v(s))$$
.

Let us first prove that $v(A_s^k)$ depends only on v(k). This it turns out will follow very easily from Lemma 1 – first we must provide the right setting:

LEMMA 6. If $B = 1 + b_1t + b_2t^2 + ... + b_nt^n + ...$ where each b_n is a polynomial in the a_i then $v(B_s^k) \ge v(A_s^k)$.

PROOF. Define a homomorphism of algebras $h: P \longrightarrow P$ where

$$P = \mathbb{Z}[a_1, \ldots, a_n, \ldots]$$
 by $h(a_n) = b_n$,

then $hA_s^k = B_s^k$ for all k and s and the result follows from Lemma 1.

COROLLARY 7. $v(A_s^{ab}) \ge v(A_s^a)$ for all a, b, s. Moreover if b is odd, equality holds.

PROOF. Define a homomorphism of algebras $h: P \to P$ by $h(a_n) = A_n^b$, then $h(A_s^a) = A_s^{ab}$ and the first sentence is proved. If b is odd, then $h: P_{(2)} \to P_{(2)}$ is an isomorphism, and Lemma 1 gives the equality.

We have thus reduced the proof of Theorem 5 to the special case $k=2^n$. Let us see how one could come to the basic idea of the proof by doing a very special case of the theorem: let's prove that if $v(s) \ge n$ then $v(A_s^{2n}) = 0$, that is $A_s^{2n} \ne 0$ modulo 2. We have a fine tool for doing arithmetic modulo 2 - 1 the Schoolboy Multinomial Theorem:

$$A^{2^n} = 1 + a_1^{2^n} t^{2^n} + \dots + a_r^{2^n} t^{r^{2^n}} + \dots$$
 modulo 2,

so in particular if $s = r2^n$ for some r, $A_s^{2^n} \equiv a_r^{2^n} \mod 2$, and therefore $v(A_s^{2^n}) = 0$. Let us jot this down:

LEMMA 8. If $v(s) \ge n$ then $v(A_s^{2^n}) = 0$.

We will now state and prove a mild generalization of the Schoolboy Multinomial Theorem. To save writing, let us introduce the operator S on power series in t which replaces t by t^2 and squares the coefficients: $SA = 1 + a_1^2t^2 + \ldots + a_r^2t^{2r} + \ldots$

LEMMA 9 (Generalized Schoolboy Multinomial Theorem). For each j with $0 \le j \le n$ we have $A^{2^n} \equiv (S^{n-j}A)^{2^j} \mod 2^{j+1}$.

PROOF. The result is trivially true for n=0, and for j=0 it is the usual Schoolboy Multinomial Theorem. Assume the result for n-1 and for a j < n— we are asked to prove the result for n and $j+1 \le n$. Using the inductive hypothesis we have $A^{2^{n-1}} = (S^{n-1-j}A)^{2^j} + 2^{j+1}B$ for some B, and squaring both sides we obtain $A^{2^n} \equiv (S^{n-1-j}A)^{2^{j+1}}$ modulo 2^{j+2} , so the inductive step works and the lemma is proved.

PROOF OF THEOREM 5. Notice that since Lemma 8 checks the theorem for s with $v(s) \ge n$ it will be sufficient to prove the theorem for s with $v(s) = n - j, 0 < j \le n$. According to Lemma 9 we have $A^{2^n} \equiv (S^{n-j+1}A)^{2^{j-1}}$ $mod \ 2^j$, but since the only nonzero coefficients of $S^{n-j+1}A$ are associated with powers of t divisible by at least 2^{n-j+1} , so $A_s^{2^n} \equiv 0 \mod 2^j$. Again Lemma 9 gives $A^{2^n} \equiv (S^{n-j}A)^{2^j} \mod 2^{j+1}$, so if $s = 2^{n-j}m$, m odd, then $A_s^{2^n} \equiv 2^j a_m^{2^{n-j}} \mod (2^{j+1}, a_1, \ldots, a_{m-1})$, hence $v(A_s^{2^n}) = j = n - v(s)$, and the theorem is proved.

References

- [1] R. L. W. BROWN, Imbeddings, immersions, and cobordism of differentiable manifolds, Bulletin A. M. S. 76 (1970), 763-766.
- [2] R. L. W. BROWN, Immersions and embeddings up to cobordism, Canadian J. Math. 13 (1971), 1102-1115.
- [3] A. HURWICZ, Vorlesungen über Allgemeine Funktionentheorie und Elliptische Funktionen (2nd Edition), Springer, Berlin, 1925.
- [4] A. LIULEVICIUS, *Immersions up to cobordism* (to appear in Illinois Journal of Mathematics)
- [5] A. LIULEVICIUS, The algebraic filtration of unoriented cobordism, The University of Chicago, March 1973.
- [6] S. P. NOVIKOV, Methods of algebraic topology from the viewpoint of cobordism theories, Izvestija Akademii Nauk SSSR, Serija Matematiceskaja 31 (1967), 855-951.

University of Chicago Chicago — Illinois U.S.A.