Houses with Chimneys: A Curious Periodicity in H,(MO)*
ARUNAS LIULEVICIUS®

In memory of Carlos B. de Lyra

The algebraic results described in this note arose from the investigation
of a filtration on the unoriented cobordism ring associated to the geometric
problem of immersing manifolds in Euclidean space up to cobordism
([1], [2], [4]. [5]). The key algebraic result is as follows: let A = 1 +
+ait+at’ + ... be a power series with coefficients in the polynomial
ring Z[ay, ay, . . ., ay, ...], A¥ the coefficient of ¢* in 4*, and set wW(A¥) = rif
AS=0mod 2, A* % 0 mod 2°*!. We have: WAS) = max (0, v(k) — v(s)).
It is unreasonable to suppose that this result in 2-adic arithmetic had
not been noticed before — indeed a reason for circulating this note is to
find out who had noticed this phenomenon first.

The paper is organized as follows: in the first section we give the back-
ground of the problem and exhibit a periodicity result in H,(MO; Z,).
This periodicity is then related to the problem in 2-adic valuation men-
tioned above. The second section is purely algebraic and devoted to the
examination of several questions in 2-adic arithmetic.

I am grateful to T. tom Dieck for pointing out that a generalization of
the Schoolboy Multinomial Theorem is the key to the solution (indeed,
the current proof of Theorem 5 is essentially a rearrangement of a proof
sketched by tom Dieck). I am also grateful to J. F. Adams for an exchange
of letters which clarified the experimental fact that m,r_, is the element
in the basis of Hyr_{(MO; Z,) dual to the basis of monomials in Stie-
fel-Whitney classes corresponding to WoF_q.

5 Background and statement of results. Let H,( ) henceforth denote
homology with coefficients in the integers modulo 2. We let MO be the
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Thom spectrum for the orthogonal group and ¢,: H,(MO) — H,(BO)
the Thom isomorphism, h: m,(MO) — H,(MO) the Hurewicz homo-
morphism. We let A: H,.{(MO(s)) — H,(MO) be the map into the
direct limit and define the filtration on 7,(MO) by the pullback diagram

s (MO

I
j ;
A, (MO(s)) 22> H,(MO).

The filtration F, and the structure of the associated graded group has
been studied in [4] and [5]. The main algebraic difficulty in that study
is this. Let b, be the non-zero element in H,(MO) which is in the image
of A4, then H,(MO) is a polynomial algebra on by, ..., by, ... over Z, and
it is very easy to decide whether a given y in H «(MO) is in the image of 4;:
express y as a polynomial in the b, — if its algebraic degree in the gene-
rators b; is at most s then it lies in the image of J,. However there is an
unfortunate aspect — it turns out that the b, are far from the image of
the mod 2 Hurewicz homomorphism h-polynomial generators for n(MO)
tend to have ever more complicated expressions in terms of the b, under
the monomorphism h. Clearly a more convenient set of generators for
H,(MO) is needed, and it is furnished by the elements m, which are defi-
ned as follows: consider a power series in t defined by

@ =4 G B F B 4 H bt T
and define the m, as the coefficients of the inverse power series
t =4+ mo?® +mo® + ...+ mo' 4+

Notice that this process makes sense over Z, not just over Z, as in our
application. There is a formula for the coefficients m, (originally due to
Burmann and Lagrange — see Hurwicz [3], p. 139, and rediscovered
in the cobordism context by Miscenko — see Novikov [6], p- 936): let
w = tB, then
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NO.tICC that B~' makes sense (the multiplicative inverse) since B has 1
as 1t.s constant term. Our m, are obtained by taking these modulo 2
Notlcg that m,, = h(class of RP?"), so these elements are indeed close;
to theimage of h. Sincem, = b, modulo decomposable elements of H (MO)
we have that the m, will serve as polynomial generators of H (M*O) If
they are to be of use for our purposes we must have a test fo;le deciciin
whether a polynomial belongs to the image of 1, — a test in terms of thi
my,. This is furnished by a homomorphism of algebras

A: H,(MO) — H,(MO)[s]
of degree 0 (if we let grade s= 1) which is defined by setting A(x) = Y Aix)s’
where A; is the dual homomorphism to cupping with the i — th Stiefel-Whi-
tney class w; (when we identify H*(MO) with H*(BO) under the Thom

isomorphism). An element x in H,(MO) is in the image of 4, if and only

if the degree of A(x) as a polynomial in s is at most t. Here is a table of
Am, for low values of n.
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TABLE 1

Am, for n < 15

Amy =my + 8

Am, = my + smy

Ams = m3 + §°

Amy = my + spz + $2v2 + $°my

Ams ==
Am6 =
Am7 =

ms + sm3 + s*v3
me + Sps

m; + 87

Amg = mg + sy + $2v6 + sVE + stws + ps + %2 + s"my

Amo = mo + smj + s2v; + s*ws + 573 + 5%v3

AM10
Amyq
Amy,
Am13
Amyy

Amy s

Notation:

= myo + Spo + s*we + s*wl
=my; + S3m3 + S4(D7

N 2 3 #
= Mgy + SH11 + Vo + STVS
= my3 + sm¢ + s*vyy

= my4 + St13

= mps + S15

Uoi+1 = Mair1 + MMy + MoMpi—q + ...+ M4,
V=M + mim_, + mimg_g + ...,
Wy = My + m}‘mk_4 + m%mk_s + ...,
V¢ =+ mi—o + Mi—a + ..,

of =+ mipe—s + Mg + ...

The reader has noticed the presence of a lot of zeroes in the table and
the beginnings of a periodicity along the diagonal. The next table exhi-
bits in a schematic way the occurences of non-zero entries in Am, forn < 32.

184

,_.
SOOIV A WN—=O

R dl ~aE N \S TN S TN ST \O T \S I (O I N T (O I (S
REEERIAIFTGREO RS rmon—

#*o0% % % % % %

* %

E.

E.

%

E.

TABLE 2

Pattern of Nonzero Entries In Am,

>.
s
*
=
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The pattern of nonzero entries can be described in terms of houses with
a chimney. The r-th house will have 2" stories; its top floor will be at
row 2" and its chimney will be in row 2"—1 and column 2". If 4, denotes
the r-th house, the (r + 1)—st house is obtained by the scheme

A A
Ar+1 =|:A 0]

where A, indicates the house A, with its chimney knocked off and 0
indicates a 2"x2" block of zeroes. Thus

* %* *
Ay * Ay * x Ay % % % *
% % % %
% %
%
&
Az % % % % % % % %
% % % % %
* % % %
% % %
% % %
* % %
* %
*

This pattern was noticed experimentally when Am, was being computed
using a recursive formula in [5] (Theorem 5 of that note): let S =1 +
+ st + smyt? + ...+ smt*T + ..., S} the coefficient of ¢/ in §', then

k
my, = z (Ami)sliciil-
i=0

It turned out that this recursive formula tended to give an ever more com-
plicated presentation of zero for many A;m,. To understand this pattern
of zeroes it was found to be helpful to give an explicit formula for Am,,
namely
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-
%]

The reader may notice with surprise the presence of (—1)* in the formula
— we put it in to signal that the formula is valid over the integers (that is,
in H (MU; Z)) and our formula for H,(MO) is the reduction of this one
modulo 2. Our next table gives the maximum power of 2 dividing the
coefficients in the integral formula.
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TABLE 3

2 —Adic Valuation of

l»

0

00

001

0110

00001

000211

0022112

02211220

000000001

0001000311

00110033112

011003321221

0000222211112

00032223111322

003322331133223
0332233113322330
00000000000000001
000100020001000411
0011002200110044112
01100221011004431221
000011110000333311112
0002111200043334111322
00221122004433441133223
022112200443344213322331
0000000022222222111111112
00010004222322241112111422
001100442233224411221144223
0110044323322443122114432332
00003333222233331111333322223
000433342224333411143334222433
0044334422443344114433442244334
04433442244334411443344224433440
000000000000000000000000000000001
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If the reader treats Table 3 as instructions to color by number he will
find that there is a beautiful periodicity (we see only its bottom layer when
we reduce modulo 2 to obtain Table 2), moreover the table extends via
this periodicity to all values of k (not just for k < n as in our definition).
The author is currently unable to explain this.

2. Some results in 2-adic arithmetic. Let G be a free abelian group. We
define a function v: G — Nu{co} (called “the greatest power of 2 in”)
to the natural numbers together with co by setting v(g) = r if g determines

the zero coset in G/2"G and determines a nonzero coset in G/2""1G. We
set v(0) = oo.

Here are some useful trivialities: if /:G — G is a homomorphism of
abelian groups, then v(f(g)) > v(g) for all g in G. If we let Z 3, ve the subring
of the rational numbers consisting of all a/b where a and b arc relatively
prime and b is odd (that is Z,, is the localization of Z at the prime 2) and
set Gy = G ® Z(3), then G is embedded in G, and v extends uniquely

to a function on G, We put the two remarks together for future refe-
rence:

LEMMA 1. If h: G — G’ is a homomorphism of free abelian groups then
v(h(g)) = v(g) for all g in G. Moreover if h induces an isomorphism of Goy

with G,y then v(h(g)) = v(g).
Our next task is to investigate the special case G = Z. If k is a natural

number, we let a(k) be the number of ones in the dyadic expansion of k.
Our next lemma gives a relation between v and .

LEMMA 2. If n is a natural number then vin+1) =1+ an) — a(m+ 1).
PROOF. Let n4+1=2"Q2a+1), so v(n+1)=r, and a(n+ 1) =ofa) + 1.
However n=2""'qg+2"—1, so a(n)=o(a) +r, and the lemma follows
by solving for o(a).

COROLLARY 3. w(n!) = n — an).

PROOF. Induction on n. For n = 0 the result is trivially true. Suppose
it is true for n, then
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v(n+ 1D = vn!) +vn+1)
n—an)+1+on—an+l)
=n+1—on+1)

and we are done.

COROLLARY 4. v< (” : k)) = o(n) + olk) — aln+ k).

REMARK. It seems that this result is due to ngrange. I am grateful
to Donald Davis for this piece of historical intelligence.

Since Corollary 4 gives complete information about t.he grf.:ate.st powers
of 2 in binomial coefficients, we now plunge into the 1nve§t1gat10n of' the
2-valuation of multinomial coefficients suquct to certain constramts%
Let P = Z[a,, a3, ...] be a polynomial ring in a countable number o
indeterminates a;, and consider the power series

A=1+at+at’+...+at +....

: . w0
Denote by A the coefficient of ¢* in 4*. We wish to examine v(A4¥) — in

other words

k . k
W(Ag) = min {v((}.o’ R

It is instructive to plot v(4¥) as a function of k and s in order to obtain
an idea of what to expect. We do this in Table 4.

t
Y njp= s}.
n=1
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TABLE 4

v(45) for k, s < 16

s k—
1.2 3 4 56 7 8 Dol 11 12 137 ¥4 BICAR
0000O0O0OO0OO0OOO0O O O O O O 0 o0
10102010301 0 2 0 1 0 4
200 8 15040 5.2 0 0B 1 Pun B DOSG
30D & 100083 6040 120 DN
4 000000O0OT1O0 O O O O O 0 2°
5010201030 1 0 2 0 1 0 4
6 OG0 1D Q 0 200 Q1008
00240 30 PLigs 0 A QA
8 0 B3 0B 00 010 0 i B B ]
S ¢ By (X o IHo S { P WY DR Ao URRE JEON B SREYT ) (R (O Y |
10 00 01 ood 2@ @ QL 0 O O 3
11 ¢ 1 0.20 1 0.3-06.-1 6.2 O 1.0 4
2000000010 O O O O0O O 0 2
130 ¢ 0.2 0l 3 @mnd i 3 w6 100 4
4 00 01 0002 000 b 0 0 0 3
1501 0201030 1 0 2 0 1 0 4
16 000000000 OO O O O 0 O

One can already make some educated guesses about the behavior of v(A¥)
from this table — first: it is really a function of v(k) and v(s), so in parti-
cular it should be enough to know the columns for k = 2" which exhibit
an interesting kind of periodicity. Second: the basic periodicity block
becomes twice as long when we pass from 2" to 2"*! and is obtained by
taking two periodicity blocks for 2", leaving the initial entry 0, and adding
one to the remaining entries. We sum up these experimental results:

THEOREM 5. (4% = max (0, v(k) — v(s)).

Let us first prove that w(4%) depends only on v(k). This it turns out will
follow very easily from Lemma 1 — first we must provide the right setting:

LEMMA 6. If B=1+ byt + byt> + ... + bt" + ... where each b, is
a polynomial in the a; then v(B¥) > v(A¥).
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PROOF. Define a homomorphism of algebras h: P — P where
P=2[ay,::5; G- by hla) = by

then hA* = B for all k and s and the result follows from Lemma 1.

- COROLLARY 7. v(A%) > W(A9) for all a, b, s. Moreover if b is odd, equa-
lity holds.

PROOF. Define a homomorphism of algebras h: P — P by h(a,) = AL,
then h(4%) = A% and the first sentence is proved. If b is odd, then h:
P;) — P(z is an isomorphism, and Lemma 1 gives the equality.

We have thus reduced the proof of Theorem 5 to the special case k = 2"
Let us see how one could come to the basic idea of the proof by doing a
very special case of the theorem: let’s prove that if v(s) > n then v(A42") = 0,
that is 42" # 0 modulo 2. We have a fine tool for doing arithmetic mo-
dulo 2 — the Schoolboy Multinomial Theorem:

A7 =1+ a¥"t? + ... + a¥t"*" + ... modulo 2,

so in particular if s = r2" for some r, A" = a?" mod 2, and therefore
v(A%") = 0. Let us jot this down:

LEMMA 8. If v(s) = n then v(A2") = 0.

We will now state and prove a mild generalization of the Schoolboy Mul-
tinomial Theorem. To save writing, let us introduce the operator S on
power series in ¢ which replaces t by t?> and squares the coefficients:
SA=1+adk>+...+aft" +....

LEMMA 9 (Generalized Schoolboy Multinomial Theorem). For each j
with 0 < j < n we have A¥ = (S""7A)* mod 2/*1.

PROOF. The result is trivially true for n = 0, and for j = 0 it is the usual
Schoolboy Multinomial Theorem. Assume the result for n —1 and for
a j <n — we are asked to prove the result for n and j + 1 < n. Using
the inductive hypothesis we have 42"~ " = (S""1774)*’ 4+ 2/*'B for some
B, and squaring both sides we obtain 42" = (S"~!774)*"" modulo 2/*2,
so the inductive step works and the lemma is proved.
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PROOE OF THEOREM 5. Notice that since Lemma 8 checks the theorem
for s with v(s) > n it will be sufficient to prove the theorem for s with
Ws) =n—j,0 < j < n. According to Lemma 9 we have 42" = [gr—ir 1A)Zj‘;
mgd 2/, but since the only nonzero coefficients of S"~/*14 are associated
with powers of ¢ divisible by at least 2" %!, 5o A% =0 mod 2
Ltzaflnma 9 z:;iv_es A% = (S"7JA)*' mod 27%1, 5o if s = 2", m ocid then
AP = a7’ modulo (2*1, a, ..., am-1), hence WAZ") =j=n = v(s)
and the theorem is proved. :

Again
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