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1. Wewrite X = R" if there exists a finite simplicial complex of the homoto-
py type of £'X which embeds in S"*", where ¥ denotes suspension;
otherwise X ¢ R". We seek information on the smallest integer n such
that X = R"in terms of cohomological data derived from X. It is known
that a differentiable n-manifold M can be differentiably embedded in
R?" but not necessarily in R*"~!, that a simplicial complex K of dimension
n can be simplicially embedded in R*"*!, but not necessarily in R2":
which of course imply that a compact M = R*" and a compact K < R2"+1,
Particular attenction has been paid to the question of determining the
Euclidean space of least dimension in which a projective space can be
embedded and in [7] James wrote a survey article outlining some 30 years
progress on the problem. We refer to this article for background material.
Most attention has been given to RP" but the methods of this paper are
not appropriate in this case. We consider the complex and quaternionic
projective spaces. As usual, let a(n) be the number of 1’s in the dyadic
expansion of n. It is known that CP" embeds differentiably in R+~
and that HP" embeds in R®"~*®*#_ More is known for particular values
of n. The general results for non differentiable embeddings appear to
be that CP" will not embed in R**~22® (CP" will not embed in R*"~ 220+ 2
if n is even and a(n) = 0 mod 3) HP" will not embed in R8"~2xM~-2 por
in R®"~2%™ if 4(n) = 0 mod 4. These negative results, except for that in
parenthesis, are known to be homotopy invariant in the sense that a
differentiable manifold homotopically equivalent to the projective space
will not embed in these dimensions either. In proving such negative
results one can either use the explicit topology and geometry of the spaces
or alternatively apply “Integrality Theorems” for embedding differen-

*Recebido pela SBM em 26 de marco de 1975.
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tiable manifolds due to Atiyah and Hirzebruch [4] which arose out of the
differentiable Riemann-Roch Theorem (see also later work of Mayer
[10]). The Integrality Theorems can be applied most successfully to
suitable manifolds whose homology groups are free of 2-torsion. The
purpose of this paper is to show different, though related, general methods
of homotopy theory lead to Integrality Theorems for embedding CW-
complexes in Euclidean space which are of comparable strength. In
particular, these techniques are adequate to show that

(11) CPnCt R4n——2a(n); Hpr 4: RSn—Za(n)—Z and HP" 4: [RSanoz(n) if
a(n) = 0 mod 4.

More generally, non embedding theorems proved in [4] for differentiable
manifolds involving the Chern character are shown to hold for complexes
whose homology groups are free of 2-torsion. Related work of Gitler
and Milgram can be found in [6] and this paper arose in an attempt
to understand this, in particular to determine certain primary cohomology
operations which occur there. As we succeed in doing this, we necessarily
strengthen the main theorem of [6].

At the heart of the mathematics in this paper lies the relationship between
higher order cohomology operations and the A-ring structure of complex
K-theory. The author was stimulated to think again along such lines
after giving a course of lectures at the Institute of Mathematics and Sta-
tistics in the University of Sdo Paulo during July and August 1972 at
the invitation of Professor Carlos de Lyra.

2. The complex of origin and Spanier-Whitehead duality. In an attempt
to prevent the straightforward ideas behind this paper becoming obscured
by the algebraic details, we start by giving an interpretation of the mathe-
matics which follows. Consider the complex X = S*" U e*, t > n, where
the homotopy class of the attaching map of the third cell is « € 75, L
We wish to determine the smallest integer k such that there exists a com-
plex $2F U €'~ 21" 2 with an iterated suspension homotopically equivalent
to X. Equivalently one can ask how far « can be doubly gesuspended.
There is a similar problem for any CW-complex, in particular, for one
of the form X = S ue?"2u...ue?"s, where n; <n; <...<Hns

One method of gaining information on such questions is to use the
Adams-Toda ec or e invariants [3]. Recall that there exists a homomor-
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phism ec: 75, 1(S*") — Q/Z which is stable up to sign. One knows
that (k' — k")ec(«) is an integer for all k [3], and so if ey = —ed)="2 "
where X has three cells, it follows by taking k =2, that n> 2. More gene-
rglly if X has s+2 cells, one can associate with it an s x s-matrix ex = (a; )
with entries in Q, where a;, j=0for i>j and a;; = —ec(x;) where o, is tlflje
homotopy class of the attaching map of the (i+2)nd cell of X pilnchin

out the 2n; —1 skeleton. The definition of ex 1s elementary and v:/ell knowg
but I thinl&;unpublished. In the complex K-theory, K(X)= @®Z, s sum:
mands, and one can choose generators u; of exact CW-filtrati’ons 2n;
The e; ;= a; ;- are defined by requiring that ch(u; + Y e ju)e H*"(X, @)l,
that is, the components of the Chern character are zerjo in the other dimen-
sions. (This particular version of the definition follows work of J. Mur-
fio.ck.) Assuming that we are given homology orientations for the cells of X

1t' is clear that e; ; is well defined in Q/Z mod (1,e;y, k<}). Technique;
s1m11ar. to those used in [3], in particular the restrictions put upon the
e;,; which are implied by the existence of the Adams operators Y/ lead

to integrality conditions on the e; j from which one can deduce a lower
bound for n,.

qu assume that X is homotopically equivalent to a simplicial complex
which can be embedded in S2V. A Spanier-Whitehead 2N-dual Y [12]
can be given a cellular structure of the form S2¥ =211 2N =2m, |, o2N=2n;

A modified version of the proof of Theorem 3.2, working over Z, shows
how one can calculate ey directly from ey.If ey = (bi,;) where b; ;= f; i1
andwesete,;=landf, | . ; -m= 1, then for each pair ,min 1 < l<m’£s,

Zfs+1—m,s+1—m+i cem_; =0

summing for 0<i<m—I. (To be quite precise, this matrix is esy but
FhlS ('ioes not affect the integrality conditions. It explains why the ec
invariants of the attaching maps of the cells in the dual complex have
opposite signs from those expected.) For example if

ol CaniiCon —e s+
i o 5] B ap T €alp
X (O = >, then ey < 0 —e > A

One can then use the techniques mentioned above to obtain lower on
N —ng and thps on N. The results (1.1) can be proved by this method
and a few tricks. We do not pursue this line of thought further here
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in the interests of obtaining greater generality and because the quantity
of elementary calculations needed to apply if effectively is prohibitively
large. However it can be used, for example, to give information about
stably self dual complexes with few cells.

3. We summarize some facts which follow by standard arguments from
properties of complex K-theory [5] and Spanier duality [13]. We work
at a fixed prime which for simplicity we choose to be 2. However all
results, except those of § 4, generalize quite easily for odd primes. Let Z(, be
the ring of integers localised at the prime ideal (2) and let Z,=2/27. The
space X will always have the homotopy type of a finite CW-complex
with integral homology free of 2-torsion, that is X € F,. Let Ybe a 2N -dual
of X in the sense of [13] not [12], see Lemma 5.1 of the former. Clearly
Ye F,. Then for sufficiently large [ and m, there exists a map

QSRR L BIXCATTRY
inducing a non singular bilinear transformation
o*: B*Z'X,Z,) @ H*(Z"Y, Z,) — HPMT™(SANTm 7,)
and thus a non singular pairing
(,): Beren(X) ® Aeven(y) — HNS™),

where now we have Z,,-coefficients. It is this pairing which concerns
us and we can say that Y will exist if X < S?V**. If X = §*", we may
assume that Yis a suspension. The map ¢ will also induce a non singular
bilinear transformation (,)x: K(X) @ K(Y) — K(S?") in the unitary
K-theory with Z,)-coefficients.

Implicit in the above are the facts that H***"(¥) and K(W), W= X055 Y,
are finitely generated free Z-modules. Let J: Heen(X) — K(X) be a
filtration preserving isomorphism where He**"(X) has the decreasing
filtration given by its grading and K(X) the CWiltration . Define
K~ 1: R(Y) — H®*"(Y)by (Jx, w)x = (x, K~ 'w) where K(S* yand H="(5°")
are identified using the Chern character and where we have anticipated
in the notation the fact that K~ ! is an isomorphism. In fact K~' is a
filtration preserving isomorphism of free Z;-modules with inverse a
filtration preserving isomorphism K: Hever(Y) — K(Y). We are now in
position to use the techniques of [9]. If X eF,, the homomorphism
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Qi H?"(X) — H?"*24X) can be defined by Q4x = 24h, .. Jx. The
reduction of Qf mod 2 equals x(Sq*9), where y is the nusqual. anti-
automorphism in the mod 2 Steenrod algebra. The homomor hism
S}:HZ"(X) — H?"*?4X) is then defined by requiring that S9 ri)s the
identity and the relations XS709™" = 0 for each q>0 sumniin for
0<i<gq. The following lemma will be useful. The pr’oof is roﬁtine

LEMMA 3.1. 2Qis§~i = 0.

II)fh T H e”:’;{ }/)ﬁ_—) fle;e"( Y) is a homomorphism, define the dual homomor-
phism y(T): X)) — H*(X) by (x, Ty) = (x(T)x Th
is justified by the following. ATk R P

THEOREM 3.2. 9 = 4(Q%) and Q9 = 1(S%).

Pl}OOl’i. Let xe H*(X) and ye H*(Y), J(x)=u and K(y)=v. Then
Wu, Yol = Yy¥u, v)x = kNu, v), using the instability of the Adams
olzerators Y* [2] and the fact that the Y* preserve tensor products. If
@;: H**(X) — H**(X) is defined to be J~!y*J, then :
Pix)=k Yy 27¢ ¥ Kk'SI"Q5(x)
q=0 0<r=<gq

and similarly for @k(y), see Lemma 2.10 of [9]. Thus (k' £2~9Sk'S9—"0""
: , : . 22-ISkTS4 Q)
K"E27 9Tk SETQY) = KN(x, y). ot Vi WAL

Let [ +m=N —1 and consider coefficients of kY. The terms which are
not necessarily zero for dimensional reasons give

27(x, Sky) + 27 X(S3x, y) = 0,

and so (Sjx, y) = (x, Qky) and the result for g = 1 follows. Assume there-
fore that the theorem is true for g<n and let I+m=N—n and again
equate coefficients of kY. Therefore 27"E(Six, Sk ~'y) = 0 ’ where the
summation is for 0 <i <n, and so by induction (S%x, y)= (x’ —ZkS% i)
where the summation is now for 1 <i<n. The latter equaI; (x Ié”K) IJ)}’
Lemma 3.1. This completes the proof. g

A less el'ementary but possibly more informative proof of Theorem 3.2
can be given along the following lines. In Corollary 2.28 of [9], formulae
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are given to compute the deviation from naturality of S5. Using the pairing
(,), one can compute in a similar manner the deviation from naturality
of x(Q%). An inductive argument shows that S} — y(Q%) is natural and
is therefore a stable primary cohomomology operation defined in Z,,-coho-
mology for spaces in F,, which is zero.

Theorem 3.2 enables us to determine completely the A-module structure
of K(Y) from that K(X). More generally, a similar argument can be
used to determine the A-module structure of K(Y)/Torsion from that
of K(X)/Torsion with Z-coefficients for the 2N-dual Y of any finite com-
plex X, using the rational y-filtration.

We write <, >,: H'(X, Q) ® H,(X,Z;) — Q for the Kronecker index,
X eF,. Define V4: H*(X) — H*"*?4X) to be the homomorphism
¥ 29718470}, where the summation is for 0<i<gq.

THEOREM 3.3. The Integrality Theorem. Let xe€ H?" 24X) and
z € Hy(X).

@) I X = S*M¥Y, then < 2" fVix,z > €3,

(i) If X = S?M, then < 247" 971V ix,z > €Z,,

If X is an oriented differentiable 2n manifold, we could choose z to be
the fundamental class. Part (i) of the theorem is clearly implied by part
(i1), but we consider part (i) first.

Itissufficienttoshowthatif yeH?"~2"*24(Y), then 2" "~V %x,y)eZ )= Q
(with the obvious extension of the definition of (,).) But

@YW, y) = (x, 2Y 7T IR2Sk O )

again summing for 0<i<gq, by Theorem 3.2. But the second term in
the last pairing is just the component of ®%(y) in dimension 2(M —n+q)
(Lemma 2.10 of [9]), and so lies in H**~"*9(Y) and the bracket lies in
Z,,), which proves (i). If Yis a suspension, cup products vanish in K(Y)

and so 4> = —2y? and this same expression is equal to the component

of —2K~ ! A’K(y) in dimension 2(M —n+gq). This gives the additional
power of 2 needed in part (ii).
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B.efore inte.rprf.:ting Theorem 3.3 in more standard language, we give a
direct app1¥cat10n which shows how the homomorphism V¢ can be cal-
culated quite easily given the A-module structure of K(X).

EXAMPLE. Let HP" = R*. Then H*(HP") ~ Z(z)[x]/(x” 1), dim x =4,
K(HP") = Z)[u]/(u™*") where for suitable and standard choice of u,
W) = k2u + {(k3(k* — 1)/22(2% — D}ou?+ ...+

+ (KK —1). .. (k% = (r—1)?)/r2(% — ... —@r—12).u"
Thus by considering the component of @%(x) in dimension 4r, we obtain
PSSy 0= 0y (k> —(r—13)/r?(2=1)... (2 —(r—1?%.x"

where we have chosen J to be the ring isomorphism such that Jx = u.
Therefore

TP ISTTIQIN=22 1K) L (1K= D222 -1) .. (P=(r—1)) . ",

and so V3 2x =2¥"1/2p)) . x".

Applying Theorem 34 (ii) with n = 2r and q = 2r—2, we obtain
M > vy(2r!) 4+ 2r. Since a(r) = r — v,(r ! and «(2r) = o(r), this becomes
M = 4r—o(r). Therefore HP" ¢ §8 ~2x)-2,

Given u e K(X), write chy(u) = si(u)/n!le H*(X, @). Then Sa(u) € H*"(X).
Let a: H*(X) — H?Y(X,Z,) be induced by the usual coefficient map.
The following corollaries to Theorem 3.3 are closely connected with
the theorems of §3.2 of [3].

COROLLARY 34. Let u €K(X) and g = 2"2s+ 1), r > 0. If sy(u) = 2%y,
0<t<r, where ye H*(X) and ay # 0, then X de gt 2@~ 2%

PROOF. 2Let Jx = u, where without loss of generality we may assume
that x € H*'(X). We know that Q5x = 2%chy 4 su = 2°s,1 ((u)/(t +5)!. Therefore

Vimix =27 {s,w)/q! + Si(s,-1@)/(g— D)) + . .. + S~ (s,(u)/v)).

We need to establish (for the case r = t) that Sj(s,—1(u)) = 0 mod 2. This
follows from the Splitting Principle, the definition of ch and that fact
that S mod 2= S4%. For Sq*a{s,- 1)} = of(qg—1)s,w)}. Thus
Vi'x =297 /q! (y+2z). The corollary follows from Theorem 3.3 (ii)
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COROLLARY 3.5. If de H¥(X) and o(d?) # 0, then X ¢ S*12%@,
This corollary follows from Corollary 3.4.
EXAMPLE. CP*" ¢ §4n—2e0,

4. It is to be expected that if the complex K-theory of this paper could
be replaced by real or quaternionic K-theory, some results would be
strengthened by a power of 2, as in [4]. There are difficulties in doing
this for a general X € F, and we do not pursue this here. However we
give an example to show how real and quaternionic K-theory can be
used in certain circumstances.

Let ¢: Kg(Y) — K(Y) and ¢': Kyx(Y) — K(Y) be the complexification
transformations. If Y can be given a cellular structure in which all cells
have dimensions congruent to zero modulo 4, then an inductive argu-
ment on the skeletons shows that each element of K(Y) is of the form
c(u) + ¢'(v). Suppose that HP" = S8 2% where a(r) = 0 (4). We shall
obtain a contradiction. The dual space Y can be given a cellular structure
of the form

S4r—2a(r) U e4r—2a(r)+4 U .U e8r-2a(r)—4

Let ye H* 2% (Y) be defined by (x",y) = 1, where x is a generator of
H*HP"). Let K(y)=c(u)+c'(v), Then 12K(y)=A%c(u)+ 12c'(v)=c(w), since
c(u).c'(v)=0 as Yis a suspension. Now it is a routine matter to check
that 22=0 mod 2 in K(Y)/Ksg,-240)-6(Y), that is, K~1A2K = —27'®%
is zero mod 2 in dimensions less than 8r—2a(r)+4, using the techniques
introduced above. But c: Kg(S8 ™2™ ~4) — K(5% 2% ~%) maps a gene-
rator to twice a generator since a(r) = 0 mod 4, and as A2K(y) is real, it
follows that K~ 'A%k(y) = 0 mod 2. The second last sentence in the proof
of Theorem 3.3 implies that 2°®~2"V%x)e H*(HP"), g =2r—2. The

calculation in the example following Theorem 3.3 shows that this is false.

Therefore HP" ¢ S® 2@ if o(r) = 0 (4).

5. The Theorem of Gitler and Milgram. As suggested earlier, Theorem 3.2
when reduced modulo 2 states the well known fact that (x(Sg*)x,y) = (x,Sq*'y)
inZ,, where x and y areZ, cohomology classes. In particular, if xe H*(X,Z,)
and ye H¥®N~2-2(Y,Z,) where i> N —j—i, then (x(Sg*)x,y) = (x,Sq*'y)
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'is zero, since Sq*’y =0. Therefore y(Sq*)x =0 for i > (N — i
is pezl_rt of a theorem of Thom (see §ql )of chapter 3 (1]: [{)4/]2), vg?rllf:};
%(Sq ’)=Q, 05 |H¥(X)=0 (2) and so 2i_lch2j+2iJ(x)eocHZj”‘tX) an
unstable Integrality theorem on the Chern character. The techn} ue
of [62] 1s to use the system of higher order operations which genera?ize
1(Sq*") duf: to Maunder [11]. These operations on the cohomology groups
of spaces in F, are closely connected with the Qj. We indicate why V\lfje
knowzthat Qj mod 2 = x(Sq*9). If x e H*(X, Z,) and 2(S2)x =0 cﬁoose
$eH¥(X) with a(®)=x. If J': A**(X) —> R(X) is anpther filtration
preserving isomorphism, Corollary 2.28 of [9] ifnplies that

0F &=0%¢ + 2097 Y1,¢ mod 4.

Tf;gﬁzrfor each ¢, there is a well defined class (QHE/2) mod 2 in
H (X, Z,)/Image y(Sq*1~2). Considering the differen. -hoices of d
we obtain a well defined homomorphism ’

[07],: Kerx(Sq*")= H*(X,Z,) — H?*21(X,7,)/(Image 1Sq?™2) +
+ Image %(Sq*9))

which is indeed the second order Maunder operation. The process ma

be extended to obtain operations of arbitrarily high order. One car}ll
attempt thelsame programme for S§ and one does indeed obtain a secon-
dary operation, but beyond the second order there are difficulties (which
to a considerable extent are explained in the inner workings of [6]). Our

b

LEMMA 5.1. Let yeH?*(Y). Then

. 22 if t is even,
Sy =0 mod {2612 if ¢ is even and Sq*1*'Sq'ay = 0,
204102 i 4 i odd.

tl?ROOlj" - The component of ®F( y)indimension 4q+ 2t is 2~'£2i§4+ 1~ iQi
or0<i< q+ L, and s0 I2SETTI0% y =0 mod 2. The result now follows
by a routine inductive argument together with the fact that
e : . :
Sq* = X USa) x(Sq*R). .. x(SqP®.

i1+ix+,,  +

Is

We can now prove the main theorem of [6] in a strengthened form.
\
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THEOREM 52. Let XeF,, X = S™ and pe K,,(X). Assume also that
if M=2N+1 and q+N is even, then

2SG* Ny 1(Sq ™Y  H*4X, Z,) - H* (X, Z,)
is zero. Then 2" 'chys, peaH?1"2(X) where t =[(4r+2q—M+5)/4].

PROOF. First let M = 2N +1 and, without loss of generality, let Jx = p
with x e H*(X). If y< H*(Y), u= N —q—r, then (Q}x, y) = (x, Sky) by
Theorem 3.2. Lemma 5.1 implies that

Sty 0 mod 20722 if (r—u) is even and Sq"*“Sq"“ay =0,
KY =Y 0d 204+ D2 if (r—y) is odd.

‘Therefore Q)x=0 mod 2' with t as above and so 2"~ 'chy+, peaH 2+ 2(X),
If r—u is even, t = (r—u+2)/2 = (4r+2q— M +5)/4, provided that
2Sg* M) y(Sq" ~ Yox =0.Ifr—uis odd, t = (r—u+1)/2=(4r +2q-M + 3)/4.
If M = 2N then Sq"*“Sq" “oy is a cup square and so vanishes as Y
is a suspension. Thus t = (4r + 2g — M + 4)/4 or (4r + 2q — M + 2)/4 de-
pending upon whether (r —u) is even or odd. The theorem is proved.
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