Hdmology Theories and Kan Extensions*

RENZO A. PICCININI®
A memoria de Carlos B. de Lyra

1. Introduction. We say that a full subcategory % of Top, — the cate-
gory of topological spaces with non-degenerate base point — is admissible
if it is non-empty, closed under the formation of mapping cones and,
together with any one of its objects, say, X, it contains all objects of Top,
of the same based homotopy type as X. Notice that if % is admissible,
it contains the cone of each one of its objects; these being contractible,
% contains points. Moreover, % is closed under suspension; let S be the
suspension endofunctor.

A homology theory on % is a covariant functor from the homotopy cate-
gory % associated with € into the category Ab” of graded abelian groups,
satisfying the conditions:

(1) (Suspension Axiom) — if p is the autofunctor of 4b? which shifts index
by —1, ph ~ hS;

(2) (Exactness Axiom) — h takes weak cokernel sequences of € into exact
sequences of AbZ.

In what follows %’ will be an admissible category which contains % as a
full subcategory and E will denote the inclusion functor @ — @' moreover,
we shall assume that for every object X of ¢, the comma-category (E | X)
(ie., the category of @ — objects over X) is small. We then recall from [5]
that the (left) Kan extension of the stable homology theory associated
to h preceded by stabilization gives rise to a homology theory 4’ on %"
which extends h. Thus, every homology on % can be extended to a homo-
logy theory on ¢’ without requiring the pair (%', 6) to satisfy any property
other than the conditions for admissibility (the smallness of the categories
(E | X) is actually only required to avoid foundational problems). We
arrived to this conclusion via the following arguments. If 7 0 © I, are
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triangulated categories such that J; has weak local pushouts rel 7,
(see below) and h is a homology theory on 7, then a Kan extension of
hto 7; is also homology [4, Theo. 3.1] and [6]; for the stable case, we
note that the stable category St% has weak pushouts (and hence, weak
local pushouts) rel St Top,, because % is admissible [7, Theo. IIL 17

Observe that at this stage we do not know if the extended homology A’
is a Kan extension of h; nor do we know if a Kan extension 'h of h to A
is 2 homology theory. It is then natural to ask: (i) when is h" a Kan exten-
sion of h? (i) when is a Kan extension 'h of h a homology theory? Actually,
the two questions are related: 'h ~ k' if, and only if, “Kan extension”
and “stabilization” commute (2.3). Hence, in order to answer the two
questions raised, one can search for conditions which insure the commuta-
tivity of Kan extension with stabilization. Not entirely surprising, one
such condition is to require & to have weak local pushouts rel %' that is
to say: given any commutative diagram

ﬁ/) X
Y, ‘

p2
(1.1)

oy

b7 o 6

of @, with Y;€|%| (i = 0, 1,2) and X € |%'|, there is an object We |¢| and
morphisms y;: Y; — W(=1,2)and 6: W— X such that ya; = a0,
oy; = B; (j = 1, 2). We then deduce the following.

(1.2) THEOREM. Let C and C' be admissible categories such that C is a
full subcategory of C" and C has weak local pushouts rel C'. Let h be a homo-
logy theory on C and let 'h be a Kan extension of h to C'. If'h satisfies the
Suspension Axiom, 'h is a homology theory; moreover, 'h is naturally equi-
valent to '(h°) preceded by stabilization.
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2. Kan extension of stable homology. Let StE be the imbedding  of
St% into Si%’ and, for every (X, n) |St%|, let Lix,n: (StE | (X, n)) —> St%
be the obvious projection. The Kan extension of the stable homology h*

defined by h is given by '(h* S Wi :
of St%". et e (1) (X, n) = colim h*Lx, , on every ob;ect (X, n)

(2.1) PROPOSITION. The functor '(i) satisfies the suspension Axiom.
PROOF.. Recall that the suspension functor S of St%” (or St%) is natu-
rally equivalent to the autofunctor S” which takes an object (X, n) into

(X, n+1) and maintains morphisms; let S’ be the inverse of S”. Construct

the commutative (up to natural equivalence) diagram of categories and
functors

’

(StE | §"(X, m) —> , (tE | (X‘, n)

L
S (X, n) L(X,n)

St% § St¥
- h\ | / ph?
Ab? :

One then shows that S’ induces a natural equivalence

Qs colim ph°Lix,wS' —> colim ph* Ly, ),

thereby concluding the proof.

We observe incidentially that this is a much sim v i
‘ how : pler proof of the Suspension
Axiom for ‘(i) than the one presented in (IIL 3.1) of i ’
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Let 0: % — St%' be the functor which takes an object X of & into
(X, 0) e |St?"|.

(2.2) COROLLARY. The ﬁmétor (h*)0 : € — Ab? extends h and is a
homology theory.

PROOF. The Suspension Axiom follows trivially from (2.1); as for the
Exactness Axiom, see (IIL. 3.1) and (IIL. 3.11) of [7].

We close this section with the following simple result.

(2.3) LEMMA. Let'h be a Kan extension of hto . Then if 'h satisfies
the Suspension Axiom (so ('h)® can be defined as a functor), '(h°) 0 ~ 'h if
and only if, '(h*) ~ (h)’.

PROOF. The condition is sufficient because ('h)°0 = 'h. Conversely,
for every (X, n) e |St%'|,

(hy (X, n) = ((B)0) (X, n) = p"(hy0X) = '(h°) (X, n).
3. Kan Extensions of Homology. We recall from [7] that '(h°) (X, n) is

isomorphic to Uh’Lx, (Y, g), @), with ((Y, g), «) running over all objects
of (StE | (X, n)) modulo the following equivalence relation:

X ehsl‘(X,n)((Y’ q)’ O() and X, € hsL(X,n)((Y,, q/)a OC/)
are = — equivalent if, and only if, there is a diagram
(Y, ), » 7 (Y", q"), «") T (Y, 4 o)
in (StE | (X, n)) with h%(B) (x) = h*(B') (x). If x € h’Lix,n((Y, q), @), we
write [x, o] for its = — class; also, we shall indicate with
k(Y, g), @): BLx,n((Y, ), o) — (1) (X, n)
the quotient map which takes x into [x, o]. Finally, if &: (X, n) — (X', n')
is a morphism of St%”, '(h*) (¢) [x, a] = [x, a], for every [x, o] € '(h°) (X, n).

Define the following relation in the set H(X, n) = up"hLx(Y, [f]) where
(Y, [f]) runs over all objects of (E | X): x € p"hLx(Y, [f]) and x’ € p"hLx(Y’,
[f"]) are ~ — related if, and only if, there is a diagram

Y, /D i Y7 "D 7] % D
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in (E | X) with h[g] (x) = h[g'] (x'). This ~ — relation is reflexive and
symmetric; in order to make it transitive we shall assume that 7 has weak
local pushouts rel €'. (This condition on the pair (%', %) will be retained
until the end of the paper). For any (Y, [f])e|(E | X)|, let k(Y [FD:
P"hLx(Y, [f]) — H(X, n)/ ~ be the quotient map; it takes x into &

(3.1) LEMMA. There is a bijection between the sets H(X, n)/~ and
(hy(X, n). : S

PROOF. We follow the notation of [ 7]. Recall that (h)*(X, n) = colim p"hLy
is given by an initial object

LY, [f]) — (X, m[(Y; [fDe|(E ] X)[}

of I(4b%, p"hLy); for the moment, let us regard it as an initial object of
I(Set”, p"hLy). 1t is trivial to verify that :

LY, [f]) g HX, w/~ (%, [De|(E L X)|}

is an object of I(Set?, p"hLy); we want to show that actually, this is an
initial object of that category. To this end, we take an arbitrary object

{"hLx(Y, [fD—p A| (Y, [fDe|(E | X)|}

of I(Set”, p"hLy) and define a function ¢: H(X, n)/~ — A by ¢{x, [f]} =
= gy(x). Notice that for every object (Y, [f]), pk(Y, D = gy

We use the bijection H(X, n)/~ & (h)(X, n) to give a graded abelian
group structure to the first of these two sets, so to identify them as graded
abelian groups. In view of this identification the homomorphisms ('h)5(&)
assume an explicit form which we are interested in knowing. To begin
with, we observe that for every A € | Ab?| and every integer j, there is an
isomorphism y/(4): 4 — p/(4) which takes any element a e A4; into
itself, but as a homogeneous element of degree i + j of pi(4); we shall
denote y(4) simply by p/. Now suppose that ¢ is represented by a ho-
motopy class [g]: $"*/X — S"*IX",n + j,n’ 4+ j > 0; on the other hand,

} pix) € p"IRLx(Y, [f]) = hLx(S"*Y, [S"*if7]),
thus _

{p’(x), 9] [S"*F ]} e Chyp(S™ X", 0) = pI(hy (X, n).
We then have (h)(¢) {x, [f]} = p 7 {p'(x), [g-S"*f]}.
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Let us study next how the isomorphism p’ acts on the graded groups '(h°)
~ (X, n) and (h)*(X, n).. ‘

(3.2) LEMMA. Let [x, o] €'(h°) (X, n), with a: (Y, q) — (X, n), be given;
then, for every jeZ, p'[x, o] = [p'(x), o].

PROOF. By lookihg at the Homogeneous components, we infer that
p’ commutes with the appropriate quotient maps; on the other hand,
since

P (h) (X, n) = '(h) (S"Y (X, n) ="(h) (X, n +))

and (S")(¢) = o, we can write pj_k((Y, q), ®) = k((Y, ¢ + j), @)p’. Hence,
pllx, o] = p’k((Y, q), @) (x) = [p'(x), «].

(3.3) LEMMA. Given {x, [f]} e (h)'(X, n) and an integer \ j such that
n+j20, pix, [f1} = {px), [$"" 1}

PROOF. Again, p/ commutes with the appropriate quotient maps; then,
because p"* hLy(Y, [f]) is naturally isomorphic to h Lgn+iy (S"*Y,[S"*f])
and since (‘h)(X, n + j) is identified to (h)*(S"*7X, 0) via the equivalence
(X, n+j) = (§)"(X, 0) = ("X, 0), it follows that kY, [f] =
= k(S"*7Y, [S"*if]) p’. From this,

pix, [T} = pPk(Y, [F]) (%) = {p700). [S"F TS

We are now ready to prove the main result of this section.
(3.4) THEOREM. Let ‘5~and %' be admissible categories such that € is a
full subcategory of €' and € has weak local pushouts rel €' let h be a homo-

logy theory on €. Then, a (left) Kan extension of h to &', which satisfies
the Suspension Axiom, commutes with stabilization.

PROOF. For every (X, n)€|St%’| define the functor
JX, n): (E|X)— (StE | (X, n)
which takes any object Y UL x of (E | X) into (Y, n) L (X, n), where
f =colim [S]. Clearly p"hLyx.= h*Lx,nJ(X, n); furthermore, the
j=0
set

{P"hLx(Y, [f]) = KLan(Yn), N iwm p 0) X [(L [ DelE | X))
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is an object of the category I(4b%, p"hLy). Hence, there i i
) : : sa
group homomorphism e

nX, n): (hy(X, n) — '(°) (X, n)

such that, for every (Y, [f ], n(X, n) k(Y, [f]) = k(Y, n), f). In particular
n(X % [} =[x ] It follows that if j is any integer such that n +’
+j> Q, p'n(X, n) = n(S"*X, 0)p’. This remark plus (3.2) and (3.3) show
that # is natural: given ¢: (X, n) — (X', n)) represented by

[9]: "X — S"*X'(n+j, n' +j>0),
n(X', n) (hy Q) {x, [f1} = n(X', n)
PP, [g - 8" =[x & f T = ") On(X, n) {x, [f]}.

We show next that n(X, n) is a bijection. If [x, ') (X i
x € WLix,w((Y, q), «) and « is represented by s U e
[f1: 87Y —S"HX, g+j>0, n+j>0,

(X, mp~H{pix), [f1} = p~n(S"*IX, 0) {pi(x), [f1} = [x. a].
Suppose now that {x, L1 4X, [T} € (h*(X, n) with xep"hLX(.Y, 7D,

X' € P hLx(Y’, [/']) and [x, f] =[x, f7]. This last condition implies
the existence of a commutative diagram

by

(Y, n)
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in (StE | (X, n)) with hs(ﬁ) (x) = h(B) (x'). Hence there is a suitable com-
mutative diagram in 4’ and representatives [g] and [¢'] of B and B res-
pectively, so that h[g]p’(x) = h[g’ ]p/(x) and therefore,

{pix), [S"7 1) = {pix), [S™971). By 33), {x, [/} = {x, /']

The proof of Theorem (1.2) is now very simple: just use (2.3) and the fact
that '(h*)0 is a homology theory.

We give next examples of pairs of admissible categories which satisfy
the weak local pushout condition.

(3.5) EXAMPLE. Let .o/ be one of the following categories: %", = ba-
sed CW-complexes, FE# , = finite based CW-complexes, € # 4(xo) =
— countable based CW-complexes. We then define %(+/) to be the cate-
gory of based spaces with the same homotopy type as objects of ./; b ()
is admissible [7, IL 1.2].

Let %' be any admissible category which contains %(/) as a full subca-
tegory; we claim that %(</) has weak local pushouts rel @'. First assume
that the objects Yo, ¥; and Y, of diagram (1.1) actually are objects of <7
furthermore, we assume that the morphisms «; and o, of that diagram
are represented by cellular maps f; and f,. By [7, . 5.7.] the mapping
cylinder M, can be taken as an object of «/; let i: Yo — My, be the
inclusion map and r: M, — Y; be the homotopy equivalence such
that ri = f;. Now we take the pushout - E

My, e

i hy

YO 2 YZ

¥z
in /. Referring back to (1.1) we note that if g; and g, represent ; and f,

respectively, gi7i = g1fi ~ gaf2; since i is a cofibration, we deform g,r
to a map g, so that g;i = g,f>. Then, there is a map w: W— X such
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that wh; = gy, wh, = g,. If r~' is a homotopy invers ¢
[h2] and We|%(</)| complete (1.1). = g Lol
(3.6) EXAMPLE. Let C be a Serre class of abelian groups and .o be like
in (3.5). We say that an object of (.#) belongs to C if its reduced integral
homology belongs to C. We then define 4(+#), . to be the category of
objects of %(.«/) which belong to C. Iff: X — Yisa morphism of ‘6(&{)
Cy e |%(«/)|; moreover, the exactness of the sequences

H(Y; Z) — A/(C;; Z2) — H,_(X; Z)

shows that C, belongs to C and therefore %(7),- is admissible. Let @
be an admissible category of which %(&i isafu ﬁ subcategory.

Given a diagram like (1.1), we construct We |(€(Jz/)| and morphisms to

-and from W which complete it; such a construction follows the lines

of (3.5). The problem is to show that W belongs to C; for this, we prove
the following.

(3:7)1}1;EMMA. Let o/ C be the category of objects of o which belong to

A > B

J

is a diagram of </ C with A a sub-object of X and f cellular, there is a pusﬁout
of it in o C

PROOF. By [7 L 57.], Bu;X e|o/| and f: X — Bu X is cellular.
Moreover, C; : BquX where the inclusion of 4 into CX is given by
the composition 4 > X —X, CX; this comes from the elementary

fact that composition of pushouts is a pushout. On the other hand, in
the commutative diagram
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CA

A 4 S B

CX « e A B
JXl : f
the vertical arrows are homotopy-equivalences; hence C; = Bu,CW
[3, 7.5.7.]. Since C,e|s/ ], it follows that C; €|/ (~|. The sequence
. C 7 C
X — Bu;X — Cy gives rise to an exact sequence in homology and thus,
the’ Lemma is proved.

Going back to the example, we see that I¥ belongs to C by applying Lemma
(3.7) to the diagram formed by the morphismsf,: Yo — Y,andi: Yo — My,

4. Kan extensions (to CW-complexes) of homology theories defined on
finite CW-complexes. We assume that all CW-complexes used in this
section are connected and contained in a fixed Hilbert space R®; then,

with the notation of (3.5), we take € = G(F€# ,) and €' = G(€W ).

(4.1) THEOREM. Let h be a homology theory on € and let h' be an exten-
sion of the functor h to ¢'. The following are equivalent.

1) K is naturally equivalent to a Kan extension of h;

2) for every X €|%'|, W(X) = colim h(Y,), where Y, runs over all finite
sub-CW-complexes of a based CW-complex Y with same homotopy type
as X;

3) K is naturally equivalent to a homology theory on ¢’ defined by a spectrum.

We show first that 1) and 2) are equivalent. Let % be the homotopy ca-
tegory defined by all finite sub-CW-complexes of Y, and let Jy: Y — ¢
be the inclusion. Form the comma-category (Jy | X)andletJ: (Jy | X) —
(E | X) be the obvious functor (notice that both comma-categories are
small). We recall two definitions from [2, Exposé I]. A category </ is
said to be filtering if: F1)every pair (4, A') of objects of ./ can be embedded
in a diagram
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o
-

AI

14 ”

of o; F2)if A = A" is a pair of morphisms of .«Z, there is a morphism
A" — A" such that the two composed morphisms 4 = A” are equal
Also, let F: o/ — % be a given functor with .o/ filtering; we say that F
is cofinalif: C1)for every B €| 2| there is an object A € |.o/| and a morphism
B —>.F(A); C2)if Be|#|, Ae|s/|and B = F(A) are two morphisms in %
there is a morphism 4 — A’ in .« such that the two composed morphisms,
B Z F(A') are equal.

We are going to show that (Jy | X) is filtering and J is cofinal. Let
¥ /11_) X and Y; B2, X be given objects of (Jy | X); take Y, as the base
point gf Y1, Y, and a4, a, to be the homotopy classes of the inclusion maps
of ¥y into Y; and Y, respectively. As in (3.5) we obtain an object W — X
and morphisms 7ii Y — W(i =1, 2,), showing F1). Let now S, and Ba
be morphlsms of the object Y; %1, X into the object Y, %2 X of Uyl X)
Notlce that o1 = a,f, = a,; and hence, if i: ¥; x Oqu_)x 1—Y x I
is the homotopy class of the inclusion, az(B1 2 B2) = (g - prq)i. Since @
has weak local pushouts rel @', there is We |#| and morphisms 7, :
WxXT—W y: Y, > W o: W— X such that y,i = y,(8; 2 §,),
WY1 = &y pry, @y = . Let us take Was a finite CW.complex, @ = [w]
r: X — Ya homotopy equivalence. Since im(rw) is a compact subspacé
of Y, there is W'e |F% o/,| such that im(rw) = W’ = Y. Thus, we can
rearrange matters so to obtain a commutative diagram ’
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With this we show F2). As for the cofinality of J,if Z 1> X € |(E | X)|(we
can assume Z € |F% o/ ), construct a finite sub-CW-complex W of Y
which contains im(ra); this gives rise to a morphism (Z 14 X) —
(W — X), showing C1). The proof of property C2) follows the lines of
the proof of F2) given before.

(4.2) LEMMA. Let A, B be small categories, A filtering, F: o — &
cofinal. Let € be cocomplete and let G: B — € be a given functor. Then
colim G = colim GF. (This is Proposition 8.1.3, Exposé I of [2]).

Lemma (4.2) completes the proof of the equivalence between 1) and 2):
take

Jy | X) =D (E | X) x> 4b°

and note that colim hLyJ = colim h(Y,), Y, running over all finite sub-
CW-complexes of Y. Part 2) follows from 3) because of the definition of
homology determined by a spectrum (for further details, see [7, 11.2.12]).

Finally, 1) = 3). Consider the relation in UhLx(Y, [f]) — where (Y, [f])
runs over all objects of (E | X) — similar to that defined in H(X, n) (see
(3.1)). Because % has weak local pushouts rel %', we have an equivalence
relation and h(X) =~ U hLx(Y,[ /])/ ~. On the other hand, h is equivalent
to a homology theory h( ;&) determined by a spectrum &, as a homology
theory defined on finite CW-complexes (see [1]). We then show that
'h ~ h( ;E) by setting n(X) {u, [f1} = h([f]: Eu. (see [7, IIL.4.4]).

Notice that in this geometric case 'h =~ '(h°)0.
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