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Stratification of GL (2, R) by Topglogical Classes*

M. C. de Oliveira

Introduction

has the general problem of classifying the elements in G up t6 7eq _

If G has some manifold structure and the #-equivalence classés are
submanifolds, it is natural to look at the stratification of G by these classes
in order to study the bifurcation of families of elements of G.

In this paper we study this problem for G equals GL (2, R) and #
equals to topological conjugacy through an orientation preserving ho-
meomorphism. We refer to [1], [2] and [4] as studying a similar, but
not identical problem.

Our main results are contained in the two theorems in the last section
of this paper.

We hope that the detailed analysis, given here for the case n = 2,
will contribute to the understanding of the general problem of topolo-
gical classification of elements in GL +(n, R), for n > 3, and of the geome-
try of the classes and also to the stratification of germs of diffeomorphisms
with a fixed point in.0 e R?.

1. The classes are smooth manifolds

Definition: G = GL, (2, R) =the set of 2 x 2 real matrices with po-
sitive determinant.

Definition: M L M’ if there exists a homeomorphism h: R? — R?such
that ho M’ = M - h. If h is orientation preserving, we say M ~ M’ through
an orientation preserving homeomorphism. Here M, M'eG.

The topological classification of linear isomorphisms in R" is still
an open problem. It has been solved for n = 2 (classifical) and for n = 3
(classification of Lens spaces) but is unknown for n > 4. See Kuiper and
Robbin [2] for further details.
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For-the case n = 2, it follows from [2] that the classes (through an
orientation preserving homeomorphism) in G are:

expansions: [A1]s |42] > 1
contractions: 0< |2 <Mi 0= [1| <1
saddles: Ay el B0y <l

twisted saddles:

M<-—-1;, —1<4,<0

1 x expansions:

/11=1, 12>1

1 x contractions:

A= L0 =t 5]

— 1 x — expansions:

A= e =]

— 1 x — contractions: M=—13i=TF<i <0
sheers: [GHT el Al = G =]
¢ cos 0 sin 6
rotations: ; for 0= 0 <7 "m0 <On
— sin 6 cos 6
I and — I

Here, 4, 4, denote the eigenvalues of the matrices and [M] denotes
the topological class of M. Here, also, I denotes the identity matrix. Hence,
we have 14 classes and two 1-parameter families of classes.
Consider the smooth map f: G — R? given by f(M) = (det M, tr M).
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A straightforward computation leads to:

(1.1) Lemma: If M has different eigenvalues, that is, M ¢ {~ }(P), where
P is the parabola y* = 4x, or M e f~ }(P) and is not a diagonal matrix then
M is a regular point of f.

(1.2) Corollary: The classes 1 x exp, 1 x contr, — 1 x (— exp),
— 1 x (— contr) and the set of all rotations in R* are smooth submanifolds
of codimencion 1 of G. The class of each rotation is a smooth submanifold
of codimension 2. The sheers are smooth submanifolds of codimension 2.

Expansions, contractions, saddles and twisted saddles are open subsets
of G and therefore of codimension zero.

Diagram
Class : Cod. Top.”* type Boundary

expansions 0 St x R? (£ 1 x 4 exp) U (= sheer) U
U rotations U + [

contractions 0 SLocR2 (£ 1 x + contr) U (+ sheer) U
U rotations U + [

saddles 0 St R? (1 x exp) U (1 x contr) U
U (+ sheer) U I

twisted saddles 0 Stx R (—1x —exp)uU(— 1 x —contr)
U (— sheer) U — 1

1 x expansions 1 St x R? + sheer U I

1 x contractions 1 St x R? + sheer U I

— 1 x — expansions 1 5! x R? — sheeru — I

— 1 x — contractions 1 St x R? — sheer U — |

rotations 0 < 6 < &

1-parameter family of

classes 1 R3 LG it

rotations n < 0 < 2r¢

1-parameter family of

classes 1 R3 O IGEDl G =

each rotation 2 R? %)

[ [ ] 2 SxR |1

[4_b1 [C4=b] 2 S'xR | -1

I and — I 4 point %]
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2. Pictures

Let M=<p+qr+s>;
r—sp—gq
then MeG<detM >0

< g% +r? <p?+si

We may embed G in R* by sending M € G to (p, q, 1, s). Let : G — R
denote the restriction to G of the projection onto (p, s)-plane. Then for
each point (p,s)eR?, n~'(p,s) is a set as follows:

@ when (p,s) = (0,0)
open disc, when (p,s) # (0,0)

e (0N B = o T,

wh @
inverse image of a point

by f (of lemma 1.1)

det

®

tr2 = 4det

Fig. 2
MeSL2,R)<detM =1
<g>+rr=p*+s -1
Then, for each point (p,s)eR?, =~ '(p,s) is a set as follows:
%] when p*+s?<1 2
point  when p*+st=1
circle ~when p?+s?>1

oy

SL2,R) = S' x R?
detFV] —
|p| <ol

*. rotations = 2 x R* (foliated by copies of R?).

SL(2, R) N (saddles U twisted saddles) = 2 x R* x S'.
Sheers U {I} v {— I} = 2 X cone.

M is a rotationc»{
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Picture of SL(2, R) =~ open solid torus
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When ¢ — 1, boundary of expansions, 2 x S x R, deepens to cones
at ¢ = 1, but saddles and twisted saddles remain S! x R?. For c€(0,1),
we get the same picture, just change the word expansion to contraction.

3. Neighbourhood of I

Let M = (?PX47%5). The sphere S, of centre I and radius ¢ (¢ > 0, small)
is given by:

-0 TR T =l

Consider now the torus 7, contained in S, given by: (p — 1)* + s> =
= ¢ + r* = £2/,. On T, we ‘have:
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rotations = two paraboloids foliated by circles

1 Xexp * /1 Xcont\ 1 Xexp

)
: 2 X

\ . contractlons

\

\| expansxons \ ‘ ‘\ ex pan5|0ns
( 1 1
i T 1 |

I I I

sheers outside torus saddles

Fig5

Circles shrinking to a point at p = 1 — &?/g.
Picture for a neighbourhood of I in G.

1 Xexp
3
1/2 R expansions
saddles
1 X contr
ANC N, A
£
- //
contractions A-sheet <-0 - sheet
f<p<ar | 0<6<m
i
axis of spin
9 (1/2 R%)

Fig. 6. Spin 1/2 R* about its boundary plane

4. How the classes meet together locally

(4.1) Let us consider first the classes of codimension one. To fix our
ideas let M be a matrix in 1 x exp, the other cases are treated similarly.

For any neighbourhood U of M in G there exists an embedding
@:D! x D> — U into U with ¢(0,0) = M and ¢(0 x D3 <= 1 x exp,
satisfying the following pattern:

saddles M ¢ expansions | D

-— 1 Xexp

Dl
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Here D' denotes [ — 1,1] and D" = D' x ... x D' n times, forn > 1.
On a disc of dimension one transverse to the class 1 x exp at M,
we shall have:

saddles expansions
M

(4.2) Consider now M as a rotation. For any neighbourhood U of M
in G there exists an embedding ¢: D' x D* — U into U with ¢(0,0) = M
and ¢(0 x D? x 0) = [M] (here [M] denotes the topological class of M
and D? = D? x D) satisfying the following pattern:

A

I
:ontractipn %
/L“/

i
e
-
-
-

/

p! |6]-sheet

On a disc of dimension two transverse to the class of M at M, we
shall have:

rot

contr T

rot

On a one-dimensional disc transverse to rotations at M, we shall have:

contractions expansions
M

(4.3) For the classes of codimension two, consider M in [(§1)]. As
before, the other classes are treated similarly.

Let f: G — {I} — R? be given by f(N) = (det N, tr N). f is trans-
versal to the line [ = {det + 1 = tr} (lemma 1.1). So f ~*(I) = (1 x contr) v
UG *H] v (1 x exp) is a submanifold of codimension 1 in G — {I}
containing the submanifold f~!(1,2) = [(§ *1)] in its interior.

For any neighbourhodod U of M in G one can find an embedding
¢@:D! x D3 — U into U with ¢(0,0) = M and ¢(0 x D* x 0) = [(51)]
satisfying the following pattern:

| saddles

52 D}

1 Xexp

|6] - sheet
exp
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On a two-dimensional disc transverse to [(§ 1)] at M, we shall have:

saddles

1 Xcontr M 1 Xexp

contr exp

5. The stratification of G

(5.1) Definition: A stratification S of a smooth manifold W is a cover
of W by pairwise disjoint, connected, smooth submanifolds, called strata,
satisfying:

i) The condition of the frontier; for each stratum X, its frontier X — X
is a union of strata.

ii) The Whitney A-condition; for each pair of strata X, Y such that
YeX fx—y (neX, yeYyandif T:X —» 1, then 1Y = 7 (here
convergence means convergence in the Grassmannian bundle).

See [3], [6] and [7] for studies on Whitney stratifications.

(5.2) Definition: A foliated stratification S of W is a cover of W by
disjoint, connected, foliated, smooth submanifolds, called strata, satisfying:

i) The frontier condition; for each stratum X, its frontier X — X is
union of strata, and for each leaf L < X, its frontier L — L is a union
of leaves in the frontier of X.

ii) A Whitney A* — condition; for each pair of strata X, Y s.t. Y < X,
if x; — y, (x;e X, ye Y) and if (I, X, T L.) — (1, 7'), where L; denotes
the leaf containing x;, then (T, Y, T,L,)< (z, 7).

The importance of the 4*-condition follows from the following lemma
which is easy to prove. See Trotman [5].

(4.3) Lemma: If X, Y are two strata s.t. Y = X, and if a manifold Vmeets
Y, L, transversely at y € Y, then V also meets X and its foliation transversely
in a neighbourhood of y.

Call S; the decomposition of G given by the topological classes
using orientation preserving homeomorphisms (14 submanifolds and two
1-parameter families of submanifolds. See diagram in section 1).

Each one of the two 1-parameter families of submanifolds forms a
foliated submanifold of G. The other strata of S; are (trivially) foliated
by a single leaf.

‘Now, call S, the decomposition of G given by the 16 submanifolds.

Theorem A: S, is a stratification of G.
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Theorem B: S, is a foliated stratification of G with finitely many strata.

Theorem A follows from theorem B.

Proof of theorem B: The frontier condition is clearly satisfied. See
diagram.

Consider (X, Y) a pair of strata in S,. Suppose Y = X — X, and Y
is a point. Then Condition A* is automatically satisfied at Y. Now, as
condition A* is local, theorem B follows from the local analysis in section 4.

Q.E.D.
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