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Some Applications of the Law of Large Numbers
Jerome A. Goldstein

1. Introduction

This expository paper is aimed largely at analysts who know little
or no probability theory. By presenting some surprising, nontrivial appli-
cations of an elementary probability limit theorem (a variant of the weak
law of large numbers), we hope to persuade these analysts that it is
worthwhile to study probability theory (if for no other reason) to get
a new perspective from which to review other parts of analysis. The basic
limit theorem presented below is at the level of easy advanced. calculus,
whereas the consequences of the limit theorem are usually thought to
be more difficult.

Much of what we present is contained in Chapter 7 of Feller’s book [2].
Some of the results presented here are new, but we are more interested
in publicizing Feller’s clever techniques than in extending his results.

The plan of the paper is a follows. Section 2 contains Feller’s elemen-
tary limit theorem. This section is written in nonprobabilistic language
to indicate that one need know no prabability theory to understand the
theorem and its easy proof. (Section 2 will look awkward to a proba-
bilist.) Section 3 contains the result of Section 2 translated into proba-

_bilistic terminology. Section 4 contains applications, namely: the

Weierstrass approximation theorem, a difference quotient version of
Taylor’s theorem, inversion of Laplace transforms, and the moment
problem. We pinpoint exactly where probabilistic thinking comes into
play in the applications. Section 5 deals with rates of convergence. Section 6
contains a multidimensional generalization and an application. Finally,
Section 7 contains E. Borel’s elegant application of the strong law of
large numbers to show that almost all real numbers are normal.

2. Feller’s limit theorem

A distribution function is a nondecreasing function F:R = ] — oo,
oo [ — [0, 1] satisfying lim F(x) =0, lim F(x) = 1. (One could also re-
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quire that F is continuous from the right, but this is irrelevant for our
purposes.) We write F € 2% to indicate that F is a distribution function.
We shall be concerned with integrals of the form [’g(x)dF(x) where
—w<a<b<ow, FEZF, and g is continuous. These Riemann-

Stieltjes integrals are limits of sums of the form ) g(y)) (F(x;) — F(xi-1)).
i=1

We won’t bother to explain this notation as we assume the reader is'fa-
miliar with such integrals. Actually, there are only two cases which interest
us: (i) F has a piecewise continuous derivative f, so that

[P g(x) dF(x) = [P g(x) f(x) dx;

(ii) F is constant in an interval J except for jumps of size a; at x;, so that

J, 9(x) dF(x) = Zjg(x,)a; ;

the latter expression is either a finite sum or infinite series. Note that
[ dF(x)=1 for Fe2F. We shall write Jafors P

Lemma 1 (Chebyshev’s inequality). If Fe 2%, fodF(x) < o0, and
e > 0, then for any real number p,

fe=e dF () < €72 | (x — )2 dF ().

Proof. FE9# and [x?dF(x) < oo implies |(x — p)*>dF(x) < c0.’

We have
JOx — W2 dF(X) = fjx- <o (x—p)? dF(x) + fjx-pi<ec (0 — p)* dF(x)
= .‘|x—ﬂ|_>.£(x i) #)2 dF(X) = 82 jlx*ulZs dF(X)
Theorem 1 (Feller). Let 0 be a real parameter varying in a compact
(i.e. closed and bounded) interval J. Let {F,(-;0): 0€J} ¢ 2F satisfy for
nE—
(1) [ xdFy(x;0) =0  for all n, 0,
(i1) [ — 0 dF,(x;0) =062(0) 0 as n— oo,
uniformly for O € J.
Then for every bounded continuous function:f on R,
[ FO0dF®) — f) a5  n— o,
uniformly for 0€J.
Proof. Let £ > 0 be given. Choose M ¢] 0, oo [ such that | f(x)| < M
for all xeR. For 0€eJ,
| [ f(x)dF,(x;6) — F(O)] = |[(f(x) — f(0) dF.(x; 0)|
(1) = [fix-si<alf ()= FONdFulx;0)+ [1x-ai 25 f (X)=f O)|dFalx; ) =11 + 1,
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for each 6 > 0. Since fis uniformly continuous on compact intervals
we choose & > 0 such that | f(x) — f(0)| < &2 for OeJ and |x — 6] < 6.
Fix this 6. Now choose N = N, such that

) n>N implies a2(0) < 6%¢/4M.
Then

(3) I < $[jx—0/<s dF(x;0) < &/2

and

I, <2M §|x—0|za dF,(x; 0)
< 2Ma?(0)/6* by Chebyshev’s inequality
4) < g2 iy N
Combining (1), (3) and (4) completes the proof.

3. The weak law of large Numbers

Let (Q, %, P) be a probability space (i.e. a measure space such that
P(Q) = 1). Let X be a random variable (i.e. a real-valued X- measurable
function on Q). The distribution function Fx of X is defined by: Fx(x) =
=P{weQ: X(w) < x} (= P{X < x} for short). Clearly Fxe 2%. If
g: R — R is continuous (or more generally, Borel measurable), then the
expectation E(g(X)) of the random variable g(X) is defined to be the
Lebesgue integral [qg(X)dP. In practice, this is always computed with
the aid of the law of the unconscious statistician:

©) E(g(X)) = %4 g(x) dF x(x).

(More precisely the left side exists if and only if the right side exists, in
which case equality holds.) In undergraduate courses (5) is often used
as the definition of E(g(X)). Two choices of g are especially popular:
E(X) is called the mean of X (take g(x) = x), and Var(X) = E(X — E(X))?)
is called the variance of X (take g(x) = (x — p)* where pu = E(X)). One
final bit of notation: y4(w) denotes the random variable which is 1 if
weA and 0 if weQ\ 4, where A eZ.

Lemma 1’ (Chebyshev’s inequality). Let X be a random variable
having a finite variance. Then for any & > 0,

P{|X — EX)| = ¢} < &2 Var(X).
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Proof.
Var(X) = E{(X — E(X)\*xyx-£w)>a} + E{(X — E(X))> x(x- £ <e))
> E{e’Yux-syza} + 0 = & P{|X — E(X)| = &}.
The above is evidently a repetition of the statement and proof of
Lemma 1.

The random variables X, X,, ... are independent if for each n and
each A4;eX,

i=1 i=1

They are identically distributed if they have a common distribution func-
tion, ie. if F(x) = P{X; < x} does not depend on i.

Theorem 0. (Weak Law of Large Numbers). Let X, X,, ... be
independent, identically distributed random variables having a finite mean
u = E(X;) and variance. Then for each ¢ > 0,

P{‘IZXi—u,ZE}HO
n =1

Thus the average % Y. X converges in probability (or weakly) to the
i=1

assn —> 0.

mean U as n — 0.

Proof. Let'Y,'—"— Z X;. Then E(Y,) = u, and using the indepen-
dence of X, .., X, 1t is easy to show that Var(Y,) = n~! Var(X,). Che-
byshev’s inequahty yields

P{| Y—ul=e <e? Var(Y) = e 2 Var(Xy)/n — 0
as n — oo.

The following result is a special case of Feller’s Theorem (Theorem 1).

Theorem 1’. Let X, X,,... be independent, identically distributed
random variables with mean E(X;) = 0, which we consider as a real variable

varying over a compact interval J. Suppose also that K = sup Var(X;) < co.
0eJ

Then for every bounded continuous function f on R,

A(E5 o

as n — oo, uniformly for Qe J.
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Let F,(;0) be the distribution function of Y, = — Z X;. Then

[ xdF,(x;0) = 0 for all 0, n; and [(x — 6) dF,,(x;H) Var(Y) ~=nn
Var(X;) < K/n — 0 as n — oo, uniformly for e J. Since

el (3 5,0} = 1reariso,
we see that indeed Theorem 1’ is a special case of Theorem 1. There is
no need to repeat the proof.

Note that Theorem 0 is a special case of Theorem 1’ (take J = {6},
f(x) = x). But they are not really that different; if one stares at them long
enough one becomes convinced that they are almost the same! This
is why we call Theorem 1 a variant of the weak law of large numbers.

4. Applications

Specific choices of F,(-;0) in Theorem 1 lead to interesting applica-
tions. Question: How does one choose F,(-;0)? Answer: Choose the
basic distribution functions arising in probability theory. This is the
point where probability theory enters in a crucial way.

In the examples (except Examples 3) that follow, F,( ;0) will be the

distribution function of %ii X;, where X;, X,, ... are independent,
identically distributed random variables with mean 6 (cf. Theorem 1').

Example 1. Let X; = 1 with probability 0, X; = 0 with probability
1-0,0eJ=[0,1]. Then anl X; has the binomial distribution with pa-

rameters n and 6. Thus F,(-;0) is a step function whose jumps occur at
k/n(k =0, 1, ..., n), the magnitude of the jump at k/n being (})0*(1 — 0)"*

!
where (i) = m is the binomial coefficient. A simple calculation
shows that
[ xdF,(x;0) = 6, [ (x — 6)*dF,(x;6) = @ ! 4Ln i

as n — oo uniformly in 6€[0,1]. Consequently for any continuous
function f on [0, 1],

n

(6) fO) — [ f)dFx;0)= Y fG) @1 — oy*
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as n — oo, the convergence being uniform in 6 € [0, 1]. Thus any con-
tinuous function on [0, 1] can be uniformly approximated by polynomials.
This is the Weierstrass approximation theorem. Moreover, (6) contains
an explicit recipe for computing the polynomials which approximate f';
the polynomials on the right hand side of (6) are called Bernstein poly-
nomials. The idea of this proof goes back to S. Bernstein.

Example 2. Let X; have a Poisson distribution with parameter 6.
Then ) X; has a Poisson distribution with parameter nf. That is,

F,(; 0)l=is a step function having a jump of size e (On)'/k! at k/n,
k=0,1,2,.... Let J be the interval [0, M, |, where M; > 0 is fixed but
arbitrary. One easily shows that | xdF,(x;0) = 0, [(x — 0)> dF,(x;0) =
= % = % — 0asn — oo, uniformly for § € J. Hence for every bounded
continuous function f on [0, o[,

£(0) < [ £(x)dF,(x;0) = fe—znf<%>(i£!)"

—_-k;ii i f(kh)< )ﬁh% where h=%

) - 3G mE e o ren,

the last equality being obtained by setting m = j + k. Define the diffe-
rence quotient operator A, by

oy =i Bo iy,

Ay" is the nth power of Ay ; thus A, = A(A"'f). A simple induction
argument yields

S S b T T
k=0

Plugging this into (7) yields

o0

Hm
fO) — Y A"FO)
as h — 0, uniformly for 6 € J. Changing variables we conclude that if
f is any bounded continuous function on R and if xeR,

0

B A et

m=0
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as h — 0, uniformly for y in any bounded interval. This is a generalized
Taylor series expansion of f with difference quotients replacing deriva-
tives; it was first obtained by E. Hille. Note that f need not be differen-
tiable here.

Example 3. Let g, be the density function of a Beta distribution
with parameters nv;, nv > 0. That is,

I'(nvy + nv)

nvy—1 Rtk ny—1 <
gn( ) r(nv )r(nv) X (1 x) if 0i< e <t

and g(x) = 0 otherwise; here I" denotes the gamma function. Then calculus
shows that

§ xgn(x) dx = X ,J(x— .4 >29n(x)dx= Y

Dol Vi + v nvy + v)vy + v+ 1)

Let v be a fixed positive rational, let 6 = vv1+ e and let J = [0,1].
1
If Fu(x;0) = |7 ga(t) dt, then

; e 2 5 Ov 9

as n — oo, uniformly for 6 € J. (Recall that v is a fixed positive rational.)
Consequently if f is a continuous function on [0, 1], then as n — o,

F<—nv > nvl
(8) f(e)HJOIf(x)an(X,G)Z 19— 4 éf(x)xl i 9(1 ol x)nv—l dx.
r( 1”1 0) T(nv)

The convergence is uniform for 6 € J. When nv is an integer we can expand
(1 — xy™~! as polynomial in x. Let 6 be a rational number in [0, 1] (so

that is rational). Now let n — oo through a subsequence S of inte-

0
1=0
gers so that nv—1 and 1—09 are positive integers for each ne S. Then (8)
implies that we can recover f(0) from the moments _f(} T o) doernt—trs
no + 1, ..., where nyq is an arbitrary integer. Since 6 is an arbitrary rational
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in [0, 1], it follows that f(x),0 < x < 1 can be recovered from [ f(x) x™ dx,
m = ng, no + 1, ..., for any continuous function f on [0, 1] and we have
exhibited a specific algorithm for doing so. For a different approach to
a slightly different moment problem based on Theorem 1, see Feller
[2, pp. 224-227].

Example 4. Other distribution lead to other results. Discrete distri-
bution lead to various theorems concerning approximation by rational
functions. The normal distribution (X; has normal distribution with mean
0 and variance o2,

Fux;60) = (n2ne®)/2 [* ¢ "% 2% gy, BeR,

o a fixed positive number) leads immediately to the result.

n fie 21952
( > f f(x)em==0"2 ax —s £(6)

2na?

for each,bounded continuous function f on R, uniformly for 6 in bounded
intervals. This result is used in the study of initial value problem for the
one dimensional heat equation.

Example 5. The final result we mention is the use of the gamma
distribution. (Here we let X; have gamma distribution with parameters
o, p and use Theorem 1'.) Let

1) = g P e

forios =0 and™ i (6) — 0 for x = 0 Here o =08 5= 0= Wellcti0 = o/
and regard f as being fixed and 6 e J = [0, M, ], M, a fixed but arbitrary
positive integer. If

F(x;0) = |5 f0) dt,

then | xdF,(x;0) = 0, | (x — 0)* dF,(x; 0) = 6/nB. Hence for any bounded
continuous function f on [0, oo,
3 A gnﬂ (nﬁ)nﬁ e’ nf—1 _—nnféx
©9) J10) — J S dFux; 0) = = g [ S (X7 e dx
as n — oo, uniformly for € in bounded intervals of [0, co[. Let
o(d) = [0” el b it =0)

be the Laplace transform of f. Then ¢ is infinitely differentiable and
(@/di") () = j(;‘ en ol b 4 2 0
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Thus if we know the Laplace transform ¢ of fand if § is an integer, say
B = 1, the right hand side of (9) is a constant times (4"~ '/di"~ 1) p(1)
evaluated at A = n0. Thus (9) is an inversion formula for Laplace transforms.

5. Rates of Convergence

Suppose that we can approximate a continuous function f on an
interval J uniformly by “nice” functions f,, so that given ¢ > O there
exists an N, such that

f)gplf(G) LBl e

for all n > N,. We know that N, exists; the problem we consider now
is to find N, explicitly as a function of . This problem of the rate of con-
vergence of approximating functions is important in many contexts, for
example, in numerical computations. The next theorem shows how fast
convergence takes place in Theorem 1 when the function being approxi-
mated is Lipschitzian.

Theorem 2. Let {F,(-;0); O6e€J} be as in Theorem 1, and let the hy-
potheses of Theorem 1 hold. Let f be a bounded function on R satisfying a
uniform Lipschitz condition, i.e. suppose there are constants M, L such that

|fe)l =M, [f6)— fO)| = L|x -y

for all x, yeR. Then, given ¢ > 0,
|/0) = [ f(x)dF,(x;0)| < ¢

for all 6eJ whenever n > N,, where N, is chosen so that
n> N, implies c20) < ¢&/16I>M.
Proof. As in the proof of Theorem 1, for any é > 0,
If(e) = jf(x)dF,,(x;H)[ =l
I, = j‘]x—0|<6|f(x) o= f(9)| dF ix. 0r = 1L §|x—0|<6an(X;9) < 1o;
I = fjx—q25|f(x) = f(0)] dF,(x; 0) < 2Ma7(0)/0>.
Choose =¢/2L. Then I, <¢/2, and I, <¢/2 if 2Mc2(0)/6*> =812 Ma7(0)/c* <
< ¢/2, ie. if 62(0) < 3/161?M. The theorem is proved.
In Example 1,

_ 61 -0 &>
03(9) B T

16I*°M

= =

1
4n



34 J. A. Goldstein

for n > N, if N, = {4I?M/e3} where {x} denotes the least integer > x.
In particular, the error after n terms satisfies

sup |f(6) — B.(0; f)| = O(1/n'/?)

0el[0.1]

for every continuously differentiable function f on [0, 1], where B,(6; f)
is the Bernstein polynomial defined by (6).

Similarly in Example 2 we get N, = {16I>MM,/¢*}, so again the
error after n terms is O(n~1/3). The error estimate O(n~ /%) is also valid
for the other examples.

6. The multidimensional case

Let R™ denote m-dimensional Euclidean space. A random vector
X =(X1,...,Xp) is an m-tuple of random variables on a probability
space (£, X, P). The distribution function of X is the function

FXOO = P{)(lféxl,u.yXﬁ = xm}

defined for x = (x1,...,xm)€R™ F: R® — [0,1]; F(x, ..., Xm) — O as
x; — — oo fori = 1,..., mand the other variables fixed; F(xy, ..., X,) — 1
as x; — o0, ..., and x, — o0; and F satisfies a monotonicity property
which swe state for'm = 2:ib % <= x') yi= ¥,

F(x',y) — F(x,y) — F(x',y) + F(x,y) = 0.

This says that P{(X,, X,)€ Jx, x'] x ]y,)]} = 0. The monotonicity con-
dition for general m is similar but messier. These conditions enable us
to distribution functions on R™ without reference to random variables,
but for the sake of simplicity we won’t.

The next result is an m-dimensional generalization of Theorem 1.

Theorem 3. Let J be a compact set in R™ and let 6 = (04, ...,0,,)
be a parameter varying in J. Let X"(0) = (X1(0), ..., X%(0)) be a random
vector having distribution function F,(-;0) = Fyng)(-) on R™. Assume

(i) E(X70) = 6; for all n,i,0,

(ii) Var(X1(0)) = o7 4(0) — 0 as n — oo, uniformly for 0 € J. Then for
any bounded continuous function f on R™,

Jm f(x) dF,(x;0) — £(6)

as n — o0, uniformly for Q€ J.
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1/2
Proof. Define |x| = (Z x? | for xeR™ Let the hypotheses of the

theorem hold and choose M such that |f(x)| < M for all xeR™. Let
¢ > 0 be given.

| /0) — [rm f(X)dFu(x;0)| < 11 + I,
where

Iy = fjx-g<s| /) — f(X)| dFulx; 6),

I = fix—0125|f(0) — f(x)| dF.(x; 6).

By uniform continuity, choose (and fix)
implies | f(x) — f(6)| < ¢/2. Then I, < ¢/2 follows trivially, Next,

Iz <2M _[[x_glza dF,,(x,G) = 2MP{|X"(6) s 9| = 5}

< 0

= 2MP{§ | X7(0) — 6;* = 52} <2M i P{|X7(0) — 0;> = 6*/m}

<2Mmd~* ) o624{0) by Chebyshev’s inequality
=1
< g2

if n < N,, where N, is chosen (by (ii)) so that ) o¢2(0) <&d*/4Mm for
i=1

all 6eJ and n > N,. Then I, + I, < ¢, and we are done.

This proof contains a rate of convergence estimate for f satisfying
a uniform Lipschitz condition. Thus Theorem 2 generalizes to the m-di-
mensional case too.

Example 6. Let X"(0) = (X1(0), ..., X;n(0)) have multinomial distribu-
tion with parameters n and 0 where 6 = 0,0p+1),0e ={0eR™: 6, =0,

m+1 m+1

Z 8 =1} Z ;= Y 0,=1. Thus if x = (xi,..., %) is an m-tuple of

i=1

nonnegative integers with Z x; < n, then X"(0) = x with probability

i=1

| m
L 91"‘...9mx"'<1 -y 9i>
x1!...xm!<n— xi>! s

z

=)

Let F,(-; 0) be the distribution function of n~ 1 X"(#). Then F,(-; 0) satisfies
the hypotheses of Theorem 3 with

0,1 — 6; Ee
o= L
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Hence for any continuous function f on the simplex J,

FO) — [am f(x)dF(x;0) =
n! 6 ...Hm"m(l = i 6i>

=i

o 250 Xm
= i =
xp lisagiliin— > x !

m .
=

as n — oo, uniformly for 6 € J, where 'the summation is over the set of

m
X = (xq, ..., Xn) With Xx; a nonnegative integer and Z x; < n. This is the
i=1

1
multivariate Wierstrass approximation theorem with multivariate Bern-
stein polynomials. Once again, if f € C'(J), then the error estimate is

| £0) = Jam f(x) dFu(x;0) | = O(n™'3),

uniformly for O€J.

By Examining the Dirichlet distribution (a multidimensional genera-
lization of the Beta distribution), once can solve a higher dimensional
moment problem. We omit the calculations, which are similar to those
in Example 3.

7. The strong law and normal numbers

The strong law of large numbers is the weak law with weak conver-
gence (i.e. convergence in probability) replace by strong convergence
(i.e. convergence almost everywhere).

Theorem 4. (Kolmogorov’s Strong law of large Numbers) Let X,
X,, ... be independent identically distributed random variables having a
finite mean p = E(X;). Then

i
.

4

Xi = b
=1
as n — oo almost everywhere, i.e.
P{weQ:}q Y Xiw)—p as n— oo} il
i=1
For a proof see [2, p. 238 ff]. For a proof of the special case of Theo-
rem 4 we will use, see [1, p. 190 ff].

Let d be an integer, d < 2. Then any number x € [0, 1[ can be written
uniquely in the form

Law of Large Numbers 37

" where x;€{0,1,...,d — 1} and the sequence {x;, x5, ...} does not end

in a string of (d — 1)'s, i.e. given n there is an m > n such that x,, # d — 1.
Then one writes

o — 0P (G e

and calls this the base d expansion of x. We shall say that x is normal
to the base d if

card{x;:1<i<n, x;=c}/n— 1/d

asn — oo forc=0,1,...,d — 1. Here card(A) is the number of members
of A. In other words, x is normal to the base d if each of the digits 0, 1, ...,
d — 1 occurs with equal asymptotic frequency. x is called normal if it
is normal to the base d for every d > 2. Clearly no rational number is
normal. (It base d expansion ends in a string of 0’s if'x = ¢/d.) It is not
obvious that any number is normal.

Theorem 5 (E. Borel) Almost all numbers are normal. That is the set
of nonnormal numbers forms a Lebesgue null set.

Proof. See |1, pp: 195-197]) Let'd = 2. Let ¢e{0,1;...,d —1}.
Define X; : [0,1] — R by Xi(x) = 1 or 0 according as x; = ¢ or x; # c,
x; being the ith entry in the base d expansion of x. Here [0, 1] is regarded
as a probability space equipped with Lebesgue measure. It is straight-

forward to check that X, X,, ... are independent, identically distributed
random variables with mean 1/d, and that

% Y By = noheard{xi vl g =ek
i=1
The strong law of large numbers implies that

% 2 Ktinaabid, qde,

i=1

i.e. almost every number is normal to the base d. Let N, be the set of
numbers which are not normal to the base d. Then the set of nonnormal

numbers is N = U N;, which is a Lebesgue null set since each N; is.

i=1

An example of a normal number is the number whose base 10 (i.c.
decimal) expansion is

0.1234567891011121314151617181920212223.. .,

but this is much harder to prove.
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