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Wave Front Sets, Fourier Integrals and
Propagation of Singularities

Fernando Cardoso

Preface

Pseudo-differential operators have been developed as a tool for the
study of elliptic differential equations. Suitably extended versions are
also applicable to hypoelliptic equations but their value is rather limited
in genuinely non-elliptic problems. Many operators arising in the solution
of differential equations are not pseudolocal. For instance, if L is a hyper-
bolic operator, say the wave operator,
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the operator P mapping the Cauchy data, u and 0u/dt, at time t = 0 to
their values at time T is not pseudo-local. In [4], Hormander introduced
a wider class of operators (the so called Fourier integral operators), no
longer pseudo-local, in order to study hyperbolic equations. Pseudo-diffe-
rential operators as well as the more general Fourier integral operators
are intended to make it possible to handle differential operators with
variable coefficients roughly as one would handle differential operators
with constant coefficients using the Fourier transformation.

It seems clear that still more general operators will play a decisive
role in future developments.

This paper is an introduction to some recent ideas which play an
important role in the theory of linear partial differential equations, na-
mely the notions of wave front set of a distribution and of Fourier integrals,
and to some of its more beatiful results namely the propagation of sin-
gularities.

It is aimed at non specialists and at Ph.D. students in Brazil still
searching for a subject to write their dissertations.

No proofs are given; they may be found in the references listed in
the bibliography.

Recebido em 26 de Agosto de 1975.
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1. The wave front set of a distribution

The wave front set of a distribution is a refinement of the notion of
singular support of a distribution.

Let ue 2'(X), X open in R". According to the Paley-Wiener theorem
u is C” in a neighborhood of x, in other words, x ¢ sing supp u, if and
only if there exists a neighborhood U of x such that for every ¢ € CF(U):

(1.1) F(pu)(xd) = (e "¥ p,up = 0(c )

for © — oo, uniformly in |¢| = 1, for all N.

It turns out that it is very fruitful not only to localize with respect
to x but also with respect to & describing not only the location of singu-
larities but also their local harmonic analysis.

This leads to the following definition:

Definition 1.1 If u € Z'(X), then the wave front set WF(u) of u
is defined as the complement in X x(R"\{0}) of the collection of all
(x0, €% € X x(R™\{0}) such that for some neighborhood U of xo, V of &°
we have for each ¢ € C§(U) and each N:

(i) F(pu) (&) =0z for ©— oo, uniformly in E€V,
It is not difficult to see that

(1.3) sing supp u = N {x, ¢(x) = 0}

the intersection being taken over all ¢ € C*(X) with ¢ue C*(X).

For those familiar with the notion of pseudodifferential operators,
we introduce the following equivalent definition of WF(u).

Replacing the function ¢ by a pseudodifferential operator 4 we
introduce
(1.4) WF@u) = () char(A)

AueC®

where char (4) is the set of characteristics of A.

The definition (1.4) has the advantage of being invariant with respect
to change of variables and thus lends itself to defining WF (1) when X
is a manifold. (It is also possible to give a variant of Definition 1.1 to
obtain a coordinate invariant definition of wave front sets). '

Proposition 1.1 WF(u) is a closed cone in T*(X)\0 and sing supp
u = 1 WE(u).

Here n is the bundle projection: T*(X) — X:
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A subset I' = T*(X)\0 is called a cone if
(x, el =(x,t)el’ for all i =
Proposition 1.2 If A is a pseudodifferential operator then
(L.5) WF(Au) = WF(u) = WF(Au) L char(A).

The second part, extending the regularity theorem for elliptic operators
is obvious; the first part improves the pseudo local property of pseudo-
differential operators.

The concept of wave front sets can be used to define a sheaf . on
S*(X), the cosphere bundle of X, which is analogous to the sheaf % of
Sato in the category of hyperfunctions. Let U be an open subset of S*(X),
which can also be regarded as conic open subset of T*(X)\0. Call two
distributions u;, u, on Z'(X) equivalent over U, notation u; = u, in U,
if WF(u; —up) " U = &. The equivalence classes with respect to this
equivalence relation form a space .#(U) and we have a natural mapping
Puy L (U) — L(U') if U < U. One can prove that the S(U) together
with the “restriction mappings” p,. form a presheaf and hence define
a sheaf over S*(X). Sections of this sheaf & over the whole of S*(X) are
naturally identified with elements of 2'(X)/C*(X) and the support of such
a section is equal to the wave front set of the corresponding distribution.
Historically, Sato first defined his sheaf ¢ over S*(X), X a real analytic
monifold. Global sections of % correspond with hyperfunctions on X
modulo real-analytic funetions. For the supports of global sections he
derived properties analogous to those for the wave front sets. This inspi-
red Hormander to his definition of wave front sets (and the sheaf .%).

We shall now list a number of properties of wave front sets.

Definition 1.2 Let I" be a closed cone in T*(X)\O.

Define Z{(X) = {ue 2'(X); WF(u) = T'}. In 91(X) we take the topo-
logy defined by the seminorms of the weak topology in 2'(X) together with
the seminorms given by taking the best possible constants in (1.2), where
supp ¢ is contained in a coordinate neighborhood and F(¢pu) = Fourier
transform of ¢u in the corresponding local coordinates.

It is not difficult to show that C*(X) is sequentially dense in Z(X).
Proposition 1.3 Let X, Y be C* manifolds, ® a C* mapping:

X — Y; denote by
No = {(,neTXY)\0; y = ®(x), DOy =0 for some xeX}.

Let I be a closed cone in T*(Y)\ O such that L0 Ng = . Then the pull-
back ®*:C*(Y) - C*(X) has a unique continuous extension: Z{(Y)—
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Z'(X), and supp (®@*v) = @~ (supp v) for each ve Z(Y). Moreover, if
[ = {(x,&)e T*X)\0; Iy :'DOy = &, (B(x), )€}, then ®* is in fact
continuous: Zr(Y) — Zt(X).

Note that the pullback ®@*u is defined for all ue 2'(X) precisely
when @' is surjective, and then it is well known that such a definition is
possible. In particular we see that if Y = X is a submanifold, we can
define the restriction of u to Y if the normal bundle N(Y) does not meet
WF(u). For example, if u € 2'(X) and Au e C* for some pseudo-differential
operator A, we can define the restriction of u to Y if Y is non characteristics,
that is, the normals to Y are non-characteristics with respect to A. This
is also a well known fact (partial hypoellipticity).

Proposition 1.4 The push-forward @, .= (®*) is a continuous mapping
from the space of ue€ '(X) such that ® : supp u — Y is a proper mapping,
into 2'(Y). For such u we have:

WEF(@y,u) = {(y,n) e T*(Y)\0;
y=®x) and (x,'DOm)e WF(u) for some xeX}

Proposition 1.5 If ue 2'(X), ve Z'(Y) then
WF (u®v) = (WF (u)x WF(v)) © (WF (u)x suppov) Y (suppo uxWF (v)).
Here suppou = {(x,0)e T*(X); x € suppu} and analogously

suppov = {(y,0)€ T*(Y); y € supp v}.
We shall now study the multiplication of distributions u; and u,. Let
Y e C§(R"), [ Y dx = 1 and set Y,(x) = & " Y(x/e). Assuming that u; € §'(R")
we wish to define uu, as the limit of (u; * Y.)(u, ™ ¥,) as ¢ — 0. In general
this is not possible but the limit does exist (and it is then independent
of the choice of coordinates and ) if

(1.6) WF(u1) + WF(us) = {(x, & + &2); (x, ) e WF(w))} = THX)\O.

Noting that uju, = A*(w,®u,) where A: X — X x X:x — (x,x) is the
diagonal map, Propositions 1.3 and 1.5 imply:

Proposition 1.6 Let I';, ', be closed cones in T*(X)\0 such that
[y + T ={(x, & + &); (x,&)eT;} does not meet the zero section in
T*(X). Then there is a unique continuous mapping: Dr(X)x Ir,(X) - 2'(X)
extending the product (uy,uy) — uq - up : C*(X)x C*(X) — C*(X). Mo-
reover (I'; + I',)UI'y UT; is a closed cone in T*(X)\O0 and the product
is in fact continuous: Dt (X)x Dr,(X) — Dr,+rsorur(X).
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Next we consider the linear transformation defined by a distribution
Ke2'(XxY) where X < R", Y < R™ are open sets (The results have an
obvious extension to manifolds if one works troughout with densities
of orders 1/2). Then by the kernel theorem of L. Schwartz we can identity
2'(X x Y) with the space of continuous linear operators C&(Y) — 2/(X)
by means of the formula

(4¢,¥) = K4l @ ¢); deCE(Y), Y e CH(X);
Theorem 1.1 For any ue C&(Y) the set
WFx(A) = {(x,%); (x,& 7,006 WF(K,) for some yeVY}

contains WF (Au). Thus A maps Cg(Y) into C*(X) if WFx(A) = &, that
is, if WF (K 4) contains no point which is normal to a manifold x = constant.

An essential dual question concerns the definition of Au for general
distributions u. First note that if ue 2'(Y) then WF(1 ® u) = X x WF (u).
The product K 4(1® u) is therefore well defined when WF(K ) + (X x W F(u))
does not meet the zero section, that is, WF(u) does not meet

{,m); x,0,y, — ﬁ‘)e WF(K,) for some x} = WF/(A)

When u € £1(Y) for some I' not meeting WFy(A) the product depends
continuously on u and so does the integral with respect to y. This we
define to be Au. Explicitly

(Au, ¢y = (Ka(1 @u), @ 1), ¢eCFX).
Therefore we have:

Theorem 1.2. A can be extended to a continuous map &r(Y) to 2'(X)
when I" does not meet WFy (A). In particular, when the set WFy (A) is empty
we have a continuous map &'(Y) — 2'(X).

If we have three open sets, X =« R", Y <« R™, Z < R? and distri-
butions K, € Z'(X x Y), Kge D'(Y x Z) where for simplicity we assume
that 4 and B are properly supported, then Bu € §'(Y) and WF(Bu) = WFy(B)
when u e C§(Z). The composition A(Bu) is therefore defined if

(1.7) WF;(4) » WFy(B) = &,

and it is of the form (K, . Kp)Ju where K, o Kge 2'(X x Z). It is con-
venient to introduce the following notation:

(18) WF/(A) e {(x’ Vs é} 7]), (X, Y, éa v ’1) = WF(KA)}
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If we note that K .5 = n, A¥(K, ® Kp), where
A: (x5, 9,2) > (%,y; »,2): X XY XZ—>XxYxY xZ and
w: (x,y,z) > (x,2): X XY xXxZ— X xZ, we obtain
from propositions 1.3, 1.4 and 1.5
Theorem 1.3. When (1.7) is fulfilled we have:
(1.9) WF'(A o B) € WF'(A) s WF'(B) W (WFx(A) X Op+z) U
U (Or+xy X WF%(B)).

Here WF'(A) and WF'(B) are composed as relations from T*(Y) to T*(X)
and from THZ) to T*(Y).

Remark 1.1: If Ry c U x V, R, « V x W are relations then the
composition Ry o R, = U x W is defined by

(110) Rl o R2 =
{w,w)eU x W; 3veV: w,v)eR; and (v,w)eR,}
The special case when Z reduces to a point is worth special notice:

Theorem 1.4: Let K ,€Z'(X x Y)andue &'(Y), WF(u) N WFy(A)=¢.
Then we have
(1.11) WF(Au) < (WF'(A) o WF(u)) W WFx(A)

where again WF'(A) is interpreted as a relation mapping sets in T*(Y) to
sets in T*X).

Remark 1.2: We shall see in Section 2 that if X = Y and A is a
pseudodifferential operator in X then both WFx(A) and WFx(A) are empty
and WF'(A) is the identity relation.

Remark 1.2 and (1.11) imply that if 4 is a pseudodifferential operator
in X, then

(1.12) WF (Au) = WF (u)

which is the first part in (1.5).

2A. Distributions defined by Fourier integrals.

Formally, the distribution kernel of a pseudodifferential operator
A = a(x, D) associated to a symbol a(x, 0) is given by

(2.1) (x,y) — 2m)~" [ &<~ % g(x, 0) dO
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Similarly the fundamental solution of the wave equation 0%u/dt*> —
— Au = 0 in n space variables (n > 1) with pole at (y, 0) is at time ¢t > 0
given by

(2.2) (x,y) — (27-5)‘"(3" ei(<x—y,9>+t[0|))
(21 |0|)_ $ do — Jiei(<x~y’6>*’|9|)(2l‘ |0’)- 1 d@)

These examples suggest the importance of the classes of distributions
which we shall study.

Let X = R" and let " be an open cone in X x (RY\O0) for some N.

Assume given a real-valued fuction ¢ € C*(I') satisfying the follo-
wing conditions:

(i) ¢ is positively homogeneous of degree 1 with respect to the variables
in RY,
(i) d¢ # 0 everywhere in TI.

Such a function will be called a phase function. Let S%(I') be the
set of all ae S™(X x RM\0) vanishing in a conic neighborhood of CT.
We recall that S™(X x R¥\0) = ae C*(X x R") such that for every
compact set K < X and all multiorders «, f the estimate

|DE D§ alx, 0)| < Copx(1 + |0 1", xe K, 0eRY,

is valid for some constant C, k.
For ae S§(I') we claim that the “integral”

(2.3) Alx).= | ¢*%a(x,0)do

can be defined, not necessarily as a function of x but as a distribution
in X. To do so we consider the linear form

(2.4) Iy(au) = [ ™9 a(x, 0) u(x) dxdd, ue CP(X).

In view of (ii) the fact that ¢'® = D(e*®)/Di¢ allows one, by successive
(formal) partial integrations with no boundary terms, to reduce the growth
of the integrand at infinity until it becomes integrable. This gives a pre-
cise definition of I,(au) and the linear form u — I4(au) is then a dis-
tribution 4 € 2'(X). We shall call (2.3) an oscillatory integral but use
the standard notation.

Theorem 2.1: The mapping a — I,(au), defined for symbols a which
vanish for large | 0|, can for every u e C§(X) be extended to S*(X x RN\0) =
= (J S™X x R™M\0) such that it is continuous on S™(X x RM\0) for every m.

meR
Moreover, for every acS™X x R™MO0) the linear form A:u — Iy(au) is
a distribution of order k if m — k + N < 0.
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Using the method of stationary phase to investigate the asymptotic
behavior of integrals of the form (2.4) we obtain:

Theorem 2.2: WF(A) = {(x, d¢(x, 0)); (x,0) €T, de¢p(x,0) = 0} =
= T*X))O.

As an example, we see from (2.1) that the wave front set of the kernel
of a pseudodifferential operator 4 in X liesin {(x, y,&,n);x =y, &€ = — n}
which is the normal bundle of the diagonal A in X x X. This proves
Remark 1.2.

Remark 2.1: If A is a pseudodifferential operator in X, and if K4
is the kernel of A, we can identify WF (K ) (by the projection of T*(X) x
x T*(X) — T*X on the first factor) with a closed cone in T*(X)\0 which
we denote by WF(A).

If A is properly supported we obtain:

Proposition 2.1: The complement of WF(A) is the largest open cone
in T*(X)\O where o4 (the symbol of A) is rapidly decreasing.

Proposition 2.2: If ue 2'(X) we have AuecC® for all pseudodiffe-
rential operators A with

(2.5) WF(4) N WF(u) = &.

Remark 2.2: A sequence ujee Pr(X) (see Def. 1.2) converges to
ueIr(X) if
1) u; — u in P'(X) (weakly)
i) Au; — Au in C*(X) if A is a properly supported pseudodifferential
operator with I’ N WF(A) = .

As a second example we see that for the two terms in (2.2) the wave
front set lies in the set where x —y = +¢6/|60| and & = — n = 6.
This corresponds to the two components of the normal bundle of {(x, y);
|x — y|* = *}. In particular the singularities are carried by the light cone.

The notion of wave front set can be used to localize various spaces
of distributions not only in X but also in T*(X)\0. In particular,
L. Hormander has shown how to define global spaces of distributions
which microlocally (i.e locally in 7 *(X)) have representations such as (2.3).

We shall restrict ourselves to the case where ¢ is non degenerate,
that is, the differentials of the functions 0¢/00; are linearly independent
in Cy = {(x,0)€T; ¢o(x,0) = 0}.

Application of the implicit function theorem implies that C, is a
conic C* manifold of X x RV\0 of dimension (n + N) — N = n = dim X.
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Lemma 2.1: If ¢ is a nondegenerate phase function, then
(2.6) T e B — (oydidlx 9)

is an immersion: Cy, — T*(X)\0, commuting with the multiplication with
positive real numbers in the fibers. So its image Ay is an immersed n-dimen-
sional conic submanifold of T*(X)\O0.

Let (x, £) denote the standard coordinates in T*(X) obtained from
local coordinates x;,...,x, in X by taking dx,,...dx, as basis for the
cotangent vectors. The form X&;dx; is invariant defined in 7*(X)\0 and
its restriction to Ay is ¢idx = dd — ¢pd = 0 since ¢y = 0 on C, and
s0 ¢ = {6, ¢5) = 0 on Cy, by Euler’s identity. In view of the homogeneity
this is equivalent to the vanishing on A, of the differential which is the
symplectic form ¢ = Zd¢; A dx;. Thus A, is a manifold of maximal di-
mension on which the symplectic two form of T*(X) vanishes. We shall
call such a manifold Lagrangean, following Maslov; they play a funda-
mental role in the classical integration theory of first order differential
equations. Locally the class of distributions which can be written in the
form (2.3) for some ae S,™*"* V2 ('), n = dim X, and a nondegenerate
real phase function ¢, depends only on the Lagrangean manifold A,
corresponding to ¢ and on no other properties of this function. Any
closed conic Lagrangean submanifold A = T*(X)\0 can locally be re-
presented as the range of a map (2.6). We can therefore define a space
I"(X, A) of distributions with wave front set in" A which locally can be
written in the form (2.3) with ae S,™*"4~V2 and ¢ defining a part of
A according to (2.6). With the elements in I"(X, A) one can, as for pseudo-
differential operators, associate principal symbols on A, which are symbols
of order m + n/4 modulo symbols of order m + n/4 — 1 (with value in
certain line bundles). For the kernels of pseudodifferential operators in
X which are associated with the normal bundle of the diagonal X x X
this agrees with the standard notion of principal symbol. (Notions such
as characteristic points can therefore also be defined). When we take a
conic Lagrangean submanifold of T*(X x Y)\O where X and Y are two
manifolds we can interpret the distributions in I"™(X x Y, A) as maps
from CF(Y) to Z'(X). These maps are called Fourier integral operators.

Examples:

1) Fourier integrals (or oscillatory integrals) in X can be regarded as
Fourier integral operators by taking Y = {point}.



48 F. Cardoso

2) Let h be a differentiable function: X — Y. Then (u - h) (x) = 2n)™"
[[eih==»m y(y)dy dy, and it follows that h*: C®(Y) — C2(X) is a
Fourier integral operator defined by a nondegenerate phase function ¢
such that

Ay = {((x, &), »n); y = h(x), & = 'Dhyn}.

If h is a diffeomorphism then Ay is the graph of the induced transformation
h: T*(X)\0 — T*(Y)\O defined by h(x, &) = (h(x), (Dh,)~ (). If X is a
submanifold of Y, dim X < dim Y and h is the identity: X — Y then h*
is the restriction operator p : C*(Y) — C*(X). In this case

I\Zﬁ = {((X, 5)9 (ys ’1))9 y=X, é = anx(X)}

which is far from the graph of a map. The operator p can be extended
continuously to Z(Y) for any closed cone I' in T*(Y)\0 which does
meet the set

{(ys 7’)6 T*(Y)\O’ yEXa r’lTx(X) = 0}:
that is the normal bundle in T*(Y)\O of the submanifold X.

3) Pseudodifferential operators in X are defined as Fourier integral
operators with T = X and A < diagonalin T*(X)\0 + T*(X)\0 = graph
of the identity: T*(X) \0 — T*(X)\ 0. When A = (T*(X)\0) x (T*(Y)\0)
we have seen (Theorems 1.1 and 1.2) that the corresponding Fourier
Integral operators are actually continuous operators from Cg(Y) to
C*(X) and from &'(X) to Z'(Y). The set

= {(X, é, Vaber 7]): (X, é’ Vs ’1)61\}

will then be called a homogeneous canonical relation; it is Lagrangean
with respect to the symplectic form oy — gy. This is the set which occurs
in the multiplicative properties of wave front sets described in Theorem 1.3.
If we have three manifolds X, Y, Z and canonical relations C;, C, from
T*(Y) to T*(X) resp. T*(Z) to T*(Y) one can supplement Theorem 1.3
by proving that the composition 4 - B of properly supported operators
Ae (X x Y, C)and BeT™(Y x Z,C5) isin P*™(X x Z,(Cy - Cy))
if the appropriate transversality and other conditions are fulfilled which
guarantee that C; - C, is a manifold. There is a simple formula giving
the principal symbol of 4 - B as a product of those of 4 and B (the nor-
malization of the degree for the operators in I™ was chosen precisely
to make the preceding statement valid). We finish this section considering
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an important special case due to Yu. V. Egorov which gave rise to much
of the work described here. Thus assume that X and Y have the same
dimension and that A’ is the graph of a homogeneous canonical transfor-
mation x from T *(Y) to T *(X). That y is canonical means that y*ox — oy =0
or that ox — oy vanishes on A’, so we have a canonical relation in the
sense explained above. If K € I"(X x Y, A), then the adjoint K* belongs
to the inverse transformation and the compositions K K* and K*K
belong to the identity, that is, they are pseudodifferential operators in X
and Y respectively. If 4 is a pseudodifferential operator in X of order u
then the product AK is in I"** (X x Y, A) and the principal symbol is
the product of the principal symbol of K (considering as living on A’)
by that of A4 lifted from T*(X) to A’ by the projection A" — T*(X). If
we multiply to the right instead the result is the same except that we shall
use the projection from A’ to T*(Y). If A and B are pseudodifferential
operators in X and in Y respectively and if AK = KB we conclude that
for the principal symbols a and b of A and B we must have

(2.7) a(x(y, m) = by, n)

if the pricipal symbol of K is not zero (i.e if K is elliptic) at (x(y, n), (v, — 1))
Conversely, (2.7) implies that AK — KB is of lower order. We can there-
fore successively construct the symbol of B for a given A4 so that AK-KB
is of order — oo, provided that the wave front set of A is concentrated
near a point where K is elliptic. This argument often allows one to pass
from one operator to another with principal symbol modified by a ho-
mogeneous canonical transformation and this was a crucial point in the
study of local solvability of pseudodifferential equations.

3. Propagation of singularities

Let P be a properly supported pseudodifferential operator of order
m in a manifold X with homogeneous principal symbol p. This means
that p is a complex valued C* homogeneous function of degree m on
T*(X)\0 and that for every local coordinate system the full symbol of P
differs from p by a symbol in S™~*. We shall also require that the characte-
ristics are simple, that is,

G dapx O£ 0 i (OeTHX)\0: and i plx £) =0,
We are interested in the following question:

(3.2) Given (xo, % € T*(X)\O find the biggest subset C, e, = T*X)\0
such that the following is true:
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Vue 2'(X) such that (xo, &%) ¢ WF(Pu),
we have v
(%0, &% € WF(u) = C(x0,§0) = WF(u).
In the special case where p is real the answer is given by

Theorem 3.1. (J. J. Duistermaat and L. Hormander) If u € 2'(X) and
Pu = fit follows that WF(u)\WF(f) is a subset of p~ *(0) which is invariant
under the flow defined by the Hamilton vector field H, in p~*(0)\ WF(f).

The fact that WF(u)\ WF(f) = p~}(0) is precisely the second part
of (1.5). The tangent vector H, to T*(X) corresponds to the covector dp
by the definition: {t,dp) = o(t, H,), t € T(T*(X)) where o is the symplectic
form. In terms of local coordinates x in X and the corresponding coordi-
nates (x, &) in T*(X) the Hamiltonian vector is given by:

S op 0 op 0
HrZ(a—«:ja;*a—x,. f)

More generally, it is conjectured that for operators satisfying the
local solvability condition () (grosso modo and microlocally, if Imp is
< 0 at some point along a null bicharacteristic strip of Rep, it remains
< 0 from that point on along I'; null bicharacteristic strips of Rep are
integral curves of the Hamiltonian field Hg., contained in (Rep)™ *(0).
They are oriented curves) the set C(xo, %) is the following:

Let z € C such that d«(Rezp) # 0 at (xo, £°). Let I', be the bicharacte-
ristic strip of Rezp through (xo, £°) and I'? the greatest closed interval
of I', containing (xo, % on which p vanishes identically (Note that I'?
may reduce to the point (xo, £°) or even be empty, in which case p(xq, £°)
# 0). Then

(3.3) Gl
zeC
de(Rezp)(xo, &°) # 0

Besides Theorem 3.1, the other cases which tend to confirm (3.3)
are:

1) p(x,&) complex but d(Rep) and d(Imp) linearly independent in
(xo, €°) (in this case C (x0,¢0)18 @ two dimension (over R) regular surface on
which one can introduce a complex analytic structure where the Hamil-
tonian of p plays the role of d/0z).

2) The following condition is satisfied:

P S~ "R )
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(R) Assuming p(xo, &%) = 0, d(Rezp)(xo, ) # O, the function Imzp does
not change sign in a neighborhood of (xo, °) in the hypersurface (in
T*(X)\0) Rezp(x, &) = 0.

Under hypothesis (R) F. Treves constructed a suitable parametrix
for P from which one can derive the propagation of singularities.

3) P has constant coefficients (In this case, as in the previous when
the data are analytic, one may replace the wave front set by the analytic
wave front set).

In the cases 2) and 3), the “propagator” is not necessarily a regular
surface.

We shall now drop the assumption (3.1) and give the following de-
finitions:

Definition 3.1 P is said to be of constant multiplicity if p factorizes as
D= g1 e e 0 With | £ e N,

where q;, j=1,...s, satisfy (3.1) and are such that q; *(0) are disjoint in
T (X0

Definition 3.2 Assume that p is real and that P has constant multipli-
city. P is said to verify the Lévi condition Ly, oy at the point (xo, %) € p~1(0)
< T*X)\O, if for every phase function ¢(x), solution of the equation

gix.dgp(x)) =0 (if j is such that qj(xo,E°) = 0)

in a neighborhood of xo with d¢(xo) = E° and for all amplitude ae Cg(X)
with support in a neighborhood of x, where dp # 0, we have

e e i e

The operator P verifies the Lévi condition (L) if L, . ) is satisfied at every
point € p~1(0).

One can easily verify that (L) is a condition on the terms of degree
m — (r — 1), where' ¥ = maxr;; in particular (L) is always satisfied if
(3.1) holds. The Lévi contition (L) was introduced by Mizohata-Ohya
et al in the study of the Cauchy problem; it implies that the transport
equations are ordinary differential equations along the (null) bicharacte-
ristics, whose orders are precisely the multiplicity of the characteristic
which contains it. It can be shown that (L) is necessary for the Cauchy
problem for a hyperbolic differential operator with constant multiplicity,
to be well posed in the C* setting.
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Theorem 3.2 (J. Chazarain). Let P be of constant multiplicity, p
real and assume that the Lévi condition (L) is verified. If ue 2'(X) and
Pu = fit follows that WF (u)\ WF (f) is a subset of p~ 1(0) which is invariant
under the bicharacteristic flow (it is understood that on q; 1(0) one considers
the flow defined by the Hamiltonian Hy of q;).
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