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Weak Solutions of a Modified kdV ‘Equation
Manuel Milla Miranda

Introduction

In this paper we shall prove the existence and uniqueness of periodic
weak solutions for the equation

(*) Uz a2 Uy — Uxxs = 0

proposed by Benjamin-Bona-Mahony [1], as modification for the well
known Korteweg-de Vries equation u; + uu, + u. = 0. The existence
and uniqueness of periodic infinitely differentiable solutions for (*) has
been proved by Medeiros and Perla in [4] and for very general nonlinear
term by Neves in [5]. We use in the proof the result of [4] and the com-
pactness method as in Lions [3]. Even though it is somewhat unusual
we would like to show in this case that by setting up the modified KdV
equation in more general spaces, we can still apply the classical limiting
process to prove existence and uniqueness.

In section 1, we introduce the notation and prove the existence of
a weak for the equation (*). In section 2, we study the regularity of these
solutions and the problem of uniqueness.
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1. Existence of Weak Solutions.

If m is a non-negative integer, Q = (0, 1) we represent by H™(Q) the
usual Sobolev space of order m. Represent 0/0x* by D* and by V™ the
subspace of H™(Q) of all functions v such that D*1(0) = D*v(1), for k = 0,
1,...,m — 1. Note that H(Q) = L?*(Q). The inner product and the norm
of this space will be denoted by (.|.) and || .||, respectively. By V= we
represent the space of all functions v € C*(Q) such that D*»(0) = D*v(1)
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forall k. If E is a Banach space, T a positive real numberand 1 < p < + .
We represent by L?(0, T ; E) the Banach space of all measurable vector
functions u:(0, T) — E, such that ||u()||z € L?(0, T), with the norm:

lu||z7 0,78 = [5 ||u®)||Bdt, 1<p<oo
]|z 0,75 = ess sup [|u(t)||e

By C™(0, T'; E) we represent the space of all vector functions u: (0, T) — E
m times continuously differentiable.
The following lemmas are known from the study of Sobolev spaces [7].

Lemma 1.1. If ue H'(0, 1), there exists a constant k > 0, independent
of u, such that
sup uCx)| < kl[ul|"2 (Ju]] + [|us])*

0<x<1

Lemma 1.2. Suppose fe C™(R) and f(0)=0. If u(x,t)e [*(0,T; H™Q)),
then f(u(x,t)) e (0, T ; H™(Q)) and the following inequalities are true:

(1.1) IS @@)|]a 1@y < My [|u(®)| | 1@

and

(1.2) ||.f @@)]lam@ < emMum(1 + ||u@)|[Fm 21 @)]| (@) ||am oy
d’f (s

where M,,,=Jmaxmsgp (Ji(s(’) = {S;IS|<8S§u§ lu(x, 1)|}

and ¢, > 0 is a constant independent of w.

In the next theorem we prove the existence of weak solutions for (*).
The idea of the proof can be summarized as follows. We take the initial
data uo in V' and we approximate u, in H(Q) norm by elements uq,
of V™. It is known that ¥ is dense in V', (see Teman [8]). For each
initial data uo, € V' there exists a unique solution u® of (*) with this initial
data, as in Medeiros and Perla [4]. By a priori estimates independent
of ¢ on the solutions u*, it is possible to pass the limit when ¢ converges
to zero.

Theorem 1.1. If uo€ V', there exists u(x,t) satisfying the following
conditions:

(1.3) ue IO, T; VY
(1.4) U+ Uty — Uy =0 in I[°0,T;I2Q) weakly star
(1.5) u(x,0) = up(x) on Q
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The equality in (1.4) is intended in the sense that for allv e I1(0, T ; I2(Q))
we have:
§6 (ue [ v) de + [§ (uus | 0) — [§ (sxe | v)dt = 0

Proof : If uge V™, there exists an unique u:[0,1] x [0, T] — LR,
T > 0, such that:

(1.6) ueC?([0,1] x [0, T]) and

D*u(0,t) = D*u(1,t), V0<t < T, and k> 0
(L.7) U + Uty — ugy = 0 pointwise in [0,1] x [0, T].
(1.8) u(x, 0) = uop(x) on [0,1].

Since ug € V', there exists a family {uo,}, uo, € V* such that u, con-
verges to uo in H'(Q) as ¢ converges to zero. Therefore, for each ¢ > 0
we obtain a function u® satisfying the conditions (1.6), (.7) and (1.8). If we
write (1.7) for u° and take the inner product in I*(Q) with u?, we obtain:

i, 3
L1l + ) = 0
from which we obtain:

(1.9) ||w*@)|| < c1, ||us®)]] < ez

independent of ¢, for all 0 <t < T.
It follows from (1.9):
(1.10) u® is bounded in (0, T ; I*(Q))

for any ¢ > 0 such that uy, — ug
(1.11) u% is bounded in I°(0, T ; I3(Q))

for any ¢ > 0 such that uy, — ug
Now, if we take the inner product of both sides of (1.7) with uf, we
obtain:

(1.12) uf||? + @ous | u) + Juzl? = 0

Remark 1: We have ((u°)%uf), = 2u‘u§uf + (u9)*us, and if we inte-
grate on [0, 1], we obtain 2(u"us |uf) = — ((u°)* | uly).
Therefore, (1.12) can be written in the following form:

[l ||> = 3(@)? | ) + |[u||?> = O,
that is,
(1.13) 4||uf||2 + 3 ||u§“||2 = jé (u®)* dx
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By Lemma 1.1 and estimates (1.9), we obtain

3P |u(x, )| < constant

independent of ¢, for all t. It follows from (1.13), that
(1.14) ||uf ||* + ||u||* < constant
independent of ¢, for all t. This implies:
(1.15) ut is bounded in I*(0, T ; I*(Q))
for any ¢ > 0 such that ug. — uo :
Because the dual of I}0, T;I3(Q)) is I°(0, T ; I*(Q)) (see Bochner-
Taylor [2]) it follows from (1.10), (1.11) and (1.15) that we can obtain a

subsequence of u®, which we will still represent by u?, satisfying the follo-
wing conditions:

(1.16) ut converges weak star to u in I[°(0, T ; [*(Q))
(1.17) ut converges weak star to u, in (0, T ; [*(Q))
(1.18) ut converges- weak star to u, in I*°(0, T ; [*(Q)

If f(s) = s?/2, since u” € [(0, T; H'(Q)), it follows from Lemma 1.2
that f(u®) e [*(0, T; H'(Q)), and:
1/ @)@ < M[|w@)||m@  or || fW)||n@ < constant
independent of ¢ for all z. It follows that
(1.19) f(u®), converges weak star to some X in (0, T ; [*(Q))

By (1.9), (1.14) and the compactness theorem of Rellich, it follows
that u® converges strongly to u in I*(Q), @ = (0,1) x (0, T). Therefore,
pointwise a.e in Q and it follows by the continuity of f(s) that f(u®) con-
verges to f(u) in the same sense.

We also have

| f @20 = [ [8] @) |? dx dr*= g [ ()*/4) dx dt < ¢
It follows ([3], p. 12, lemma 1.3) that f(u%) converges fo f(u) weakly in
I?(Q) and, therefore, (f(u°)), converges to (f(u)). in Z'(Q), where 2'(Q) =
= (C§(Q)). We can say that
(1.20) X = (fW)k.
By the equation (1.7) and the estimates obtained above, we have
the following:

(1.21) us,, is bounded in I°(0, T ; I3(Q))

when & converges to zero.
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It follows from (1.21) that:
(1.22) Uy, converges weak star to u,, in I[*(0, T ; [2(Q))

From (1.18), (1.20), (1.22) we can say that u satisfies the conditions
(1.4) of Theorem 1.1.

Let us show that u satisfies the initial condition (1.5). In fact, from
(1.16) and (1.18), we have:

(1.23) hm I W, v)dt = [T (u, v) dt
(1.24) 11_{13 § (uf, v) dt = [ (ue, v)

for all v in I}0, T ; I?(QY)), where each integral in (1.23) and (1.24) is the
duality between 1*(0, T ; I?(Q)) and I}(0, T ; I*(Q)). Take v(x, t) = 6(t) w(x),
with w e I?(Q) and 6 € C'([0, T]) such that 6(0) = 1, 6(T) = 0. If we con-
sider v = O'w in (1.23), v = Ow in (1.24), and add both equalities, we obtain
li_l}g (u*(0), w) = (u(0), w) for all we I*(Q), that is, u?(0) converges to u(0)

weakly in I*(Q). But u*(0) = uo, converges to u, strongly in I*(Q), there-
fore, u(0) = u,.

To prove the theorem, we need to show that ueI”(0,7;V"). In
fact, from (1.16) and (1.17), it follows that u® converges to u and uj con-
verges to u, weakly in I*(0, 1; I*(0, T)). Therefore, u and u® belong to
C°([0,1], X0, T)) ([3], pag. 7, lemma 1.2) and

lgré f& @, v)dx = [} (u,v)dx
ling [Le, v)dx = §; (ue, vidx

for all v in I*(0, 1; I?(0, T)). Take v(x,t) = 0(t) w(x) with 6 e I*0, T) and
and we C'([0,1], w(0) = 1, w(1) = 0, to obtain, by the same argument
used above, u%(0,1) converges to u(0,t) weakly in I*(0, T). Also, u(l,t)
converges to u(l,t) weakly in I*0, T). Since u(0,t) = u*(1,t) for all
0<t<T, it follows that u(0,¢) = u(l,t) ae. in 0 <t < T and (1.16),
(1.17) implies that u belong to I°(0, T; V%)

2. Regularity and Uniqueness.

In this section we study the solutions of equation (*) when we take
the initial data in a Sobolev space of order k > 1. If we increase the order
k where we choose the initial data, we obtain solutions of (*), each time
more regular. To complete the study of this type of question for the equa-
tion (*), we prove the uniqueness of such solutions for k > 1.
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Theorem 2.1. If uge V¥ k > 1, then there exists a function u in
[°(0, T ; VY, satisfying equation (1.4) and the initial data (1.5). Furthermore,
if k> 1, this u is unique.

Proof of Existence. Since u, € V¥, there exists a family uo, € V= such
that uo, converges to uo in H(Q). Let us prove the theorem by induction.
If k = 1 we have the Theorem 1.1; suppose the Theorem 2.1 is true for
k > 1 and let us prove it is true for k + 1. If f(s) = s?/2, from (1.4) we have:

d : :
@y gD + IDE (P < (DS @)|* + || D |2

By the hypotheses of induction, since D*u® is bounded in I°(0, T ; LZ(Q))
we have by the Lemma 1.2.

|| D*f w)||* < constant

independent of ¢ for all ¢.

Therefore, by (2.1) we see that D**1 ¢ is bounded in BT ),
that is, taking subsequence D**! v converges to D**! y in I*°(0, T ; I*(Q))
in the weak star convergence. By the same argument used in Theorem 1.1
we obtain D*u(0, ) = D*u(1,t) ae. in [0, T], that is, ue [*(0, T; V¥*1),

Proof of Uniqueness. Let u, v be two solutions of (1.4) corresponding
to the same initial data uo and w = u — v. Therefore, w, — Wy, + U, —
— v, = 0, w0) = wy(0) = 0. It follows that

(2.2) [Wli? + [|we]|?) = — 20, — voc|w)

d

il
A short calculation shows that (uu, — vv, ] w) = (uu, — vy | w) +
+ (vux — v | W) = fbuaw?dx + 5 [bowZdx = [§uw?dx — % [§ vw? dx,
and therefore by Lemma 1.1 and (2.2) we get

d
a5 Ul + lwe]?) < cf[w]]?
which implies w = 0.
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