-

| ok S ———————— e e e—— e T

BOL. SOC. BRAS. MAT. 6(1975), 65— 77 65

Galerkin Methods Applied to the
Benjamin-Bona-Mahony Equation

M. A. Raupp

1. Introduction
Consider the equation for u = u(x, 1),
(1.1) U + Puy + yut, — Otty; =0, —00 <x< +00,0<t<T,
subject to the initial condition
(152 uee O)i=tuo(x) F = cof<xi<f o0,
and the periodicity condition
(L.3) ulc + 1, 6) =ulx,t), — 0 <x< + 0, 0=<t=<1T,

with f, y and 6 as positive constants.

This equation was proposed by T. B. Benjamin, J. L. Bona and J. J.
Mahony as a model for the propagation of long waves in non-linear dis-
persive systems. In [1] they solved the initial value problem in a class
of real non-periodic functions defined for — o0 < x < + o, t > 0. Exis-
tence of a unique periodic solution of the initial value problem was proved
with different techniques by L. A. Medeiros and G. Perla Menzala in [3]
and M. Milla Miranda in [4]. The result in [3] is: if uo is three times
differentiable and ug’ is square integrable on [0,1], then there exists only
one u, having all derivatives in ¢ and twice continuously differentiable
in x, satisfying (1.1)-(1.3). From their proof we can extract the following
lemma which will be useful in our analysis later. :

Lemma 1.1. Let u be the solution of (1.1)-(1.3). Then, for t > 0,

(1.4) max |u(x,t)| + max |u.(x,t)| < K,
xe[0,1] xe[0,1]

K depending only on the data.

In this paper we shall be concerned with the numerical solution
of (1.1)-(1.3) by methods of Galerkin type in which the approximate solu-
tions are periodic cubic splines in the space variable x at each time level.
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More precisely, given positive integers N and M, we define h = I/N + 1,
=g - M=T/M+ 1, t,=0M forij=01,.sNeb din=01, ..
M + 1,and S, = {¢eC*([0,1])| ¢ is a cubic polynomial on each [x;_, x;]
and d“¢dx"0) = d*¢/dx" (1), for k = 0, 1, 2}. Then we shall seck sequences
{Uux)|n =0,1,..., M + 1} in S, such that U,(x) is a good approxima-
tion of u(x,t,).

We recall that a basis for S, can be constructed starting from the
characteristic function y(x) of the interval [0, 1], in the following way.
We take

Yx) =y % x* x(x)

where # is the convolution product

frgx) = {7 flx —y)gy)dy,

and then define

Yolx) =y % A 3> Xio, = (%) + W(% =~ 0 o 2> GOy b B

09 = (5 + 2.1 + 0 (=it )

X

Yalx) =y o 1> Xio, x5 (%) + ¥ (‘Z— gy N> Xixw, 11 (X),

X

Yi(x) :W(W—J'“l' 3>,j=3,...,N,

where g, 1 is the characteristic function of the interval [x;.x]. We have

Sh = Span {IPO""’WN}'

The first scheme we consider is a predictor-corrector. At each time
level we initially compute the predicted approximation U.eS, by the
Galerkin condition

Un e Un—l Un o Un—l (Un ST Un—l)xx
(1.5) < A B ﬁ( 3 )x — 5hﬁt +

¥ yU(UhZU—‘> 6> =0, ges,,

and then correct it to the final approximation U, €S, by
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Un 5 Un—l Un + Un—l s (Un ¥ Un—l)xx
(1.6) = T = 0 < 3 >x o AR

IR S Up £,
+V< +2 1>< 9 1>x ¢>:0’ ¢€Sh~

Here (f,9 = [5 f(x) g(x) dx.
If integration by parts of the third term in the sum is performed,
the Galerkin conditions (1.5) and (1.6) are written in the form

’ Un i Un—l (On i Un—l)x
Ly <2iemlgs> < nT otk g o
+ﬁ<(Lza'_i),¢>+y<U,,_l<U"—+2h>,¢>=O,
¢€Shs
’ Un e Un-l (Un =T Un—l)x
(L6 <—ttlg> 4o< et g s
+,B< Un+Un—1 ,¢>+'})< (-/n+Un—1 Un+Un—1 5
Ay oo 2 L
¢> =0, pe8s,.

Those equations, for n = 1,2,...,M + 1, together with an initial
condition U, given in S,, for example, one characterized by

(17) <U09 ¢> == <u03 ¢>7¢'Esha

define the numerical process. We start from the data at t = 0 and then
compute the approximations step by step. If we write

Eabieia n Walix)o! o Wbl padoM
j=0

Ol e ER R s, 3
ji=0

then we can see that (1.7), (1.5) and (1.6) are linear equations for the
vectors C° =(C9), C" = (C, C* =(C?).n ='1,2,..., M + 1, with associa-
ted matrices A, A + 0B + BAt/2 D + yAt/2 E(C" ') and A + 6B + BAt/2
D + yAt/2 E(C" + C"1/2), respectively, which are invertible, at least for
At sufficiently small.

Here [Al; = ¥i,¥>, [Bly = (i ¥ixy,  [Dlij = (Wix, U5,
[E(a)]ij = Z Qi <l//k Vix, ¢j>a where a = (ay).

k=0



68 M. A. Raupp

The second scheme we propose to approximate u(x, t,) involves only
one linear system per time level. The procedure is defined by the following
conditions

(1'8) I/neSh3

Mo Ve (Ve — Padade
iy T ,¢>+5<—~———At oy >

V,+ V,- 3 1 .
+ﬁ<<fl>xa ¢ > +V<<7Vn—1"7Vn—2>

(hVLian—:L> ) ¢> =07 ()beSha

gdoy ' o

(1.10) V¥V, and V; given in S,
where n =2,3,...,M + 1.

Although there are alternative possibilities, the initial conditions
Vo and V; can be taken from equations (1.7) and (1.5)'-(1.6)’ with n = 1,
for example, and that is the choice we shall proceed with, for the sake
of definiteness.

Observe that if we expand the new approximation as

N
Vi) = Y Clyx), n=0,1,2,...,M + 1,
j=0

we see that the matrices involved in this scheme are the same as before,
with E(a) evaluated at a = 3/2C""! — 1/2 C" 2. Hence the approxima-
tions are well defined if we take At small enough.

The object of this paper is to analyse the convergence of both U,(x)
and V,(x) to u(x, t,) when h and At go to zero. We shall demonstrate that
constants C; and C, can be found, depending on the data of the problem,
on u and certain of its derivatives, such that

lu = Ualls < Ci [ + (A0)%],
lu = Vall: = C2 [F° + (A07],

if Uy, V, and V; are chosen as indicated above or in an equivalent way.
Those estimates are true forn = 1,2, ..., M + 1, and h and At sufficiently
small. They give optimal order of convergence with respect to the norm
||"||1, the usual norm of the classical Sobolev space H'(0, 1), since we
are using cubic splines approximations.
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The proof of this main result will be presented in section 3. In section
2 we discuss a basic stability lemma and in section 4 present numerical
results.

2. A Preliminary Lemma

The functions considered here are real valued and C will denote
a generic constant. We adopt the usual notation

(f9) =[5 f(x) g(x) dx,

(frgr1 = [0 f(x) g(x) dx + [§ f(x) g'(x) dx,
|f | =V <EDs

”f”l RN <faf>1,

and
|flo = sup |f(x)].
xe[0,1]
A priori estimates for equations (1.5), (1.6)' and (1.9) will be derived
for use in the convergence analysis. We summarize them in the following.

Lemma 2.1. Any possible solutions of (1.5), (1.6) and (1.9) satisfy,
respectively, for At sufficiently small,

2.1) [Fiki= L
2.2) ih]asic,
(2.3) Wle=c,

for n=1,2,....M + 1, where the C’s depend only on the data.

In proving the lemma we shall need some well known results from
the theory of Sobolev spaces which we state now. Proofs are given in [6].
Let
H°0,1) = {u:[0,1] — R|||u|| < =},
H'(0,1) = {ue H°(0,1) | v’ € H°(0,1)}

and

QI Fey=
=10 T] —>H1(O,1)|t£s[1g’p”||u(., Ol =dlasll o ety

L*(0,T;H'(0,1))

Then the following is true:
(i) If ue H'(0,1), there exists a constant C, independent of u, such that
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24 e = 1l ]

(ii) Let f: R — R be a continuously differentiable function with £(0) = 0.
If ueI*(0,T;H'0,1)) then f(u)eI*(0, T;H'0,1), and

(25) ||f[ll(, t)]”l = C||u(7 t)lll: IE[O: T]’
where C is a constant independent of u.

Proof of Lemma 2.1. In equation (1.5) we take ¢ = 1/2(U, + U,_,),
so that

(2:6) %At{[llﬁnll%éll(ﬁn)xllzl = [1Un-1l* + 8| Wa- )i P}

L —ﬁ<<Un +2U,,_1>’ <U,, +2Un—1>>
U Un + Un—l On i Un—l
y< Un—l( 2 )x, 2

The last term in the second member of this equation can be bounded as

Lot U oledlies, it
y<Un—l 2 x’ 2 ==

7 2
= j(l) Un_ll:1/2<%>:| dx

if we use Cauchy-Schwartz inequality and formula (2.5) with f(s) = s2/2.
Hence from (2.6) we get

@7 ATGIP + Sl1OaallPT = [ Ua-s]? + 81| Un- x| 2T}
< CA{[|Gnl[f + [|UW-1 I3}

Now in equation (1.6) we choose ¢ = 1/2(U, + U,_,) and by the
same reasoning conclude that

@8 AUUlI* + 81| U:IIPT = U Un-1 1P + 8 [|(Ua- s} <
< CA{[|Un[[t + 1| Oulf + || Un-1 |3

If we take At small enough in (2.7), it implies
29 1Onlls < C|Un-1ls.
Equations (2.8) and (2.9) combined give
210)  {[l|UlI* + 8l|(Uns|[P] = [|Un-111* + 81|(Un-1x]I1}
' < CAL{|| U + [|Un-[I}.

2

< C{|TllE + | Un-1I3},
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Adding from 1 to m, we get

max(1, 9)

@11 [|Unllf = Ty

[T} + C Z At|| U2,
form=1,2,...,M + 1. Applying Gronwall’s lemma to (2.11) we finally
obtain

(2.12) HOulle =const |Wlly,. w =027 Nre i

which concludes the proof of formula (2.2) if we combine it with (2.4).
Estimate (2.1) results from (2.9), (2.12) and (2.4).

After taking ¢ = 1/2(U, + U,_,) in (1.9), the argument for the justi-
fication of (2.3) is completely analogous to the one presented above.

In effect, this lemma implies that the two schemes we are proposing
are unconditionally stables, in the sense defined in Lions [2].

3. Convergence Analysis

Having the necessary tools to prove it we can now state formally
the main result of this paper. The approximations will be seen to satisfy
the following error bound.

Theorem 3.1. Suppose the exact solution u is four times continuously
differentiable in x and three times in t over (0,1) x (0, T). Then there exist
constants 1o and C, depending on the data and 0°*9/0xPot! u(x,t), p = 0,
154, g — 05,3 Ssuch that, fors At =< 7o
3.1) ||Un — u(, ta)||: < C[h® + (Ar)?],

0<n<g+1

(3.2) |Ve — ul, ta)||1 < C R + (A0)*].

0<n<B+l

Proof. We initially write the equation for the exact solution at
t =ty,—12 = (n — 1/2) At in the weak finite difference form

(33) < M(., tn) —A:l(a tn—l) : ¢ Lo gt ux(., In) —A?x(., ["_1) : ¢x i

ux(-a tn) ar ux(-, tn— 1)
2

+ B < , &> +

ux(-a tn) o ux(-, tn— 1)
2 b ¢ >

An(-)a ¢ = ¢ € HIIJ(Oa 1)7

ar % = u(-, tn-l)
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with the initial condition
(3.4) (u(,0),¢) = Cuo, $),.0 € Hy(0, 1)
where

H0,1) = {ue H'(0,1) | u(0) = u(1)},

and A,(x) = 0(Ar) pointwise.
Now we choose ¢ in S, = H(0, 1) and take the difference between
(3.3) and (1.5)".to obtain

én = ot (én o en-l)x (én i en—l)x
<T,¢>+6<————At ,<i>,c>+,8<~———~2 , >

Liodak:t ekt e g
+y<u('atn—1) u( )+2u( l)a¢>— y< Url—l <‘2—1>5

¢>=<An’¢> ) d)esh’

where e, = u(.,t,) — U, and é, = u(.,t,) — i
If we add and subtract < U,_1* u(., t,) + u., t,—1)/2, ¢ > to the
above equation we get the following relation for the errors é, and e, :

(35) = €n _Aten—l ’4) St 6 < (en _Atn—l)xy ¢x —
i B — (en +2en—1)x’¢ S ot (ux(-, tn) +2ux(‘, tn—1)>’¢ ~

Sl U,,_1<'"—-27> ,d) P Anad) L ¢E.Sh.
We claim then that the estimate

= C{(A[)Z =t ”e,,~1”1 =

+ ll% [(u(’ tn) e gh u(a In)) + (u(‘> [n— 1) I

— Oy ta-1 )] |11}
is implied by (3.5) for At sufficiently small. Here 6, is the interpolation map

9;, z Hl(O, 1) o Sh
u— Oyu
with 0,u uniquely defined by the conditions u(jh) = O,u(jh), j =0, 1,..., N.
To see this let us take ¢ = (&, + e,—1)/2 + [ Onu(,, t,) + Oul., tu—1)] —

— Hul, t)) + u(, th—1)] = éx + €n—1/2 + Nu—12 in (3.5). It follows

(37) ilA_[{[ (én)x”Z] = [Hen-IHZ 0 ll(en—l)tz]} =

(3.6)

én

>+ 4]

én
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bn 5 Gl e
S e —"—AEL,VIn—uz el i —"#5,(’1"—1/2):: >

éy + en— é, + e,—
_ﬂ<< 2n 1>’n 2n 1+’1n—1/2>

-9 e <ux(-a tn) i ux(-a tn—1)>’én il €n—1

3 3 0 =

é, + en— én + e,-
_y<Un—1 (n 2 1)5 7) 1"i_}/]n-—1/2>

The terms in the right hand side of (3.7) can be bounded in the follo-
wing way:

én S en
2

+ [[n-112[)) < C At (

| < A, + -1 > | < [[Aul (|&]] + len-1]]

|l + llen=1ll + ||n-12])

! e’
< At[a(l|e]] + llenall + llmm-12lD* + 5

i i€ C2
< 201l + lew- sl + na-2ll2] + 5o A2

where we had chosen ¢ = o At~ 2, and « is a positive number to be chosen
conveniently later;

|? < Un—1<én i en_l) ’é,, Gt L o | = C|Un—1lw

2 2
{leallz + llea=llF + llmn-12l17} < C{lléall? + llew1l1Z + =122}
where we used lemma 2.1 to bound |U,—i|;

U, tn) + usl., ty— é, + e,_
lyqn_l(( )+ 1)>, L

| 0k | el R o

where we used lemma 1.1 to bound |u.|,, ;

én

+ 12 > | = GG

2 2
+ len=1lF + [|1n-12II};

18 < (en -+ €n—1> ; én + €n—1 + fa=1y2 > | < C{||éA|I7 +
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é‘n_e—l (é—e_l)
| < Atn ,nn-1/2>+5<“"—A;_x,(ﬂn—1/2)x>|

G
= A—tllen — en=1ll1 |[n-1s2]x

@ y
< g tell@nllt + llews [ + llm-1/2]133,

for any ¢ > 0.
Combining the estimates above into (3.7) we get

(I —a—Ce— CAY|e|]} < Cllen-1]1F + ||n-112|} + (A)*},

which imply (3.6) by an appropriate choice of «, ¢ and At.
We can now focus attention on the corrector scheme. We write the
equation for u at t,_;,, = (n — 1/2)At now in a different form:

(3.8) -z u(., tn) _A;‘(a ti-1) e 5o (., t) —Al:x(., )] &y

L ﬁ < ux(-s tn) +2ux(-: tn—l) ; ¢ e P < (u(-a tn) +2u(., tn—l))

; (“"(" e t"‘”), ¢>=<B() ¢> ¢peH(01),

where B,(x) is 0((A?)?) both pointwise and in I?(0, 1). As initial condition
we remain with (3.4).

Choosing ¢ in S, taking the difference between (3.8), (3.4) and (L.6),
(L7), respectively, and adding and subtracting < (U, + U,_ /2 -
“(ux(.s ta) + ux(,, t,—1)/2), > to the first result, we obtain the evolutionary
difference equation for e,:

%) R i < e
nisCn—1s eyt e,— (e ) F U, b
+ﬁ<(e 623 1)’¢>+y<e 2e 1<u( )2u( 1)’¢>

w7

e <e" +2e"_1>, $>=<B,¢>, pes,

(3.10) {eo, > =0, $p€S,.

Now we take the test function ¢ = 1/2 (e, + €n=1) + Nu—1/2, Where
fln—1/2 18 defined as before. In view of the stability property of the scheme
and lemma 1.1 we can arrive at the following estimates:
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G1)  |<Bpd>| < CHlleal + llen sl + ool + (A0,

Un+Un—1 en+en—1
A — ( 2

(12 |y o> | < C{|le|} +

+ llen-llf + llmn-12117},

@1y 1p<(552).0 > | Cllalt + s} + e sall
én + en— o> Bn) + Ul ta—1)
(3.14) |y<e 2e 1(“( ) 2( 1>’d)>lS
< Cllal? + lleall + lew- I + -l
Using (3.6) to bound ¢, in (3.14),

(315) | = én ol €n—1 (ux(-5 tn) ar ux(-a tn—l)), ¢ = | <

2 2
< C{llenl” + llen-1[[F + llmn-1,2[F + (A%},

for At small enough. ;
Carrying estimates (3.11), (3.12), (3.13) and (3.15) back to equation
(3.9) we have

o el + 51l = Dlen-sl + 5l en- I

(en — €y l)x

— e, _
=1 Motz = 0~ T AN (Mn=1/2)x >

At
+ C{l||eall} + [len-1l[} + ln-1,2[F + (AD)*}.

Hence, if we multiply this relation by At and sum from 1 to
me{l,2,...,M + 1}, doing summation by parts in the first and second
term of the right hand side, we obtain

inf(1, &) [|em||t < [[en]l* + & [l(em)s[|* = Cllleollt + lln1/2[IF + [17m-12]I%

m m—1 2
St 21 At ||7’]j_1/2||% e 721 At
I I

(2
<-<-=

Ni+1/2 — Nj-1/2
At

1

2
i

+(A0*} + C' Y Atlle]
j=1
so that, by Gronwall’s lemma,

(316) llenllt < Cllleollt + lnuallt + lm-ss2lff + 3 At fln-1s2]If +

m—=1

+ Y At

J=i

Ni+1/2 — Nj-1/2

- + (Ar)).

1
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Now eq, by (3.10), is the error committed in the approximation of
uo by its I>-projection into S. From Schultz [5] we know that || e, |, = O(h?).

On the other hand, #; is the error in approximating u(x, t;) by
0,u(x, t ) €Sy, which is 0(h*) if we measure it with the H'-norm (see again [5]).

Hence (3.16) implies (3.1).

The proof of (3.2) follows in exactly the same line of reasoning, starting
with the equation for the exact wave form at instant t = (n — 1/2) At
written in the following way:

< u('a tn) T4 u('9 In— 1)

A , 0> +
ux(., tn) ot ux(., ln=— 1)
+d< A , O > +
=y ﬁ < s, tn) +2ux(-a tn—l) : d) ;s
& [% u(-, tn—l) i % u(-a tn—Z)] ux(-, tn) +2ux(~’ tn—l) s d) =

= e, wel D

where ||C,|| = O[(A?)*].

The a priori bound for the error brought about in this scheme is
the same (3.16) with one more term in the right hand side: C||ns||}.
Lemmas 1.1 and 2.1 are used in the argument in the same way as in the
predictor-corrector analysis.

4. Numerical Results

Since equation (1.1), as a model, is only correct for small amplitudes,
in our calculations the initial velocity field was taken to be ug(x) = 7 sin 27x.
The physical parameters were f = 1, y = 3/2 and 6 = 1/6. The time inter-
val was 30 seconds long, M = 149 and N = 19.

The result of a representative calculation for V, is shown in Figure 1.
It exhibits the velocity field profiles at various time levels. For each n,
the difference between U, and V, is less than 1073, that is O(h*).

We can see the propagation of the initial function from right to
left, a damping effect in the first five seconds and after that a wave train
being generated whose amplitudes are of the order of 1/5 of the initial one.
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107 uJ

Fig. 1. V,(x) at time levels 0.2, 2.4, 5, 10, 20, and 30 Sec.
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