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The geometry of the structural stability proof
using unstable disks

by Clark Robinson*

§ 1. Introduction.

In this paper we give an exposition of the geometric ideas of the proof
of structural stability using compatible families of unstable disks. Hopefully,
this introduction will help the reader understand our earlier papers which
carried out the analysis carefully. Also in this paper, we treat some simpler
cases of the proof first where the proof is less complicated. In some of these
cases we can prove the conjugacy is one to one directly without using the
d; metric of Robbin.

Throughout the paper we have ignored taking local coordinates on
the manifold and identified the hyperbolicity of the derivative with the be-
havior of the diffeomorphism in a neighborhood. For more careful defi-
nitions the reader should consult [10] or [12]. We note here that for a diffeo-
morphism the stable manifold is defined by W*(x) = {y:d(f"(x),f"(y)) = 0
as n — co}. When the nonwandering set of fis hyperbolic, this set is locally
equal to {y:d(f"(x), f"(»)) < ¢ for n > 0}. Similarly for W*x) and
{y:d(f"(x).f"(v)) < eforn < 0}.

Because our paper [10] includes a discussion of the historical roots
of the proof of structural stability, we omit this discussion here. We only
mention that it is definitely in the spirit of Anosov, [1], using the compa-
tibility of Palis on basic sets, [7] and [8].

The exposition here is influenced by conversations with Conley and
especially his talk at Brown University, [2]. It is based on lectures given at
Northwestern University and Instituto de Matematica Pura e Aplicada
in Rio de Janeiro. We would like to take this occasion to thank the people
at IMPA for their hospitality.

* Northwestern University. Research was partially supported by the National Science
Foundation Grant, GP42329X, and a joint program of the N.S.F. and the Conselho Nacional
de Pesquisas do Brasil.

Recebido em 04 de Margo de 1976.
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The next section first discusses the stability of a hyperbolic fixed point
and then the structural stability of a diffeomorphism that has a hyperbolic
structure on all of M (an Anosov diffeomorphism.) The third section proves
the stability in a neighborhood of a contracting fixed point and then in a
neighborhood of a general hyperbolic attractor. Section four proves struc-
tural stability on a manifold with only two invariant nonwandering sets
when there is strong transversality (northpole southpole diffeomorphism.)
All these proofs are done without using the d, metric, d (x, y) = sup {d(f"(x),
f"(»)):ne Z}. The fifth section proves the stability in a neighborhood of a
hyperbolic set and sketches how the conjugacy might be proven to be one
to one without using the d, metric. Section six considers the general Axiom
A and strong transversality diffeomorphism. Finally, section seven discusses
some of the changes necessary to prove stability of flows.

2. Stability of Anosov diffeomorphisms

2A. Before treating the case where there is hyperbolic behavior every-
where, we look at the permanence of a hyperbolic fixed point. Let D = D* x D?
be a neighborhood of x, where D* is a disk of dimension u and D* a disk of
dimension s.

Let f be a local diffefomorphism that expands in the D* direction and
contracts in the D* direction.

Then under iteration (D) becomes thinner in the s direction and longer

in the u-direction. The intersection N {f"(D):n > 0} is a u dimensional N

disk, D (f). Also f expands D%, so f~': D% (f)— D%(f) is a contraction.
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Therefore N {f™(D%(f)): n <0} is the unique fixed point x;. Now, if g is
a local diffeomorphism that is C' near £, then we have the same picture. Again
n{g"(D): n = 0} = DX (g) is a u-disk and N {g"(D%(9)): n < 0} is the unique
fixed point of g, x,.

2B. We turn to the case when f: M — M is a diffeomorphism on a com-
pact manifold M that has a hyperbolic structure on all of M. (These are called
Anosov diffeomorphisms.)

Technically this means the tangent bundle splits into two continuous
subbundles E* and E° such that the sum at each point equals all of T_M,
E; ® E° = T.M, and the derivative of f preserves these bundles and expands
vectors in E} and contracts vectors in E. The geometric idea is that if
D, = Dg x D; is a neighborhood of x of size ¢, then f takes the dis D, _,_
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fD g=l

at f ~(x) across in the u direction disk at x. Similarly f2 takes D 25 ACTOSS
D, in even a thinner strip. Continuing we get that, D*(f) = n{f"(D ¢ Lngd i 20}
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is a u disk. If g is C! near f we get that g takes D,_,, across D,. Since
g(Df_zx) ND, ., lies in LR gz(Df_zx) N D_is even a thinner strip. Con-
tinuing, we get that N {g"D,_.): n > 0} = D¥g) is a u disk. Notice that
the point x is not necessarily a point in D¥(g). These disks do turn out to be
unstable manifolds of g for some point but at this step of the proof we do not
know which point. Also y e D¥g) if and only if yeg"D r-n for all n >0 if
and only if g™"(y)e D, _, for all n > 0. This means that the backward g
orbit of y stays near the backward f orbit of x.

Since D¥g) is in the unstable direction, g~ ': D¢ (v) - D{(g) is a con-
traction. Therefore the intersection N {g"D; -n(g9): n < 0} is a unique point
which we call h(x). Notice that h(x) is the unique point in D¥g) such that
g"h(x)e D} _, (g) for all n < 0. From this and above, it follows that h(x) is
the unique point y such that g"(y)e D, for all —oo <n < oo. Since
g'h(x)e D, and ¢g" 'hf(x)€ Dy = Dy, by uniqueness gh(x) = hf (x).
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Why is h one to one? If h(x) = h(y) then hf"(x) = g"h(x) = g"h(y) = hf"(»).
Therefore f*(y) is near f"(x) for all n. If g is close enough to f, then h(x) is wi-
thin &/2 of x so we can get that f"(y) € D ,,, for all n. By the uniqueness argu-
ment above when g = f, we have that x is the unique point such that f"(x) e D ..,
for all n. Therefore x = y. This property of f is called expansiveness.

The only question that remains is, why is h continuous. We have con-
sidered the neighborhoods D, of x in M. The union U {x} x D, is a neigh-
borhood of the diagonal A in M x M. By projecting on the first factor this
gives a disk bundle over M. The map F = f X f: M x M - M X M leaves
the diagonal invariant and is hyperbolic on fibers {x} x D_. For g C' near f
f, G=fxg:MxM-—M x M still covers f:M - M and is hyperbolic
on fibers.

Ul x b, S=IX0 pr o M

l
Mm LM

The stable manifold theory proves that D¥(g) =N {g"D, . .:n >0}
are C! disks of dimension u that vary continuously. Then G™!

G-—l
U {x} x D¥g) — v {x} x D¥g)

!
=i

M f—> M
contractors the fibers {x} x D*g) and so has a unique continuous invariant
cross section x — (x, h(x)). The invariance of the section means that
G, h(x)) = (f 1), bf ' (X)), or (f 7' (x), g7 h(x)) = (f T1(x), Bf T H(x), or
g~ 'h(x) = hf ~1(x).

This completes the proof of the stability of Anosov diffeomorphisms,

efiof2i.

3. Conjugacy on a neighborhood of attractors

3A. Contracting fixed point. Again to facilitate understanding, we be-
gin with a very simple case of a contraction near a fixed point. Let U = R

Geometry of the structural stability proof 133

be a open set of R and f: U — U a local diffeomorphism that is a contraction,
ie. |f() —f(2)| < A|y — z| where 0 < A < L. Then N {f"U:n = 0} = {x,}
is fixed point.

If gis C! near f, the n {g"U:n > 0} = {x,} is the fixed point for g. Next we
let D, be small ¢ disks near each point xe U.

The set U is not overflowing, fU % U, so for xe U — {x ) only a finite
number of backward iterates f~"(x) stay in U. If we repeat what we did for
Anosov diffeomorphisms and form Di(g) = N {g"D;-n, :n > 0, f ~"x € U}, this
only gives a disk of radius about ANe (if fix e U for 0 < i < N). We need to res-
trict to n such that f ~"x € U because these are the only points where we know
fis a contraction. For x, D;f(g) is a point because f ~"(x,) e U for all n >.0,
and D (g) = {x,}. For other points we need to make a choice of a point in
D'(g). (Notice backward iterates are expansions so they don’t help.)

We form V = closure (U — fU) which is called the fundamental domain.

We make choices of h(x) on V. Let h.(x) = x and h;,(x) = gf ~(x). We use
h,, near the exterior boundary of ¥, or dU, and h,, near the inner boundary
of ¥V, or df U. Let B(x) be a bump function such that f(x) = 1 for x near U
and B(x) =0 for x near df U. Define ho(x) = B(X)hex(x) + (1 — P(x)hin(xX)).
For g C* near f, h,, is C' near identity on a neighborhood of ¥; and so if x€ V,
y near V, and hy(x) = hy(y), then x = y.

Also if x and f(x) are both in a neighborhood of V then f(x) = 1 and
Bf(x) =0 so hy(x) =x, hef(x) =h,f(x) =gf 'f(x) = ghy(x), and so. h,
is a conjugacy on a neighborhood of V.
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Extend h, to all of U by

h(xf) = X,
h(x) = g"ho f (x) if x # x,

wheref ~N(x) e V. It easily follows that gh(x) = hf (x)for x € U. Also if h(x) = h(y)
then hf"(x) = hf"(y) as long as points stay in U. If x # x, then f “NMx)eV
is a long way fromf‘”(xf) =X, 80 h(x;) # h(x). f xe U — {xf} and h(x) =
= h(y) then take N such that f ~¥(x) € V. Then f ~¥(y) is near ¥, and hf ~M(x) =
= hf ¥(x) = b My) = hof ~N(»). Since h, is one to one, f~¥(x)=fy)
and x = y.

To show h is continuous, notice this is easily true at points xe U — {x}
since h(y) = g"h,f ~™(y) for y near x. To get continuity at x,, we have that
ho(x) € D' (g) for x € V, so h(x) € D (g) for all x e U. As x converges to x, the N
such that /' ~¥(x) e V goes to infinity, so the radius of D/(g) goes to zero. Also
h(x)e D (g) and D(g) converges to D/ (g) = {x,}, so h(x) converges to
x, = h(x,). This gives continuity at x.

3B. General hyperbolic attractor. To give the reader some examples
to think about, we give a standard example of an attractor, a solenoid, [12].
It is formed by a map of U = S! x D? to itself that covers that map z — z>
on S!. The intersection of fU with each fiber {z} x'D? is two small disks.

ooy

The diffcomorphism has a one dimensional expanding direction along
S' and a two dimensional contracting direction along D?. The invariant
set A =n{f"U: n>0} is locally a Cantor set cross an interval. In fact
{z} x DN A is a Cantor set for each fiber over z.
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For the proof in the neighborhood of this attractor, we need to find
unstable disks for g near f. As in the case of a point attractor, U is not over-
flowing. We need to make choices on the fundamental domain V = closure
(U — fU). Notices that Vis a set whose intersection with each fiber {z} x D>
is a disk with two open disks removed. We let D, = D¥ x D? be an ¢ neighbor-
hood of each point x € U. Then let Di(g) = n{g"D,_..: n =0, f ~"(x)e U}.
If f7"x)eU for 0 <n <N, then g"D,_~ N D, is a cylinder of radius of
about ¢A" where A is the contraction constant on fibers. If x € A, then f ~"(x) € U
for all n > 0 so Di(g) = D%g) is a u dimensional disk in the unstable direction.
For f =g, D¥f) is the local unstable manifold of f at x.

D

Following the method near a fixed point, we construct unstable disks
D¥g) for xe V. We won’t do this in general, but for the example above. If
x = (z,y) we could let D¥g) = [z — &,z + €] x {y} be the disk for x near
0U and D7 ,,(g) = gDy(g) for f(x) near of U. Using a C! bump function there
is a way averaging between these two choices. Then for xe U — A, take
N such that f~M(x)e V and let Di(g) = g"D% _x,(g) N D, (Actually a com-
ponent of this intersection.) For xe A we let D¥g) = D'(g) as above. The
stable manifold theory, [4], says that as x converges to x, € A, D¥g) conver-
ges to Dy (g) in the C! topology. From the sets D\(g) above, it is clear they
converge in the C° topology. Notice for x near y we don’t assume the disks
are compatible (as is the case for tubular families), so they don’t form a foliation.

Searad ook

To get the conjugacy we use g~ ! on these disks. The map G™! =f~! x
x g~ U {x} x D¥g) » U {x} x D¥g) contracts fibers {x} x D¥g) and is
overflowing on the base space (first factor), f ~'(U) = U. Therefore {h(x)} =
= 4y {g"D'}_,,x(g): n < 0} is well defined and a point. It is unique once the
choices of D¥(g) on V are made. So, {h(x)} = Nn{g"D,_,: neZ, f*(x)e U}
but not equal unless x € A.

To see that h is continuous, we can use the bundle map G~ = (f 1,
g 1): M x M- M x M restricted to unstable disks:
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U {x} x D¥g) ety {x} X D¥(g)

et
U f—»f_lU

Since f~! is overflowing (f~'U > U) we get there is a unique conti-
nuous invariant section {(x,h(x))}. The invariance of the section means
g~ 'h(x) = hf "!(x) so h is a semiconjugacy.

To prove that h is one to one, we make a trivial adaptation of the one
given by Welington de Melo for tubular families near attractors, [3]. If
h(x) = h(y), then hf"(x) = g"h(x) = g"h(y) = hf"(y) as long as f"(x)e U. If
x €A, then f"(x)e D,, for all n, f"(y) e D},,,(f), and {y} = N {f Dy
n>0} = {x}. If x¢ A then it is still true that f*(y) is near f"(x) for n > 0
so ye Wi (x.f) =n{f D, il = 0}. This says that the stable manifolds
of x are the points whose forward f orbit stays near the forward f orbit of
x. On ¥, the unstable disks D%(g) are C' and transverse to W¥(z, f). Therefore
the unstable disks form a tubular neighborhood of W*(z, f). If z,e W¥z,..f)
and D} (9) N D} (9) # 0, then z, = z,. If h(x) = h(y) take N such that f¥(x) e V.
Then fY(y)e W(f(x),f), hf"(x) € Df~d(g), and hfN(y)e Dixy(g) so fN(x) =
= fMy) and x = y. This completes the proof for attractors.

4. Northpole southpole diffeomorphism

A northpole southpole diffeomorphism (NS diffeomorphism) is a diffeo-
morphism f such that the nonwandering set Q(f) = A, U.A, where A, is
an repellor and A, is an attractor, each has a dense periodic point, and the
unstable manifolds of points in A, are transverse to the stable manifolds of
points in A,. By an attractor, we mean there is a neighborhood U, such that
N {f"U,:n >0} = A,. By a repellor we mean there is a neighborhood U,
such that N {f"U,:n < 0} = A,. One example is the time one map of a
gradient flow on a sphere of any dimension.

/\1
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For a second example, let f;: S' » S' be a NS diffeomorphism and
f,: T* —» T? be an Anosov diffeomorphism. Then f = (f,f,): S x T? - §' x
x T? is a NS diffeomorphism. A third example is a DA on T?2. To construct
it, take an Anosov diffeomorphism and push out at the fixed point along
the stable foliation to change the hyperbolic fixed point into a source A,.
If U, is a neighborhood of A, then N {fT? — U,): n > 0} is a hyper-
bolic attractor with one dimensional stable manifold and one dimensional

\
g i s v

unstable manifold. See [12], [13] for a more complete description and dis-
cussion.

For a general NS diffeomorphism, W*(x,,f) N W¥x,,f) # 0 for some
x, €A, and x,€A,. Therefore u, + s, > dim M where u; is the unstable
dimension on A, and similarly s,. Also s, + u, = dim M. Therefore u; > u,.

The stability proof goes much as for attractors but introduces the con-
cept of compatibility of unstable disks for A, and those for A,. The general
case of Axiom A and strong transversality has this compatibility but is more
complicated.

We start by constructing unstable disks for A;. Let U, be a neighbor-
hood of A, where there is hyperbolic behavior. The neighborhood is over-
flowing, fU, > U,. Therefore for xe U,, f ""(x)e U, for n > 0, and D% (g9) =
=0 {g"D, ., n >0} is au, disk for all xeU,. (Here D, = D{x Di'is an
¢-neighborhood at x.) These are unstable manifolds of g and are uniquely
determined. As in earlier cases if y e D% (g) then g~"(y)€ D, ., for n > 0.
We can define D¥ (g) for all xeO(U,) = v{f"U,;: n=0} =M — A, by
D%,(9) = g"D%-~x,(g) where f N(x)e U;.

We want to get unstable disks Dy (g) of dimension u, in a neighborhood
of A,. We first define these on a fundamental domain, V, = closure (U, — fU,)
where U, is a neighborhood of A,. If y € D},(g), we want g~ "(y) to be near
f"(x) for all n >0 and so we need Dj (g9) = D} (9)- If f:S* - S* has two
fixed points then the D% (g) are merely neighborhoods of x. On V, we want
to pick out points that lie in these neighborhoods. This is exactly like the
case of stability in a neighborhood of a contracting fixed point. If f: T> » T?
is the DA diffeomorphism, then A, is a point source again so Dy (g) are neigh-
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borhoords. Now, u, = 1 so we want to pick out intervals that lie in this neigh-
borhoord for point of V,. This is similar to the general attractor consider
above. Lastly, for the example of f = (f,,/,): S' X T? - S* x T? considered

above, u; = 2 and u, = 1. We have two disks contained in three dimensions.
We pick

X D‘;z(gJ
out a one dimensional disk that is approximately the unstable direction of
A,. We can do this in a manner so they vary uniformly C' on W¥(x,f) NV,
because the disks D} (g) are uniformly C! on these sets.

So assume we can choose disks D} (g) for x e V, such that they are in
approximately the unstable direction. These disks extend to a family D} (g)
for xe U, that are unique once the choices on V, are made. This follows
from the ideas in the attractor case. To get the conjugacy h we use G~ ! on
the set of unstable disks:

d

U {x} x D* (9) S U {x} x D’ (g)

| [

s sidesnt i1

2

This bundle map contracts fibers so has a unique invariant continuous sec-
tion h(x). Notice f~! is overflowing, U, > fU,. We have gh(x) = hf(x) by’
invariance. We extend h to M — A, by h(x) = g~ "hf"(x) where f"(x)e U,.

This defines h on V}* = closure (U, — f~'U,). Then

51

U {x} x D" (g) T—u {x} x D (g)

o
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is not overflowing but we already have h defined on the difference, V}*. Also
G~ ! contracts fibers. Therefore there is a unique extension to an continuous
invariant section h(x) over U,. This defines h on all of M and shows it is con-
tinuous.

To show h is one to one if xe A, UA, and h(x) = h(y) then x =y as
before. Otherwise, hf"(x) = hf"(y) for all n so f"(y) is near f*(x). Therefore
ye Ws(x,f)n WH(x,f). (It is true that W*(x,f) are all points whose forward
orbit stays near the forward orbit of x and W*(x,f) are all points p whose
backward orbit stays near the backward orbit of x.) Take a N such that
fNx)eV,. Then hf™(x)e D}, (9) and hf"(y)e D}, (g) so these disks in-
tersect. These disks are uniformly C' on intersections of the form W*(z,f) N V,
and transverse to Wz, f), so we get f¥(x) = f¥(y). This completes the proof
of structural stability of N S diffeomorphism without using d, — Lipschitz.

§ 5. Neighborhood of a hyperbolic set

Let A be an invariant set for f that has a hyperbolic structure (and local
product structure). Let U be a neighborhood where h still has hyperbolic
behavior. By choosing U carefully we can make V* = closure (U — fU)
a set such that if x e V then f?(x) ¢ V5. To prove this exists we use the ideas
of [5], see [10, Lemma 4.4].

To construct unstable disks over V* we first do it in a neighborhood of
{xeV:f(x)eV} and then extend to {xeV*:f '(x)eV} by invariance
by g. We need these sets disjoint. These disks extend to all of U as before.
Then

=l

U {x} x Dg) S U {x} x D)

U nf(0) f—_1+ oWy nu
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is contracting on fibers but not overflowing on the base space. We need to
choose h on V* = closure (U — f ~'U). Each disk D%g) can be represented
by a graph in terms of a splitting at x (extended from A): TM = E*@® EZ,
w.: E¥—> E’.

EX

N

WT E;

h (x)
DY (g)

Near {xeV*:f '(x)e V*} let h,(x) U(0,w(0,)) where 0 e E* is the
zero vector. Here we identify T M with a neighborhood of x. Near
{xeV*:f(x)e V*} let h,(x) = g~ 'h,f(x). Construct h, on V* using a bump
function combining h,_and h,,. This h, extends to h on U which conjugates
fand g. With this construction it should be true that if hy(x) = hy(y) then y
is in a cone centered at x about the stable direction. Then take N such that

ok

fMx)e V* and fN(x) is near V*. Then f™(y) would be in a very thin cone about
the stable direction. -

fN(y)

g fN(x)

u

The unstable disks are C! in a neighborhood of V* and transverse to the
stable direction, E*. Therefore for f¥(y) in this thin cone D{x,(g9) would be
disjoint from Dy,(9) unless f¥(y) = fN(x). These disks are not disjoint
because hf™(x)e Dy, (9) and hf"(y) € D}x,(g). Therefore f¥(x) = f¥(y) and
0= i

—a

-
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We believe that it should be possible to write down the details of the
above sketch of a proof that & is one to one. Also the same proof should work
when there are one fixed point for a source, one fixed point for a sink, and
one other hyperbolic basic set. In other words, it should work for the hor-
seshoe on the two sphere as described in [12].

§ 6. Axiom A and strong transversality

Let f: M — M satisfy hyperbolicity on the nonwandering set Q, have
periodic points dense in Q, and satisfy the strong transversality condition.
If f satisfies the first two conditions it is said to satisfy Axion 4 (of Smale).
The third condition means that for any point x € M the unstable manifold
of x is transverse to the stable manifold of x, W*(x) transverse at x to W*(x).
Under these hypotheses, the nonwandering set breaks up into a finite union
of disjoint compact sets each of which has a dense orbit in it. We can index
these sets, Q = A,U...U Ag, so that if W*A)N W3A)) # ¢ then i <.
Here WH*A,) = U {W"x): xeA;} etc. By strong transversality, if x;eA,
and x; € A; then W*(x,) is transverse to W*(x;), so dim W*(x,) + dim W*(x;) >
> dim M. Since dim W*(x;) + dim W¥(x;) = dim M, we have u; =dim
WH(x,) = dim W*(x;) = u;.

We want to construct unstable disks, for g C' near f, D% (g), for x in a
neighborhood U, of each A, Then we extend then to the orbit of U,
O(U,) =v {f"U;:neZ}. We do this construction so they are compatible,
ie. if i <jand xeO(U,) n O(U’) then D%(g) > D;.(g). The method is to use
an induction similar to the one J. Palis introduced for Morse Smale diffeo-
morphism. We construct unstable disks by induction assuming they are
constructed for i =1,...,k — 1, and then construct then for a neighborhood
of A,. Let V;* be a neighborhood of a fundamental domain of W*(A,), ie.
a neighborhood of closure [U {W(x):xeA,} — fU{Wx):xeA}] for &
small where W,%(x) is a d-disk in W*(x) about x. We construct the disks on
V;* by induction on j = k — 1,..., 1. First we construct disks in a neighbor-
hood of W*A,_,) n V,® contained in O(A,_,) that are compatible with the
D _,(g9)- Then we extend these to a neighborhood of W*(A,_,) N V;® con-
tained in O(A,_,) compatible with the D;k_z(g). Continuing we get then
on all of V. This induction is somewhat complicated. The reader should
probably read the proof in [8], before reading the corresponding construc-
tion in [10]. Once we have the disks on V;® then extend to a neighborhood
U, of A, as before.

Once the unstable disks are constructed, we get the conjugacy h star-
ting in Ux and working backward. The neighborhoods of sinks are over-
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flowing for f !, so there are no choices there. When we get to U; we already
have h defined on U; —f7'(U;) = {O(U):j < i < K}. Therefore there
are no more choices. In other words once the choices of the unstable disks
are made, the conjugacy is determined.

To prove h is one to one, we need to introduce the metric d (x,) =
= sup {d(f"(x).f"(»)):n€ Z}, see [9]. Locally on components of W*(x) N
N W¥(x) d; is equivalent to the usual metric. Distinct such components are
at a discrete distance apart. We then prove h is d  Lipschitz in the following
sense. If v(x) = h(x) — x (in local coordinates), then |v(x) — v(y)| < nd (%, )
for n small. This is like saying h is Lipschitz close to the identity. Using this
it can be shown that h is one to one.

§ 7. Flows

Let f: R x M — M be a flow on M and X(p) = d/dt f'(p) |-, its vector
field. We assume f is hyperbolic on its nonwandering set. This means f con-
tracts some directions Ej, expands others E¥ and preserves X(x) if X(x) # 0}\

If X(p) # 0 for all p on M, we can introduce transversal disks to X at \
each point pe M, N,, dim N, =dimM — 1. We let X* = U {N,: pe M} be
the normal bundle to X on M. For ¢' a flow near f*, we introduce a flow on X*,
G': X* - X", by letting G'(p,y) = (f'(p), g'(y)) where t =1(z, p, y) is the

gT(y)

N (p)

//

 (p)7

time such that g*(y)e N,,,,. (G' does not preserve the transversal disks of
a given radius but ignore this problems here.) If g =f we denote the flow
on X* by F'. Both F' and G' are hyperbolic on fibers of X* so we can proceed
with a proof much as in the diffeomorphism case. !
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In this manner we solve the equation hf*(p) = g*h(p) where t = 1(t, p,
h(p)). Letting aft, p) be the inverse of © we get hf*®?(p) = g'h(p). The proof
that h is one to one is harder than the one for difffomorphisms, see [11].

Near a fixed point of f*, X(p,) = 0, the flow f* is hyperbolic on all of M
and not just in the normal directions to the flow.

] =

t
=1 "%

SRy
- =

Po

Therefore, we need to use the flow G'(p,») = (f'(p), g'(»)) on all of M x M
near p, and not just on X*. (Note that transverse disks can not be deﬁne_d
in a continuous manner in a neighborhood of p,.) There is no reparameteri-
zation here. To make a smooth transition between the two methods, we need
to extend the flow away from X(p) = 0 to a neighborhood of the diagonal
in M x M. Geometrically the idea is that if D is a neighborhood of x, we
add a artifical contraction in the X direction by means of a reparameteri-
zation to define G".

5

th(p)

G'Dyt(p)

Using this flow G* we construct unstable disks. On a basic set A; = Q
that is not a fixed point N, is preserved, so D;(g9) = N, for pe A,. For p near
A;, Dj(g) is near N, .

By this means we solve hf'(p) = g*h(p) where t© = t(t, p, h(p)). Letting
a(t, p) be the inverse of © we get hf**P(p) = g'h(p) where o'(t,p) =1 fo.r p
in a neighborhood of {y : X(y) = 0}. We prove h is one to one using d Lips-
chitz. See [11].
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