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Hyperbolic sets for semilinear parabolic equations

Ricardo Mariié

Abstract

In this note we consider C" semiflows on Banach spaces, roughly spea-
king C" flows defined only for positive values of time. Such semiflows arise
as the “general solution” of a large class of partial differential equations
that includes the Navier-Stokes equation. Our main result (Proposition B)
is that under certain assumptions on the P.D.E. (satisfied by the Navier-
-Stokes equation) a hyperbolic set for the corresponding semiflow (hyper-
bolicity is defined following closely the finite dimensional case) is always
e-equivalent to a hyperbolic set for an ordinary differential equation that
can be easily deduced from the P.D.E. As an example we consider the P.D.E.

0) % = —Au + eF (x,u,u)

where u: M — R¥ and M is a closed smooth Riemannian manifold. Applying
normal hyperbolicity techniques the phase portrait of (0) can be analyzed
proving that every example of hyperbolic set for O.D.E. can appear as a
hyperbolic set for the semiflow generated by (0).

1. Semiflows

Let E be a Banach space and U < E an open subset. A C" semiflows
on U is a map ¢:[0,T] x U —> E satisfying:

a) p(0,x) =x VxeU

b) o(t, +t5,x) =@(t;,0(,x) VO<t, <T 0<t, < Tand x € U such
that ¢(t,, x)e U

c) :(0,T) x U—E is a C" map

d) lim ¢(t,x) =x VxeU

t Ok
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Let #7(U) be the set of C" semiflows defined on [0, T] x U with the
topology induced by the metrics:

d,,..(@.¥) Usup {||(7o) (& x) = ("¥) (£, ) | le, <t <¢, xeU}

where 0 < ¢, <¢, <'T and j* denotes the r-jet. The motivation for these
definition comes from the following class of partial differential equations
called semilinear parabolic‘ equations. Consider a Banach space X. We say
that a linear operator A densely defined on X is sectorial ([3], [7]) if there
exist 0 < o < m/2 and M > 0 such that the spectre of A is contained in the
sector S, = {z€ CI ‘arg(z)| < a} and

A
|@r— a7t <=

for all A in the resolvent of A.

Strongly elliptic operators with regular boundary value conditions
define sectorial operators [7]. Let X® 0 < a be the domain of 4* [3] endo-
wed with the graph norm || x||, = | x| + || 4% . Let ¥ be an open set
in X° for some 0 < a < 1and F: V— X a C" map such that F and its deriva-
tive F’ are bounded on V., Then if U < Vis open and inf {|| x — y ||, | x€U,
y¢V} >0 there exists T>0 and a unique semiflow @ e % T(U) satisfying

(1 o0, T) x U)yc Vn X'
) 20 () = — 49 1.9 + Flolt, )

for all xe U, 0 < t < T. Moreover if C"(V, X) is the space of C"maps F: V— X
such that sup {||j" F(x)| |xeV} < + oo with the topology defined by the
norm | F| = {sup | jF(x)|| [xeV} then given Fo€ C'(V, X) there exists
T> 0 and a neighborhood # of F, such that the map #>F — ¢ e #I(U)
where ¢ satisfies (1) and (2) is well defined and continuous. When A has com-
pact inverse ¢ is also compact ie. ¢(t, S) is compact for all bounded S = U
and 0<t<T

Example 1. Let Q = R" be a bounded open set with smooth boundary
0Q. Let £:Q x R x R* > R be a C’ function. Consider the P.DE.:
du
ot
u=0 on 0QxR"

n 2
e, % Z—ui—{-f(x,u,gradu) in Q x R*
T O0Xf

J
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n 2

Let A be the closure in X = I#(Q) of — )’ 6_5 on CY(Q) with p>2 and
ol 2%

n < p < oo. Then A is sectorial with cc;mpact inverse [7] and X“ is contai-
ned in C'%Q), 1 <1+ 6 <2a—n/p [1] and the inclusion X* = C1(Q)
is continuous. Hence taking 1>a > 1/2(1 + n/p) the map F:X*—> X
defined as F(u) (x) = f(x, u(x), grad u(x)) is C". Let U < X be a bounded
subset. Taking V = X* the aformentioned result proves that there exists
pe FI(U) satisfying (1) and (2). Hence the function u(t,x) = ¢(t, u,) (x)
where u,e U, xeQ and 0 <t < T can be considered as a weak solution
of the partial differential equation with initial condition u,,.

A similar analysis can be applied to the Navier-Stokes equation (see
[1], [9], [10]) even when in this case the nonlinear part of the equation (the
operator F) is not a composition operator.

2. Hyperbolic sets

In this note we shall study the qualitative perturbation theory of compact
invariant sets of a semiflow ¢ e #[(U) i.e. compact subsets A = U such
that ¢(t,A) = A for all 0 < ¢ < T. Examples of such sets can be obtained,
when ¢ is compact, if there exists a closed bounded subset Y such that
= () ¢;"Z) is non empty for some 0 <t < T where o) =ot,).

‘n>0
If xeX* define ¢(t,x) for t >0 as @(t, x) = @(s, @(x)) where t =nt + s,
nel'™, 0 < s < 1. Then we can define the w-limit set of x, w(x), as usual as
for flows and follows easily from the compacity of ¢ that w(x) is compact
and o(t, w(x)) = o(x) for all t > 0.

When A is a compact invariant set for ¢ we can define ¢(t, x) for xe A
and t > 0 as above. If ¢,/A is one to one for all t > 0 (it is sufficient to require
@,/A to be one to one for some positivo value of t) we say that A is reversible.
In this case we define ¢,/A for t < 0 as ¢(—t,x) = () '(x). When F is ana-
lytic the semiflow satisfying (1) (2) is an analytic map. Hence ¢, is one to one
to one for all 0 <t < T and all invariant set is reversible.

The main idea in qualitative perturbation theory of flows is that of sta-
bility, that can be applied without changes to reversible compact sets. When
the hypothesis of the reversibility fails, even for discrete semiflows on finite
reversibility fails, even for discrete semiflows on finite dimensional mani-
folds, the usual definition of stability doesn’t work [5].

Definition. If A is compact reversible invariant set for ¢ € # I), we
say that A is stable if for all £ > 0 there exist neighborhoods # of ¢ and V

0
of A such that if Y € % and ﬂ Y.(V) is reversible then there exist a conti-

=60
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nuous injective map h: A — U such that if y is a @-orbit in A L.e. ; = [l X)|
t€ R} for some x€A, h(y) is a Y-orbit and ln(x) — x|l < & for all xe A. We
say that A and h(A) are ¢-equivalent.

Following the finite dimensional case we define hyperbolic sets.

Definition. A compact reversible invariant set A for a semiflow
@ € FI(U) is hyperbolic if there exists a continuous splitting E = EX @ E? ©
@E?, xeA, where E? is the one dimensional subspace spanned by d¢/dt
(0,x) and E3, E% satisfy:

a) ¢ix)E; < E;
@) EY < ES
b) There exist K > 0, ¢ > 0 such that:
| i()/EL || < Ke™
| o] = Ke | v
for all xeA, t >0, veEL
The subbundle defined by the subspaces E (EY) is called the sta-

ble (unstable) subbundle of A. The derivative %(0, x) exists and satisfies

0P sy o P 4 i
_at—'(oax) o at (L‘P( I,X)).

ExampleII. Let M be a closed smooth Riemannian manifold and
X =I’(M,R¥)p > dim M. Let A denote the Laplacian operator densely
defined on X and F : J}(M, R¥) > R a C" map, r > 2, where J'(M, R¥) denotes
the space of 1-jets such that {||("F) (x) || | x € M} is bounded. Take0 < a <1,
0 < v < 1 satisfying 1 + v < 2a — dim M/p. Then it is known that X° is
continuously embedded in C* (M, R¥). Hence the map X“¢u — Fojlue X
is C". Since A is sectorial [7] there exists T> 0 such that for all ¢ small enough
there exists @°e Z!(X?) satisfying:

dg
ot

(t,x) = —A@*(t, x) + eF oj' ¢(t, x)

The kernel of A is the space of constants maps, so it can be identified R¥,
and it is a normally hyperbolic [2] invariant manifold for ¢°. Applying the
methods of [2] and [4] there exists for all & near to 0 a map h,: R > X,
where X ¢ is the space of maps in X* with mean value 0 (observe that X* =
= R*® X{), such that V, = graph (h,) is a normally hyperbolic invariant
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manifold for ¢°. Let X, be the C"~! vectorfield on V, induced by ¢° and let
Y, be the vectorfield obtained projecting 1/¢ X, on R* by the projection
n: X* > R* associated to the splitting X* = X2 @ R. Let Y, be the vector-
field on RF defined as:

Yo(x) = n(F oj'%)

where %:M — RF is the constant map X(p) =x VpeM. Then Y, » Y, in
C' (R, R¥) when & — 0. If the flow generated by the differential equation
x = Y,(x) has a hyperbolic set A, by the local stability of hyperbolic sets,
it follows that Y, has an equivalent hyperbolic set A, Therefore the lifting
of A, to V, by the projection = is hyperbolic for ¢*/V, and since V, is normally
hyperbolic is hyperbolic for ¢°.

Proposition A. Hyperbolic sets are stable.

Proof: Let A be a hyperbolic set for ¢ € #[(U) and let B be the vector
bundle on A defined as B = {(p,v)|peA,ve E; ® E,}. Let n:B—> A be
the canonical projection. Define B, = {(p,v)eB|||v| <k} and T, as the
space of continuous bundle maps f: B, —» B vertically C". Endow T', with
the C" topology. In 0 < 7, < T there exist k > 0, a neighborhood # of ¢
in #T(U), 6 > 0and a map:

3) U x (0,7) ¢ (Y, 1) > J, T,

defined by the properties:
a) ¥,(p.v) = (9(t, p), Y(t, p + v) — (¢, )

where B ;
b) Y(t,p+0v) — o(t,p)e E, ,, ® E*, @)
o lt—t|<s 5)

With a suitable choice of k, & and % (4), and (5) define a unique ¢ and the
map (3) is well defined and continuous. The geometrical idea behind this
definition is that of taking Poincaré maps induced by ¥ between the local
cross sections ES @ Ej; and Ej, , @ Eg, . Consider the space G® of bounded
sections of the bundle map 7 : B — A with the norm |n|| =sup{|#(p)| | pe A}.
If fe T, and covers a homeomorphism o: A > define f, : G} = {ne G" | ||n|| <
< k} - G® defined by f,(n) =f-n.a”'. Let G° = G* be the closed subs-
pace of continuous sections. Take 0 < 7 < 7,. Then the zero section of B
is a hyperbolic fixed point for ¢, : G2 - G* and §_, : G} N G° - G°. By ele-
mentary properties of hyperbolic fixed points, for all € % the map
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., : G® — G’ has a unique fixed point {, near to the zero section and (, € G°.
Define h: A — U by h(p) = p + {,(p). It is continuous because CQ is conti-
nuous. It takes ¢-orbits onto y-orbits because W,*(C.,,) U (l/lt* ¥..) () =
Ul//r*(tp,,, ), hence, by the unicity of the fixed point {, it follows that that

l//,*(Cl,,) for all 0 < t < ¢. Finally h is one to one because if p, # p, and
h(pl) = h(p,) the intersection of the @-orbit of p, with the hyperplanes
Ed. pn@®E% p,y define a section 7€ G with support in the orbit of p; and
satisfying ¢, (n) = n for all 0 < ¢ < 7 thus contradicting the unicity of the
fixed point of ¢, in G}.

Let X, A, X% V, F and U as in section 1 and let ¢ € #(U) be the semi-
flow satisfying (1) and (2). Assume that X has a Schauder basis.

Proposition B. Assume that A has compact inverse and let E*, A > 0 be
the subspace of X spanned by the generalized eigenvectors associated to eigen-
values of modulus > A. Then if U{E*| A > 0} is dense in X, for all hyperbolic
set for @ such that every point of A is non wandering for /A and & > 0, there
exists A > 0 and a continuous projection #*: X — E* such that the ordinary
differential equation on E* N\ V:

x = — Ax + #* F(x)

has a hyperbolic set e-equivalent to A.

Proof: For all y > 0 the space U{E*|1 > 0} is dense in X” because
U{E*| A > 0} is dense in X, invariant under A~" and A™" is an isomorphism
between X and X”. It is easy to see that there exists a family of continuous
projectios 7% : X*— E*, #*: X — E* such that |#*v—v] -0 and |#*v—v[*—0
when A — + 0o0. We shall need the two following elementary properties of
the semiflow ¢:

(I) — For all t < f <1 and 0 <t < T ¢(U) is contained in X* and
¢,: U > X* is continuous.

(I) —Foralla < f<1,0<t<Tand xeU ¢(x)X* < X*# and there
exists K; > 0 such that

| ooy < Ky 2™ o]l

for all ve X*

Take a < f < 1. By (D) it follows that A = @(A) is compact in X #, hence
bounded. Take a bounded neighborhood U, of A in X*. The existence of
a compact inverse of A implies that 477 is compact V y > 0. Since
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X# = A~B-9 X7 it follows that bounded sets of X# have compact closure
in X* From this it is easy to prove that U {n*U, | A > 0} has compact closure
in X* Hence its closed convex hull Win X* is compact. A similar argument
proves that the closed convex hull B of U {n*B’|4 > 0} in X% where
= {ve X?||v|, U 1}, is compact. Then for all §, > 0 there exists 5, > 0
such that:
| F(x,) — Flxp) | < 6,

“ F'(x,) — F'(x;) H <9,

for all x,e WV i=1,2, where F'(x): X*— X denotes the derivative of
F:X*— X at x. From Banach-Steinhaus theorem follows that there exists
A > 0 satisfying:

(U,)cV

|n*x—x||*<d, VxeWuUB
#*—DF(x)| <6, Y xeWnV
*—DF(xp| <d, YVxeWnV veB

Then if xe U,, ve B%:
| @*Fr*) (x) — #* — I)F(n*x) | +
+ | F(*x) — F(x) | < 9, + 9,
| (#*Fr*) (x) — F || < | @* =D F'(# x)n’lv | +
+ | (F(@*%) — F(x)a* | + | Fx) @ = Dp || <
<d,+6,K, +6,K,

where K, =sup {| w0 |, | o], <1, 2> 0} Ky Usup{| (9| | xe U}
Hence we can chose 4 > 0 such that F and #*Fn* are near in C'(U,, X). Take
a neighborhood U, of A such that U, < U, and inf{| x—y|, |xe U,,
y¢U,} >0 and a unique semiflow pe FYU,) satisfying:

@(0,7) x U)) = U, n X?

aa—(’::. (t’ x) = —Azb(t, x) + F((?)(t’ x))

for all xe U,, 0 <t < 7. Observe that 9(t, x) = o(t,x)Vxe U,. We claim
that A is a hyperbolic set for . We have already proved that A is compact
in X?. By the definition of hyperbolicity:
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(1 op(—1,x)) Eg_, ) = Ex

hence by (I) E* = X?. Therefore X* = E*® (X? N E}) V xe A. Moreover
since X? — X*is compact property (II) implies that ¢(x): X* — X is compact.
Then, by (1), E* is finite dimensional. By the compacity of A in X? there exist
constants C, > 0 i =12 satisfying C,|v|, < |v[l. < C,|v]|, for all
ve U{E*| xe A}. Then if xe A, ve E} we have

i : A
|20 Iy = i)l = Z= |l 0w [l = y
2

G C (g
> 4 Ke o], = G- Ke ol

L
C2
Therefore E* defines the unstable subbundle of A for §. Finally we prove
that X? N ES defines the stable subbundle. By (In), if 0 <t <t, we have

90 I, = | 0690y = | 60kt = D 01 I <
= K Cev ™39 B (=3 Ct?) Hemoertr o,

for all xeA, xeX? NES. Then if C, =sup{| ¢/(x)v |, e |xeA, |v[,<1
0<t<ty, and C, =sup{C,,K,Ctg #e™} it is easy to see that:

| @i ”ﬂ =4Oy e UHp
for all xeA, ve XP N ES. Now take y e #7(U,) satisfying:

¥(0,7) x Uy) = X' n U,

%%. (t,x) = — Ay (t, ) + FFrd) ({2, %))

Since #*Frn* is near to F in C'(U,, X) ¥ is near to ¢ in #7(U,). Hence
by Proposition 4 has a hyperbollc set A, e-equivalent to A. Let X = E*@ E*
where E* =ker #* and #*:X — E* the associated projection. Defining

v, =", ¥, =ty we have:

® Yy, — Ay, + P FE
Wy _ s
(3) o fi*A

Hyperbolic sets for parabolic equations 153
Lot 4: E* =E* defined by 4 = #* 4 E’. Tt 1s casy to verify that A s sectorial
and sp(A) < sp(A4). Since A is sectorial dnd hdS compact inverse by hypo-
thesis, there exists u > 0 such that: sp(4) {z| Re(z) > pj. Then — A gene-

rates a linear semigroup [7] ¢~ A such that

e < e o).

From (3) follows that:
Yot x) = ¢ 7 'x

hence:

IA

e | #x |

[RZ(CRON

Therefore A, = E* and from (2) it is an invariant set for the O.D.E.:
x = —Ax + (R*F) (x)

where x = E* n V. Let { be the flow generated by this equation. Then
{ =y/E*. The hyperbolicity A, implies that ¥ 0 # veE* ()] | teR]
is unbounded. Moreover, smce A, is & -equivalent to A every pomt of A,
is nonwandering for y/A, = C/A, By [8] this implies that A is hyperbo-
lic for (.
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