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A generalization of a maximum principle for the
wave-operator with lower order terms

Wolf Hofmann*

Summary. It js shown that a classical maximum principle can be extended
to continuous functions with piecewise continuous first and second derivatives.
A simple application to the numerical solution of an initial value problem for
the telegraph equation is presented.

I. Introduction

We consider initial value problems for the operator
Llu] = — ty,x, + Ux,x, — dux, — euy, — hu, d,e,heR.

We call a domain D (i.e. opén and connected) in the half-plane x, > 0 an
admissible domain if it has the following property: To each P € D the corres-
ponding closed characteristic triangle (ABP) (see figure 1) belongs to D U Iy,
where I'y denotes the portion of the boundary of D situated on the x;-axis.
For such an admissible domain the following theorem holds [3, p. 199].

Theorem 1. Iet ue C3D)VCY{DUTy), h>0, e+d>0 e—d=>0,
and suppose that u satisfies the following inequalities:

@) onToiuy, —eu<0, u<O0,
(i) in D: L[u] <0,

then u <0 in .D.

Such theorems give one of the few possibilities to obtain error estimates.
But it is often difficult to satisfy that u € C?(D). Therefore we want to extend
this theorem to continuous functions which are piecewise continuously diffe-
rentiable. To do this the domain D is partitioned into subsets and the functions
are assumed to be twice differentiable in the interior of these subsets. A si-
milar result for the Laplace-operator has been shown in [2].
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Let D be an admissible domain and {D;};.; a family of open sets with the

following properties:

B =18 Do =0 e 4] Ljel

iel

D,) For each normal domain R < D (i.e. a domain allowing the application
of the Gauss-integral-theorem), R N D;, i€l, is a normal domain.

D;) Each compact subset of D intersects only a finite numer of the D;.

D,) For each iel and for each t > 0, the set D; N {x, = t} consists only
of a finite number of intervals.

Ds) Whenever [a, f] = Iy is an arbitrary closed and bounded interval, I
the 1-dimensional Lebesgue-measure and N = {ie I; MD; » [a, f]) > O}
then

lim A{(x;,)eR*; a<x, <B}n |J D)=0.
t—0+ iel -N

Now denoting by u; the restriction of a function u to D;, we shall say
that a function u belongs to F(Dj) if
(1) ue C(D W Ty),

(2) u;e CX(D; — T'), iel where dD = T U T, ie. the derivatives exist in D;
and can be extended continuously to T’y and to those parts of the boun-
dary of D;, which are situated in the interior of D.

(3) u.c CA(D)), iel.

Since the “interior” part of dD; (with respect to D) is sufficiently smooth
(accordint to condition D,), there exists a.e. an interior normal v;, and a
conormal ¢; may be introduced by cos(v;, x;) = cos(d;, X1), cOS(vi, X2) = —
cos(a;, x3), 11, p- 122}

Now the following generalization of theorem 1 holds.

Theorem 2. Letue F(D;), h >0,e +d >0, e —d > 0, and suppose that
u satisfies the following inequalities:

(i) on To: uy, —eu <0 ae and u <0,
(ll) in Di: L[u,-] < 0, iEI,
(iii) on 0D; N dD;: du;/do; — Ou;/do; <0 ae., i, jEI, i #J.

then u <0 in D.

The last assumption of theorem 2 is a “jump-condition™ for the conor-
mal-derivatives of two adjacent sets, and this is for instance satisfied if the
interior boundaries of the D;’s are characteristic lines. To prove theorem 2
we shall first establish two lemmas.

S S

el N
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II. Auxiliary Lemmas

As usual a subset S of R? is called normal if it allows the application
of the Gauss-integral-theorem. Then if R is a normal compact subset of D

and D is partioned in subsets as stated in the introduction we get R = | | R;
by putting R; = R " D;. o

We now define I' =0R, I'; =0R; — I, I';; =T n T,

With this notation we obtain T; = | J Ty;.

ji=1
o 2 J#t o

-By CF(R) we denote the set of testfunctions on the interior R of R, and

by L* the adjoint operator

L¥[v] = — Uxyxy, + Ve, + dvx, + evy, — hu.
Now we can prove as in [2, p. 151 f] the following lemma.

Lemma 1. Let ve F(D)), ¢ € CZ(R), then

Jf vI¥fplde’="y J‘J‘ eL[v]dx + ), J (p(élZi - ij’)dr.*
R i=1JJR; ij=1Jr, \do; do;
i>)

Proof : For each R;, i = 1, ..., m, we obtain by application of the Gauss-
integral-theorem [1, p. 120 ff]

JJ‘ (vil*[¢] — @L[v;]) dx = — j ouMi[@]dt —J 10 aﬂd‘c,
R; OR; oR; 60'1-

M,-[qo] = ¢(d cos(vi, x1) + ecos(vi, X3)) — @x, cos(vi, x;) + @y, cos(v;, X,).

Since ¢ and all its derivatives vanish on I' = 0R and I'; = U I it
j=1
follows that i)

”R vL*[¢] dx = ii JRiqoL[vi] 13 N (bato] 4 M ol de

i,j=1 JIyj
i>j

4 81)1' an
ijz=1 JL,,QD(@Q g a“j) i

Obviously we have v; = v; on I';; and v; = — v; a.e. on Iy,

Therefore we get a.e. on I';;: M[¢] = — M;[¢]. Hence the second sum
on the right vanishes. Since in addition 0v;/0o; = — dv;/00; a.e. on I';; we
obtain the desired formula.

*Here and later on dx is the element of the area and dt the element of the line.
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Let us denote by ||,” the Euclidean distance. If now R is a normal com-
pact subset of D with inf{”x — yH; x€R, yedD} > a > 0 then we shall
denote by ¢, the well-known nonnegative test-function with support
{x:]|x|| < o} and [ [g @a(x) dx = 1. For functions u which are local summable
on D we now introduce the mean function u, which is defined on R by

ux) = [[pult) @t — x)d.

For any point P = (r, s) € D we construct the characteristic closed triangle
(ABP), (see figure 1). For x, = t(t < s), we denote by A'B’ the intersection of
this line with the triangle. Now we are able to prove the next lemma.

X2
A SBIE
t p--—— 3
\ i
B(b, 0)

Figure 1.

Lemma 2. Let P = (r,s)e D. Then, if ve F(D;) and e€ R such that
Ux, — e < 0 a.e. on AB, there exist real numbers t, k, o with0 <1 < s, k <0,
o > 0 such that for all positive o < & we have:

B’ &
J <%(x1,z) L eva(xl,t)> dx, < k.

4 \0x,

Proof: Let N = {ieI; MD; n AB) > 0}, g(xi1, x2) = vx,(X1, X2) — ev(x1,
x,), and D! = D; " (ABP) n {x, = t} for any t > 0. Since ¢(x;.0) <Oa.e. on
AB and because the partitioning satisfies the property Ds, continuity argu-
ments yield the existence of real numbers ky, k,, t with k; <0, ky + k; <O,
t > 0, such that

ZJvtg(xl,t)dx1<k1 and Z J!

ieN D ieI-N JDji

g(x1, t)| dxq < k.

Now, because D is open, there exists an a; > 0 such that

A—e (%) o) sup llx — y” < 8y, Y2 =" Ofre B
ye(ABP)
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But A is a compact and v € F(D;). Hence there exists an ¢ > 0 such that

sup ’g(x)| < cand sup ’ga(x)’ < ¢ whenever 0 < « < min(t, «;).
XEA ;E(ABP)
Therefore we can choose t so small such that for all « with 0 < o <

min(t, «;) we obtain
e fp’,|ga(x1, f)| dxy < k.

ielI-N

For any o > 0 we put (D;), = {x€ D;; sup ||x — y|| < «}. Then properties
AYGDI
D; and D, of our partitioning show that for sufficiently small « there exists
a finite number of compact sets K, u-= 1,..., n with the following two pro-
perties:

(1) To each u there exists an ie N such that K, < D,

Q@ K:=|J) K,=AB —(|J (D).
n=1 iel —N
Therefore we can choose by continuity arguments real numbers k;,
kq, o, with k3 < 0, k3 + k4 < 0,0 < a, < min(t, a,), such that for all positive
a < o the inequalities
fkgber,dx; <ks and 3 fp,

iel -N

glxy, f)| dxy < kg

v, v
g (x1, 1) @(Xh 1)

{i
max {|va(x1, t) — v(xy, 1),
(x1,1)eK

(see [4, n.° 71: p. 207, theorem 4]). This implies

hold. Now there exists for every 6 > 0 an a3z = a3(6) > 0 such that for all
positive a < a3 we have
B
v, ov

—* — ey, < +5—ev+(5e=a—v~ev+(5(]+e)in1\'.
c'?xz X2 6)(2

and therefore it is possible to choose such a small ¢ that for all positive
o < min(ay, «3(8)) and a ks < 0 with ks + kg < O the following inequality
holds: [ ga(x1, ) dxq < ks.

By choosing k = ks + k4 and & = min(a,, a3(5)) the proof is complete.

III. Proof of Theorem 2

Under stronger conditions we shall first establish the following.

Lemma 3. Let ue F(Dy), h>0,e +d >0, e —d > 0, and suppose that
u satisfies the following inequalities:



6 Wolf Hofmann

(D).on Loty —euw< 0 ae, u <0
(i) in Di: Llu] <0, iel,
(iii) on 0D; N OD;: Ou;/0c; — Ou;/do; <0 ae., i, jel, i # ],
then u <0 in D.

Proof : Suppose on the contrary that there exists a point Py e D such
that u(Py) > 0. Let Dy = (49BoPy) be the corresponding closed characteristic
triangle. Since u € C(D,) we obtain that G = {(x;, x2) € Do ; u(x;, x;) = 0} is
compact. Therefore there exists a point P = (r,s) € (A¢oBoPy), s > 0 with
u(P) = 0 and such that u is negative for all points (x;, x;) € (4¢9BoPo) With
X, < s (see figure 2).

X2

§

- X |
Ao A B Bo
Figue 2.

If R denotes the triangle (4'B'P) of Lemma 2, we obtain by applying
Stokes’ theorem to u, (with « < & (see Lemma 2)) and D' = (4'B'P) the for-
mula [3, p. 198]:

2u,(P) = u(A") + uB JJ hu dx + J <6ua = eua> dx
a4’ 5x2

P
J (e + d) uudx, +J (e — d) uudx, + ff Liu, |dx.
A’ A

Since D is open, there exists a positive & < a such that D =(D),cD.
Denoting by L,, L¥ the operators L, L* with respect to the variables x and
y in R, a simple calculation shows that for all positive o < 4, Ly @(y — X) =
L¥ @y — x) whenever xeD'.

This yields by applying lemma 1 to R = D that we obtain for xeD':

Llu,)(x) = [{3u(y) L:[@.](y — x)dy = [[5uly L*[%] (y — x)dy =
i ou; du;
E (TR @aly = x) Ly[ui]y) dy + s Zj Py — )(C.’—Z— (y) — a%@m
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But @ (y — x) > 0 for xe D', L[u;](y) < 0 for ye D;, i€ I, and the jump-
condition show that L[u,](x) < 0 for xe D'. Therefore, if o < mina, &)

Bt 7 A
2udP) & uA') + udB) +ﬁ hugdx + J (0““ - eua> d%
D’ a4 \0X,

7 P
+ j (e + d)udx, + f (e — d) udx,.
B! A

Sinceu<0,h>0,e+d>0,e—d=>0in D, it is possible to choose
an o, so small that for all positive a < a, there exists a k¢ € R, such that
the following inequality (with k asserted as in lemma 2) holds:

P P
Jj huaderj (e + d) udx, —l—J (e — d)udx, < kg, k + ke = : k7 <O.
Dr B’ A

Hence, 2uy(P) < ul(A’) + u(B) + k7, o < min(a, &, ay).

Choosing in addition o, so small that for o < mina, &, o) |ua — u‘ <
< k,/4in D', (see [4,n.° 71, p. 207, theorem 4]), we obtain 2u(P) < u(A’) + u(B’).
Since u(P) = 0, u(A') < 0, u(B’) < 0 we get a contradiction and the lemma
is proved.

To relax the strict inequalities u,, — eu < 0 a.e. on I'y and u <0 on
Iy, we apply as in [3, p. 199] lemma 3 to the function u — & exp(yx;), ¢ > 0.
y > 0. For y > e the strict inequality

8 2
holds. exp (yx,) is infinitely often differentiable. Hence lemma 1 and
L,y — x) = L} @,(y — x) for xe D' yield:

L. [[pexp(yy2 @y — x)dy = [[5 @uly — x) Ly[exp(yy2)] dy, x€ D"
Since L,[exp(yy.)] = (+ y* — ey — h)exp(yyz) > 0 for y > 3(e + /€* + 4h),
we get L [[5exp(yy2) @y — x)dy > 0, xeD".

Therefore, if the conditions of lemma 3 are replaced by the conditions
of theorem 2, lemma 3 shows that for sufficiently large y we have u — ¢ exp(yx,)

< 0 in D. Letting ¢ — 0, we conclude that u < 0 in D which completes the
proof of theorem 3.

eXp(wCz) — eexp(yxz) >«

IV. Numerical Example

If the initial value functions are not twice differentiable ‘one encounters
difficulties in case one wants to apply a maximum principle of the type of
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theorem 1. Therefore in these cases we shall resort to our theorem 2. As an
A s P!
example let us consider the telegraph equation

E[u] = theyx, = Usyn, + 4 =0
o & 18 »
together with the following initial value functions —

1

O U T g e

for (5 1)Fxd =90, 1 = 12, (%1, 0) = 0.

Obviously u(x;, 0) is not differentiable for x; = 0. Hence we shall apply
theorem 2 to obtain lower and upper bounds for the solution u* in the half-
plane x, > 0.

To get a lower bound we choose

= {(x,y)eR?; x; <0, 0 < x2 < — X1},
{(x,y)eR?; x; >0, 0 < x5 < x4},
{(x,y)eR?; x; > lx1|}.

D,
D,
Dy

Il

The (see [1, p. 402 f]) the function

I 5y

BT o R
oL e i

VX1, X2) =
satisfies the initial conditions and L[v; — u*] = L[v;] >0 in Dy, i =1,2.
Therefore v; is a lower bound for u* in D;, i = 1,2. The trial function

1 05

v3(x1, X234, b. ) = c(x} — x3) explax; + bx;) +
X9 + 1

,a, b, ceR,
satisfies v3 = v; on 0D; " oD, i=1,2 and for 1 =0, b=—1, ¢ =0.5-we
get L[v3] > 0 in D3. Therefore the function v = v; in D;. 9 = 1,2,3, s a lo-
wer bound for u* in the upper half-plane.

The function wi(x;, x;) = cosh ﬁxz/(— 1) x; + 1 is an upper bound
in B, i=1,2, see [1,p. 402V {])

These functions satisfy L{u* — w;] = L[ — w;] > 0 even for (— 1x; >0,
=2

Furthermore dw;(0, x,)/0x; — 0w,(0, x3)/0x; =2 > 0.

Therefore w = w; for (— 1)x; >0, i = 1,2, is an upper bound for u*
in the half-plane x, > 0.

Improved results can be achieved by using better trial functions with
more terms..
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