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On the singularities of foliations and of
vector bundle maps

Bruce F. Golbus *

Abstract. Let F be a (smooth) I';°-structure (often called a codimension-
q Haefliger structure) on a compact manifold X". Cohomological invariants
associeted to the singularities of F are defined whose vanishing is shown
to be a necessary condition for deforming F to a codimension-q foliation
on X". An analagous approach to vector bundle maps is then utilized to
prove a general theorem concerning the possibility of embedding a vector
bundle in the tangent bundle of X", and applications to the planefield problem
are given. In the final section geometric realizations of the singularity classes
associated to F are constructed.

0. Introduction.

In 1947, G. Reeb posed the following fundamental question in the theory
of (smooth) foliations [cf. 19, p. 95]. If the manifold X" admits a field of
(n — g)-planes ¢ does it also admit a completely integrable field of (n — g)-
planes &, i.e., a field of planes tangent to the leaves of a codimension g folia-
tion E? In [5, p. 10], A. Haefliger refined the problem somewhat by asking
if &, did exist, could it be chosen to lie in the homotopy class of £?

In the last several years, a great deal of attention has been paid to these
two questions. (For a survey of known results, see [12]) On open manifolds,
a general construction due to Haefliger [cf. 6] has reduced the problem to
a question in homotopy theory. Basically, his approach is to consider the
so-caled “I'y-structures” F (often called codimension g Haefliger structures
in the literature) and to ask when such “singular foliations” are homotopic
to actual codimension-g foliations. (Note that I'y’-structures exist in abun-
dance on any manifold; in particular any smooth function f: X" — R? will
induce such a structure.) Using the Gromov-Phillips Transversality Theorem
[cf. 6, p. 188] as his main tool, he was able to demonstrate: (See Section 1
for definitions)
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Theorem (H). [6, p. 190] Let X" be an open manifold (every compact
component has a boundary) and F a T'y-structure on X" with normal bundle
W(F). Suppose that there exists a maximal rank bundle map ¢: TX — vF — 0.
Then F is homotopic to a foliation E.

As an immediate application, there is the following important corollary:

Corollary. Suppose & is an (n — q)-subbundle of TX" (X" open). A neccessa-
ry and sufficient condition for & to be homotopic to a foliation is that TX /& be
vector bundle isomorphic to W(F), F a I'y-structure on X".

In this work our primary purpose is to provide further insight into the
existence problem for foliations (and plane fields) on compact manifolds X"
through a study of the singularities of I'y-structures F and of bundle maps
¢: TX" — 4, v? a vector bundle over X". That is, we consider the problem
of finding neccessary and sufficient conditions for the elimination of these
singularities within the homotopy class (resp. isomorphism class) of F (resp. v9).

In Section 1, we give the basic definitions and constructions for the
convenience of readers.

In Section 2, the graph construction of [6] is recalled, and some further
properties of this foliated bundle are established. This in turn makes it possi-
ble to show, in Sections 3.2, 3.3, that a (smooth) I'y-structure F on a para-
compact manifold does indeed have a well-defined global singular set in the
sense of Thom’s theory of singularities of differentiable mappings [cf. 14].
In 3.3 the existence of this global singular set is exploited to produce our
first new result (Thm. 3.3.2). That is, we define for each such F three sets of “sin-
gularity classes” with varying assumptions of orientability on X" and F) b{(F) ¢
HIOTUENX": Zo)l bR e HER 45 WXl Z)vand »1bF) s Bz 4N XN Z), for
0 <i,j<gq,j =2k such that each is an invariant of the homotopy class
of F and if F is homotopic to a foliation E, all of the classes vanish (i, j > 0).

In Section 4, using a theorem due to R. Thom, I. Porteous and F. Ronga,
analogous “singularity classes” are defined for mappings of vector bundles
v? over X". A general theorem relating the vanishing of these classes to the
existence of a bundle monomorphism ¢: v? — TX" is then proved, which
is our main result (Theorem (4.2)). Applying this theorem to the situation
where V¢ is isomorphic to the trivial g-plane bundle over X", we are able
to derive the following corollary:

Corollary 4.3. For each q > 9, there is a closed, orientable manifold X"
with zero Euler characteristic and signature such that X" has a g-frame field
over its 3-skeleton but no global q-frame field.
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In the final section, we consider T — I'y-structures, i.e., ones satisfying
a certain set of first order transversality conditions [cf. Def. 3.2.1]. The main
resul here, accomplished via a partial extension of the Thom transversality
theorem, is that the classes B(F) and R(F) can always be “realized geome-
trically” in. X [ef.. Def. 5.2:1];

As this work was being completed, W. Thurston succeeded in extending
Theorem (H) to the case of compact manifolds. [See 25].

The author would like to acknowledge the helpful suggestions and criti-
cisms of Professor H. 1. Levine of Brandeis University.

1. General Definitions
Reference for this section are [3, p. 39-42] and [6, p. 184-187].

1.1. Let X" be an n-dimensional, paracompact, connected C* manifold.
A (smooth) T'®-cocycle ¢ on X" (g < n) is given by:

1) An open cover U = {U}iy of X";

2) smooth maps f; : U; — R? called the local projections; and

3) for each i, jeJ and x ¢ U; 0 U; a diffeomorphism yjj from a neigh-
borhood of f{x) = R? onto a neighborhood of fi(x) satisfying:

a) f; = 750 f; in a neighborhood of x, and

b) for each x& U; n U; n Uy, one has yi; = yijoyj in a neighborhood
of fix). b) is called the cocycle condition and the {y5}i, jes are called
the transition functions.

Two such cocycles ¢ = {U;, fi, ¥i}i jer € = {Us fa> Yap}a, pss are said to
be equivalent if there is a cocycle corresponding to the covering {U,}yesus
which restricts to ¢ on {U;}i; and ¢’ on {U,}s, . Phrased in terms of the
transition functions, this says that there exists a collection of local diffeo-
morphisms of RY, 7, a e J', i £ J that together with the {y;;} and the {75} sa-
tisfy condition b on the union of the covers {U;} and {U,}. Then a (smooth)
[?-structure F on X" is an equivalence class of I'g-cocycles.

1.2. Let F = {U;, fi, y5}ijes be as above. If all the local projections
fi: U; — R? are of maximal rank, ie. submersions then F is a codimen-
sion-q foliation in the standard sense, the yj; are completely determined by
the /s and b) follows from a). Recall that if F is a foliation, there is defined
the normal bundle of F, Q(F), which can be described (via a Riemannian metric
on X") as the set of vectors v¢ TX" orthogonal to the leaves of F.

1.3. More generally, a normal bundle (F) can be associated to any
['?-structure F on X. This is a g-dimensional vector bundle over X", defined
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as follows: Over U;, v(F) is f}TRY, the pull-back by f; of the tangent bundle
of R4 Over U; N Uj, identify (x,v) ~ (x',v) <> x = x" and v' = Tyi{f{x)) * v
where Tyi{f{x))+v is the tangent map of yj; at the point f{x) acting on the
vector v. Then vw(F) satisfies the following:

(1) if F is a foliation, Q(F) = v(F) (that is, they are isomorphic as vector
bundles over X"

(2) this construction is functorial: in particular if f : X" — Y is a smooth
map between manifolds, F a I'?-structure on Y, then v(f ~'(F)) = f*(W(F))
where f~(F), the T7-structure induced by f from F is given by By

= {f"YU, fiof, 75 = yl/™}. Note that if F is a foliation, this will not be
true in general for f ~!F. It will be the case if f is transverse to F, i.e., trans-
verse to all the leaves of F.

Finally, F is said to be transversally oriented if v(F) is an oriented vector
bundle over X". This is equivalent to demanding that all the transition functions
be orientation-preserving.

14. Let Fo, F; be two I'J-structures on X". Then F, and F are ho-
motopic, written Fo, ~ Fy, if there is a I'j-structure F on X" x I such that
ig W(F) = Fo and i7 '(F) = F; where i(x) = (x, 1), t = 0, 1. Then the following
are readily verified:

1) Homotopy is an equivalence relation of the set of smooth I'y-structu-
ression X"
2) If f: X" — Y™is C*, Fo, F; homotopic I'y-structures on Y™, them
S a)me £ 3R
B)iIielifivg A X Y"l are differentiably homotopic, F a I'j-strticture
on Y™ then f~Y(F)=~ g i(F).

2. Foliated Microbundles.

Given a I'7-structure F on a paracompact manifold X", it is an obser-
vation due to A. Haefliger and J. Milnor [cf. 6, p. 188] that F can be obtained
as the pull-back of a smooth codimension-q foliation E on a certain open
manifold M"*4.

This section will be devoted to establishing some further properties of
the foliated manifold M"*4. In section 3, these results will be applied to define
a section opeI'*(Hom(TX", vF)) (the C® sections of the vector bundle
Hom(TX",vF) — X"), which is a key step in defining cohomological in-
variants for the pair (X", F).

Let X" be a C* paracompact manifold, and let m be a C* microbundle
of fibre dimension g over X" - m is given by a smooth manifold M"*4 together
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with smooth maps i: X" — M, p: M""? — X" satisfying certain local tri-
viality conditions [cf. 16, p. 54]. If M""¢ possesses a C* codimension-q fo-
liation E whose leaves are everywhere transverse to the submanifolds p~*(x),
x ¢ X", the collection (M, E, i, p) is called a codimension-q foliated microbundle
(over X").
One can now state the
Theorem 2.1. [¢f. 6, p. 188]: Let X" be a paracompact C* manifold.
Then given any smooth I P-structure F on X", there exists a foliated micro-
bundle (M, E, iz, pr) over X" such that ir '(E) = F. M is called the graph of F.
Further, this foliated microbundle satisfies:
1) The microbundle m = (M, ir, pr) is unique up to isomorphism. [cf. 16,
p. 56]
2) There is a vector bundle isomorphism A: ’IM|1F(X" — T(IHX)) @
E)| iX), where T(if(X") is the tangent bundle of the sub-manifold
iX"), and ’IMIiF(X), v(E)| i{X") are the tangent bundle of M and
the normal bundle of E, respectively, restricted to this sub-manifold; and
3) If Fy ~ F, are homotopic T'y-structures on X", then m(F) ~ m(F),
i.e., they are isomorphic.

Proof. The construction of the graph of F is given in the above reference
together with the assertion that property (1) is valid. In order to prove (1)
through (3), and for use in Section 5, we introduce the following theorem,
due to J. M. Kister [9, Theorem 2, p. 96]:

Theorem 2.2. Let m: B E & B be a (topological microbundle of fibre
dimension q over a locally-finite, n-dimensional complex B. Then there exists
an open set E;  E with i(B) < E; such that j | E,: E; — Bis afibre bundle with
fibre R? and group Ho(q) = {homeomorphisms h: R* - R*| h(0) = 0}. Further,
if E, is any other such opg#-set of E, there exists a homeomorphism g: E; — E,
such that g is the identity on the zero-section i(B).

Let M; = M be the open set given by this theorem, and set m;(F) = the
corresponding fibre bundle with distinguished zero-section, m;(F) =
(My, ir, -F|M1). It is clear that m(F) is in fact a C*R‘bundle over X",
with group the set of origin-preserving difftomorphism of R?. To establish
property (1), suppose (M, 7, p’, E') is another codimension-q foliated micro-
bundle over X" satisfying i~ }(E') = F. Let M} = M’ be the total space of
the R%-bundle contained in M’ and let E) be the foliation of M) given by
the restriction of E'. Since i’ }(E') = F, the transition function 7?; for E' at
the point y in p'~(x), x e U; n Uj, is exactly y5. Also, since E} has codimen-
sion = q it follows that E' | p’~*(U;) is diffeomorphic to a family of n-planes
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in R"*4, and as E} is transverse to the fibres of p’, the coordinates - SV
in p'~}(U;) in which E; takes on the above form may be chosen to be trivia-
lizing coordinates for bundle M} over U;. Hence, over x¢ U; N U;, with
respect to the two sets of coordinates (zf, . {028 s (, .. z,,+q) chosen in
the above manner, the transition function y}; = 3 for the foliation E will
coincide with the transformation g;; for the bundle M1, ie., the group of
this bundle can be reduced to the “group” {y3j}i j.s. Since the same reduction
is possible for m;(F), it follows that there is a fibre bundle equivalence h:
M'; — M, which must necessarily preserve zero-sections of each bundle,
and so (M',i,p’) is isomorphic to (M, iF, pr).

To see (2), begin by noting that as M, is open in M, TM | if(X") = TM, i
ir(X") and v(E)hF(X") = v(El)I i(X™). On the other hand, since M, is the
total space of an Ri-bundle over X", by considering transition functions,
it can be easily shown that as vector bundles TM,; =~ Ver(TM) @ p#(TX")
where Ver(TM,) denotes the tangent space to the fibres of m,(F). This iso-
morphism restricts to A: M [i{X) — Ver(TM,)| ifX") ® T(i{X") or, by
the above remark to A: TM |if(X) — Ver(TM )| i{X") @ T(ix(X)). Now an
argument similar to the one given above will show that there is a vector bundle
isomorphism B: Ver(TM ) |ifX") — WE)| ig(X"). Then A = (B@id). A is
the desired map.

To conclude the proof of Theorem 2.1, suppose that Fo ~ F; are ho-
motopic I'¥-structures on X", and F is the I'y-structure on X" x [ satisfying
ig Y(F) = Fo and if '(F) = F;. Let m(F): X" x I'®> M & X" x I be the graph
of F and let i¥(m(F)) be the induced microbundle over X", « =0, 1. Since
the graph construction is unique up to microbundle isomorphism, it may
be assumed that the microbundles m(F), m(i7 (F)) and m(i; '(F)) have been
constructed in the manner specified in [6]. It is then straightforward to check
that for o = 0, 1, i*(m(F)) ~ m(i; *(F)). However, according to [16, Thm. 3.1,
p. 58], since X" is paracompact, i%(m(F)) ~ i¥(m(F)) and so there is a chain
of isomorphisms: m(F) =m(iy '(F)) ~ i*(m(F)) ~ i§(m(F)) ~ m(io '(F)) = m(F),
and so the theorem is proved.

3. Invariants for the pair (X", F).

In this section we assume throughout that the manifold X" is compact
(with or without boundary), connected, and that F is I'y-structure on X".

3.1. Let &" — X", 19 — X" be real vector bundles over X" of (fibre)
dimension m and g, respectively. Let Hom(&, 1) — X" denote the vector
bundle over X" of dimension m - g with Hom(¢, 7), = fibre of Hom(¢, t) over
x & X" = {R-linear maps ¢, : £, — 1.} and let Sy(&, 7) denote the submanifold
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of Hom(¢&, 7) consisting of those elements with rank equal to min(m, q) — i,
for 0 < i < min(m, q). Then the following facts about S;(&, ) are well known:
Fefi*13p p37R )
1) S:i(&, 1) is regularly embedded in Hom(¢, 1), that is the inclusion map
is a homeomorphism into;
2) Si(, 7)is a sub-bundle of Hom(¢, 1) (although not a sub-vector bundle)
with fibre equal to Sim, q) = {m x q real matrices of rank min(m, q) — i}
3) the codimension of S{(¢& 1) in Hom(¢, 1) = l(‘m - q| + i); and

min(m,q) —i min(m, q)— 0

4) S5&1 = |J Sisf&1). Thus, for example, Syt L4
i s
S{é& 1) = Holm(.f, 7). Similarly, for ™ — X", ¢ — X" complex ifector
bundles over X" of complex dimension m and ¢, respectively, if one
forms the corresponding bundle Hom(n, ) — X" and then decom-
poses this bundle into its singularlity sub-bundles S¢(n, w) according
to complex rank, properties analogous to (1)-(4) will continue to hold.

It is a consequence of the work of Borel-Haefliger [cf. 21, p. 23-24, see
also 7, p. 8-02], that for 0 < i < min(m,q), S{¢,7) carries a fundamental
class in H(Si(Z, 1); Z,), singular homology with closed supports, where s
denotes the dimension of S{(¢, ). Also, if X" is orientable, the complex space
S€(n, w) possesses such a class. (Z coefficients). Further, according to [20],
if the bundle Hom(¢, 1) — X" is orientable (in particular if both ™ — X,
9 — X" are orientable bundles) m — g = 2r, j = 2k, then S{&, 1) has a fun-
damental class over Z.

Let [S(& 7)] denote the image of the fundamental class of S{&, 1) in
H, (Hom(¢, ‘c) Z,) under the homology homomorphism induced by the inclu-
sion S{&, 1) —» Hom(¢, 7). (Since Hom(¢, 1) is a paracompact manifold, by I2p-
20], singular homology with closed supports gives the ordinary singular homo-
logy, so [S{¢, 7)] is a singular homology class.) Define P.D.[S{(c, S{&,7)] e H&(Hom
(¢,7); Z,) (the Z,-cohomology with compact supports) to be the image of
[S{&, 7)] under the Poincare Duality isomorphism P.D.: H(Hom(¢, 1); Z,) -
— Hg*™17*(Hom(¢, 1); Zy). [cf. 22, p. 341]. Similarly define PD[S (n,w)e
¢ H{(Homdn, ); Z) and P.D.[S;(&, 7)) e HE(Hom(¢, 1); Z).

3.2. Let X" M5 X" be the graph of F and let A: ™ |iHX
T(ix(X)) @ \ ir(X) be the (canonical) vector bundle isomorphism deﬁned
in the prev1ous sectlon. Fixing this isomorphism, then, the tangent map of
ir gives T(ip): TX" — T(i;{X"))@v(E)‘ip(X) and a second bundle map
150 Tip): TX" —> WE) | ir(X), where 7, : T(iH(X)) ® WE) | in(X) — WE) | iHX)
is given by the linear projection of the second factor. Let ¢: WE)|ir(X) —
WF) be thé (canonical) vector bundle isomorphism defined by the compo-
sition W(E) | i X) &> i#((E)) 2 v(ir '(E)) = v(F). (The map ¢ is given in 1.3)-2.)
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Putting these various bundle maps together yields a well-defined bundle map:
TX — v(F) which, by suppressing both ¢, and 7, shall again be called T(i).
Finally, define a section o ¢  *(Hom(TX, v(F))), the 1-jet of F, by or(x) =
T(iplx): TX" — W(F)s x X"

Definition -3.2.1. [cf. 13, p. 372] Let S(TX, v(F)) be the sub-bundle of
Hom(TX, v(F)) — X" defined in (3.1). The section o is said to be a T-section
if it has transversal intersection with each S{TX, v(F)) for 0 < i < min(n, g).
If oF is a T-section, F is said to be a T-I'7-structure on X".

3.3. Let X" be, as usual a C* compact, connected n-manifold and F
a I'?’-structure on X"

Definition 3.3.1. 1) Let 0¥ : H¥(Hom(TX, vF); Z, - H¥X"; Z,) be the
map induced on cohomology by ar. Define by(F) e H" 7 9*) (X"; Z,),0<i<q
by b{F) = o(P.D.[S(TX, (F)))).

2) Make the further assumption that X" is oriented. Let TXC, w(F)¢ be
the complexification of the bundles TX, v(F) respectively. Let Homd TX€, vF©)
and S{(TXC, vFC) be as in 3.1. Define b{(F)e H2®"~9*) (X"; Z) by bS(F) =
o¥(P.D.[ST(TXC, vFC)]). (Here one defines & I(Homd(TXC, vFC)) by ox(x)
(v, w) = (aH(xXv), 6H(x) (W)). It is easy to check that with the definition of bundle
complexiﬁcatioh given in [15, p. 78], o is complex-linear.)

3) Assume that X" is oriented and F is transversally oriented. Then
for n —q =2r, j =2k, define r{F)e H"*~1*)(X"; Z) to be a¥(P.D.[S((TX, vF))).

Set B(F) (respectively BE(F), R(F)) equal to bo(F) @ ... ® b(F)e HYX;.Z,)
(respectively b§(F) @ ... @ b5(F) e H¥(X"; Z); ro(F) ® ... @ r(F) e HX(X"; Z)).
Thus, in each case there is defined a total cohomology class which measures the
“first-order complexity” of S(F), the singular set of F, defined to be those
points in the manifold X" over which oy has rank < g. (Note that for F given
by a single global function f: X" — RY, this singular set reduces to the usual
set of singular (or critical points of f.)

Theorem 3.3.2. 1) Each of the classes B( ), R(F), BS(F) is an invariant
of the homotopy class of F, ie., F~F = > B(F) = B(F'), B‘(F) = BS(F'),
and R(F) = R(F').

2) If F is homotopic to a foliation E, B(F) = 1¢ H%X; Z,) =~ Z,; R(F) =
BE(F)y = el E)2b 2

Proof. We will prove the Theorem for the class B(F) (the proof for R(F)
is identical) and indicate what further statements are needed to extend the
proof to the case of the complexified class BS(F).

1) What needs to be shown here is that there exists a vector bundle iso-
morphism A: Hom(TX, v(F)) — Hom(TX, W(F’)) taking S{TX, v(F)) to S{TX
v(F')) and such that the following diagram commutes:
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Hom(TX, v(F)) ——> Hom(TX, v(F"))

PR

To that end, let : m(F) — m(F’) be the microbundle isomorphism given
by Theorem 2.1-3. That is, if U and U’ denote open neighborhoods of ig(X),
ir(X) in the total spaces of m(F) and m(F’), respectively, there is a commu-
tative diagram:

where  is a diffeomorphism. Lifting this commutative diagram to the level
of tangent spaces, naturality yields a second commutative diagram:

™ | if(X") e Ml epge | ip(X7)

) : TM | ig(X") > T(is(X") @ WE) [ iHX) (: TM' | ip(X") — T(ip(X")
E’)|ip(X)) be the isomorphisms of theorem (2.1)-2. Letting T({) =
TW)o A1 yields

Let A(

T(rX™) @ WE) | ir(X) — ¥ T(ir(X) @ WE)

ip(X)
A A
™ | i — ¥+ 7 )
T(ir) Tir)
i,
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with T¥ of maximal rank. Now, since Ti preserves the tangent spaces of
the zero sections, it is clear that T | (W(E) | ir(X)) will be well-defined and of
maximal rank as a map into v(E)|zF (X™) and that there exists a maximal
rank bundle map A: w(F) — w(F') so that

commutes. Recalling the definition of 6 and o7 and noting that a bundle iso-

morphism: Hom(TX, W(F)) - Hom(TX, WF')) must necessarily preserve the sin-

gularity decompositions, it will follow that the isomorphism A defined by

AdBL)(v) = ABx(v)), for B, e(Hom(TX, wW(F))),, ve TX%: establishes part (1).
The proof of (2) requires a lemma.

Lemma 1. Let X" be a compact, connected C* manifold and F a T—
I'y-structure on X". Set S{F) = or 1(S{TX, W(F))). Then
1) Si(F)isa regular submanifold of X" with codimension equal to i(n — q + i).

2) S{F) = U S+ AF) = o7 {(S{TX, (F))

3) S«(F) possesses a fundamental homology class (over Z,). Further, if

gt def .
[S{F)] denotes the image of this class in H(X"; Z,), then b{F) -

o¥(P.D.[S{TX, vF)]) = P.D.[S{F)] e H" 1" (X"; Z,).

Proof. 1) This is a standard consequence of the transversality of op.

2) This is a special case of [13, p. 373].

By a lemma of Haefliger-Kosinski cf. [7, p. 8-02] and (2), it suffices to
show that S(F) is an ANR (absolute neighborhood retract). Moreover, by
a theorem of S. T. Hu [cf. 8, Thm. (7.1), p. 168], this reduces to showing that
S{F) is locally contractible, which one accomplishes as follows: by (1), the
manifold topology of Si(F) agrees with the relative topology induced from
the inclusion of S{F) into X". Thus if x ¢ S;(F) and V' is any open set in S;(F)
contaning x, ¥V = V' n S{F) where V' is open in X". Since X" is a manifold
it is locally contractible and so there is an open set U’, xe U’ < V' with U’
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contractible to x in V7, i.e,, there is a continuous map G': U’ x I — V' with
o = inclusion : U — V', and G}(U’) = x. Setting U = U’ S;(F), and G:
U x I — V the restriction of G' to U x I, 3) follows.

Let E be a codimension-q foliation of X".

Assertion: Image (og) N S{TX, vE) = ¢ for all i > 0. As So(TX, VE) is
open in Hom(TX, vE) it follows that o is a T-section. Indeed, let x ¢ X" and
let T(ig) : TX — vE be the bundle map defined in (3.2). It suffices to show
that rank Tig{x) : TX, — VvE,, equals q.

To that end, note that by [6, p. 188], ix(x) = (x,w)e X" x R? where w
is an equivalence class of vectors in R% a typical representative of which
is of the form f{(x), for f;: U; — R? a local projection of E containing x in
its domain. Pick a locally trivializing subset U of U; for M, which shall remain
fixed. More precisely, there is an open subset V' of M and a diffeomorphism
h: V— U x R? such that h(ig(x)) = (x,0). In terms of this product repre-
sentation, if (xy, ..., x,) is a coordinate system for U, one sees that T(ig(x))
is given by an equivalence class of matrices, whose representative correspon-
ding to the choice of f; as a representative (near x) of ig, is given by the n x g
matrix of first-order partials of f; with respect to (x4, ..., x,). As E is a folia-
tion, this matrix does indeed have rank q. Further; if f;: U; — R? is any
other local projection containing x in its domain, the matrix of partial deri-
vatives (df3/0x,Xx) will also have rank q. Thus the rank of T(ig)(x) is indepen-
dent of the choice of local representative for ig, and is equal to g, as asserted.
Hence, by lemma 1-3, bo(E) = 6#(P.D.[So(TX, vE)]) = P.D.[So(E)] = P.D.[ X"]
=1¢e H%X"; Z,). Further, for i>0, b{E)=0¥(P.D.[S{TX, vE)]) = P.D.[S{E)]
= P.D[¢] =0, and so the theorem is proved for B(F).

To complete the proof for the complexified classe BE(F), it only needs
to be verified that for F a I';°-structure on X", real rank (64{(x)) = complex
rank (og(x)). It will then follow, for example, that the sets o }(S{TX, vF))
and of '(SY(TXC, vFC)) will be identical and the results of Lemma (1) will
be applicable. This lemma, coupled with the assertion analogous to the pre-
ceding one will extend the proof to this case. This desired fact follows from the

Lemma 2. Let ¢: R" —R? be a linear transformation. Represent C", C4
by C" = {(vy, wy) |vl, w; € R"} and C? = {(v,y, wy) | v2, wy € R} with complex
multiplication given by i-(v;, wi) = (— w;, v;), i =1, 2. Let ¢: C* — C9 be
given by d(v, w) = (¢p(v), d(w)). Then real rank (¢) = complex rank (d))

Proof. This is trivial. In fact, if (e, ..., e,) is a basis for R", (e}, ...,¢€)
a basis for RY, and ((e1, ey), ..., (en, €n), (€1, €1), ..., (e, €j)) the correspon-
ding bases for C" and CY the matrices expressing ¢ and @, respectively, in
terms of these two bases are identical.
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3.4. Examples. In order to calculate some examples of the classes B(F),
BE(F) and R(F), and for use in the next section, we introduce the following
theorem, due collectively to R. Thom, I. Porteous and F. Ronga. [cf. 18, Prop.
1.3, p. 298; 20, p. 314]

Theorem (TPR).1) Let X" be a compact, connected C* manifold and
&m — X" 19 — X" real vector bundles over X" of rank m and q, respectively.
Let Hom(¢, 1) % X" be the bundle of linear maps between & and t. Then, with
notation as in (3.1), the cohomology class n*~Y(P.D.[S{E,1)]) is given as a
“yniversal” polynomial q;, the so-called i-th Thom polynomial, in the Stiefel-
Whitney classes of the fiber difference, Wi(& — 1). (Here universal means that
the polynomial depends only on m, q, and i, and in no way on the particular
bundles). This polynomial is equal to the determinant of the i x i matrix A =
(as,) with a5y = Wu—g+i-s+t-

2) Suppose that X" is orientable and n" — X, o* — X are complex
vector bundles over X". Then n*~'(P.D.[SF(n, w)]) is given by g; (ci(n — w)),
the ci(n — w) being the Chern classes of the fibre difference. The polynomial
qi is equal to the determinant of the i x i matrix Bi=ib, ) = Cpniis i,

3) Assume, in addition to the hypotheses of (1), that the bundle Hom(¢, 1)
—» X" is orientable, and that j = 2k, m — q = 2r. Then the class e
(P.D.[S,¢&, 1)]) in integral cohomology is determined by its reduction mod 2
and its rational reduction. The reduction mod 2 is the determinant of the matrix
(Wszr—s+d — )5t =1,...,j. The rational reduction is given as a universal
polynomial q; in the rational Pontryagin classes of the fibre difference e+ 2k
This polynomial is equal to the determinant of the k x k matrix C = (cs,\) =

’
Dk+r—s+t-

Remark. Let o e T°(Hom(¢, 7)) be an arbitrary section. Then since 7 - o
is the identity map of X" and ¢ - 7 is homotopic to the identity on Hom(¢, 1),
n*~ 1 = ¢* : H¥Hom(¢, 1)) — H*(X™). In particular, o¥ : H¥(Hom(TX, v(F)))
— H*(X™) is an inverse for m*.

To compute W(TX — vF), recall the Whitney Product Theorem Jletets,
p. 6]. Namely if ¢ @ 7 is the Whitney sum of the bundles £ and 7, then W(£ @ 1)
=W(E)UWh),ie WED1) = Y W) Y Wfr). Then W( — 1) is defined

i+j=k

to be W(& @ 7) for T any bundle z)ver X" inverse to 7. From the relation
W(t) U W(T) = W(¥) = 1, and the fact that Wo(t) = Wo(7) = 1, it is easy
to compute the classes W{(T).

We now exhibit specific examples. As manifolds we will use the various
projective spaces P*R), P"(C), and P™(K) (real, complex and quaternionic
projective spaces, respectively) while the I'’-structure F, will be that given
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by a single global C*® function f : X" — R?, with W(F) = f*(TR?) = ¢’. (Note
that any two such I';°-structures are homotopic.)

Example 3.4.1. Let X =P"(R), and g = 1. Then b,(F;) = W,_ 1+ (TX — vF)
= WATX) | Wo(VF) + W,_1(TX) © Wi(vF) = W,(TX). Now, as is well known,
W{(P"(R)) = ("t'), o, where ("}'), is the mod (2) binomial coefficient and
a ¢ H'(P"(R); Z,) is the canonical generator. So, by(F;) = W(TX) = (n + 1), o",
which is non-zero if n is even. All higher classes b{F,) are zero for dimensio-
nal reasons.

Example 3.4.2. Here we produce an example for which b{(F), i > 1 do
not all vanish. Let X8 = P%K) and q = 6. Then b,(F¢) e H¥P*(K); Z,) = Z,
is given by the determinant of the matrix

W4(7X & VF) Ws(TX 7 VF) 1§ j " g o
<W3(TX el VF)> — W2(TX —vF) — Ws(TX — vF) U Wy(TX — vF)
= Wi(PX(K) — WsWs(P*(K)).

In this case, if « ¢ H*(P™(K); Z,) denotes the generator, W, (P™(K)) =("; "), o«
and all the other Stiefel-Whitney classes are zero. Then b,(F) = Wi(P*(K)) =
(3);2)? and B(F) =1 + by(F) = 1 + o ¢ HXP¥(K); Z,).

Example 3.4.3. In this final example we turn our attention to the classes
bS(F,), rAF,) with X" = P"(C). Specifically, consider X® = P%(C) and F of
codimension 6. Then r,(F¢) e H¥(P*C); Z) = Z is defined. By Theorem
(TPR) — (3) one has

Wi(X) Wi(X)

ra(Fek2) = |y %) wax)

= Wi(PXC)) — WsW3(P¥(C)).

Thus r,(Fel2) = W(P*C)) (P*C) has no odd-dimensional cohomology) =
(3)2 21)?, a1 the generator of H¥(P*(C); Z,) = Z, and so is zero. Also, r»(Fe)Q)
= p5(P*(C)) = (3)(x2)* =30a3, where «, generates H*(P*C); Q). It then
follows that r,(F¢) in integral cohomology is given by 30a%, where a3 gene-
rates H*(P*(C); Z- and so R(Fg) is non-trivial. On the other hand, b§(Fs) =
= Cp_g+d TXC — VFC) = ¢c3(TXC — vF) = 0, since all odd Chern classes of
complexified bundles vanish.

4. Embedding Vector Bundles in Tx".

It is the purpose of Section 4 to show that theorem (TPR) together with
the techniques of 3.3 may be used to yield a general theorem, extending known
results, concerning the following question: Given a compact, connected C*
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manifold X", when does X" possess a g-plane field (with specified characte-
ristic classes)?
We begin with the following definition:

Definition 4.1. Let v2 — X" be a real vector bundle over X" of fibre
dimension g. With notation and orientability assumptions as in theorem
(TPR), set b)) = g W(TX — v¥); bS(+¥) = qi(cel TXE — VO); rfv)2) = g Wi
(TX — v9); and r{(vIXQ) = g{pTX — v%), for 0 < i, j < q. These classes are
elements of H¥X"; G), G = Z,, Z, Z,, Q, respectively.

We can now state the announced result:

Theorem 4.2. Let v — X" be as above. Then

1) The classes bi(v?), bS(v%), r{v9)(2) and r{v?)(Q) are invariants of the
isomorphism class of v!; and :

2) Suppose that v embeds in TX", i.e. is vector bundle isomorphic to a
g-dimensional sub-bundle of TX". Then for 1 < i, j < q, the above coho-
mology classes vanish.

Proof. 1) is immediate from the definition and the Whitney Product
Theorem since characteristic classes are isomorphism invariants. To establish
(2), observe that if v embeds in TX", there is induced a v.b. isomorphism
Y TX" — vi @ &9, where "4 is the (n — g-sub-bundle of TX" orthogonal
to (the isomorphic image of) v in TX" via a Riemannian metric on TX". Define
a bundle map y: TX" — v by ¢, = (p1)x o ¥ Where Y, =¥ | TX" and (p1)x
is the linear projection: v @ &, — v,. It is immediate that ¢ is a bundle
epimorphism, ie. Vxe¢ X", ¢,: TX% — v, has a maximal rank g. Let o,¢
I'*(Hom(TX, v%) be the section induced by ¢, ie. o4x) = Px.

By theorem (TPR) (and the remark following it), one has that by(v?) =
o3(P.D.[S{TX, v9)]). Since 6, meets only So(TX, v9) it is transverse to all
the S{TX, v?) and one can then show, exactly as in the proof of theorem 3.3.2,
that b{v%) = 6}(P.D.[S{TX,)]) = P.D.[0; '(S(TX, )] = P.D.[&] = 0. Si-
milar statements hold for the other singularity type classes, and so the theorem
is established.

Remark. It is possible to view theorem 3.3.2 as a corollary to this result,
since if F deforms to a foliation E, v(F) = w(E) =~ Q(E) < TX". The material
on I'-structures was presented separately, however, so as to emphasize the
relation of the singularities of F to the associated cohomology classes and
further to make possible Corollary 5.2.3. We also remark that for general
bundles there is no distinguished section of Hom(TX", v!) available and
thus the singularity classes for v? were defined by means of theorem (TPR)
in order to facilitate the proof of 4.2-1.
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We now restrict our attention to the case v? =~ & in order to derive a
typical application of theorem 4.2. In this case the embedding v = TX" is
equivalent to the existence of g linearly-independent vector fields on X"
(a g-frame field on X") and the above result may thus be used to give an upper
bound for Span(X") [cf. 24, p. 649]. As an example, one can compare the
neccessary condition on b,(v?) to the “first obstruction” result of Stiefel-
Whitney [cf. 23, p. 199] to show:

Corollary 4.3. For each q = 9, there is a compact, orientable manifold
X" with vanishing Euler characteristic and signature such that X" has a q-frame
field over its 3-skeleton but no global q-frame field.

Proof. For ¢ =9, let X" = X'! = P'}(R). Then the first obstruction is
S*W,(PY(R)) e H3(P'Y(R); Z) which is zero since the cohomology group is
zero. Thus P'!(R) has a nine-frame field over the 3-skeleton.

Consider by(¢°), €2 — P''(R). As in (3.4), by(e°) = det (Wy+5-(TX — ¢°))
= W3(P''(R)) — WsW;(P'!(R)). Now Wi(P'(R)) = o® # Qe H(P''(R); Z»),
while W;(P''(R)) = 0 and thus b,(¢°) is non-trivial. For ¢ > 9, let X" = X?*?
=X "9%2-11 » PIY(R) where X 927! is any compact orientable g +2— 11
manifold with W(X) =1, eg $4"27!! or T?*27!! and let p,: X — X,
p2»: X — P'(R) be the projections. Then TX" =~ p¥* TX @ p% TP''(R) and
by the Whitney Product Theorem, W(X") = W(p¥ TX) v W(p% TP''(R)) =
1 U W(p3TP''(R)). Further, by the functoriality of S — W classes, W(p¥TP''(R))
= p¥ W(P'(R)), where p% : H*(P''(R); Z,) — H*(X"; Z,) is the induced
map on cohomology. By the Kunneth Theorem, if «' denotes p3a, ()" # 0
in H¥X"; Z;) for 1 < k £11 and'so by(e9) ='1.U@)® # 0 H¥X?+2; Z,).
The corollary now follows from the fact that the Bockstein is a ring map,
1/ex 5*(IW2(X")) = 5*(1 U Wy(P{(R)) = 1 U §*W,(P'(R)) = 0.

5. T-I'y-structures.

5.1. In 5.1 we complete the set of obstructions for I'j’-structures by
considering in more detail the pair (X", F) where X" is a connected, closed
(compact, without boundary) orientable C* manifold and F is a transversally
orientable T — I'?-structure on X", in order to prove a proposition (prop.
5.1.3) relating the singularities of F to y(X"), the Euler characteristic of X".
The corollary of interest here (Corollary 5.1.4) is that y(X") fits quite naturally
into the collection of classes defined in Section 3.3, i.e., (X") = <P.D.[STF)],
[X"]), where [ X™"] is the fundamental homology class ¢ H,(X"; Z) and 4%
is the Kronecker Index. (Notice that while this fact is certainly to be anticipa-
ted, it is not a consequence of the general framework of Section 3. Thus, for
the sake of completeness, a proof of the proposition is included.)
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We begin with some neccessary generalities concerning codimension-one
singularities.

Lemma 5.1.1. Let (X", F) be a compact, connected manifold together with
a T — I'Y-structure. Then each local projection of F, F;: U; — R, is a Morse
function.

Proof. 1t suffices to show that each critical point p for f; is nondegenerate

2

in the sense that det < E g >(p) # 0 where in terms of the coordinate sys-
tem (%1, .-+ %;) for U;, 8f/6x, (p) =0,j =1,...n To that end, recall that p
a critical point for f; means that ag(p) ¢ Si(TX, vF), i.e., 6r(p) = (p,0) e Hom
(TX, vF),, (the fibre over p) since S{(TX, vF) is just the image of the zero-section
6o. Let my: T(Hom(TX, vF))p, 00 — T(Hom(TX, vF))p, 0/ T(S1(TX, VF))p, 0)
denote the linear projection. Then, by the definition of transversality,
(*) 730 T(oF)p): TXy — T(Hom(TX, vF))p, 0/ T(S1(TX, VF))e, 0y is onto. Let
U be an open set containing p over which Hom(TX, vF) has a product re-
presentation, and let (x4, ..., x,) be local coordinates for U. In terms of this
representation, (*) says that the linear map whose matrix is

o 0%
Aki__(@xkﬁm>(p)

is surjective on the tangent space to the fiber over p. As the dimension of the
fiber is n, this matrix is non-singular, and the lemma is proved.

Lemma 5.1.2. Let (X", F) be as above. Then

1) S(F) is a finite collection of points py, ...,ps; and

2) It may be assumed that there are no singular points of F in U; 0 Uj,
j # i. (It follows that there is a well-defined leaf through each x e X",
which is a (connected) smooth manifold away from S(F)).

Proof. 1) follows immediately from the lemma of Morse [cf. 14, p. 59]
and the compactness of X". To prove 2), suppose F is given by the cocycle
({Ui}, fis ¥5)i, jes- Since X" is compact, J can be chosen to be finite and so
U ={U;} =Uy,...,U,. Since S(F) is finite, there exists an open set V; = V; = Uy,
where ¥, is a compact manifold with boundary and S(F) n U, = V;. Con-
sider U,. Choose V, < V, = U, with V, a compact manifold with boundary
such that ¥, n ¥, = & and (S(F) n U,) — (S(F) n V;) = V,. Choose V3 in
U; such that V3 n(V, U Vy) = &, and (S(F) N Us) — (S(F) N V;) Y (S(F) 0
V,)) © V3. Continuing in this manner a finite number of times, one defines
a collection of compact sub-manifolds with boundary Viy ooy V. Set U = Uj—

U Ve Claimeslili= {U ‘Vj=1,..» 1s an open cover for X". Indeed, as each Uj
j#i
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is obviously open, it suffices to show that the union of the sets Uj cover X".
To that end, let x & X" and U; any element of U containing x. If x ¢ I_/, for
all j # i, we are done as then x & Uj. On the other hand, if x¢ V; for some
jeJ, then x ¢ V; for all | # j and so x & Uj. One now defines a new cocycle
representing F by restricting the original cocycle to the cover U’ = U. It
follows easily from the construction that this new cocycle (and hence F)
satisfies (2).

For the remainder of 5.1, let X" be connected, closed and oriented and
F a transversally oriented T — I'{’-structure on X". Set I(F) = index of F =

r

Y (3 (= 1)*Ci(fi)) where Ci(f) is the number of singular points of f; of
i=1 2 )

index A. (By the above lemma, each p ¢ S(F) is counted exactly once in this
sum). To state the announced proposition one also defines the intersection

number of op and 6o, # (0F, 0o), as follows: # (df, 0¢) = Z # (0F, oolp)
p peS(F)
where # (o, 0o)p)is + 1 or — 1 according to whether the orientation class

of the frame for T(Hom(TX, vF)),, 0y given by &* = (T(aoXpX&1)s---» T(00)
(PXEn), T(GEXPXEL),---» T(apNPXER), (&1, ... &4) a positively oriented frame for
TX", agrees with a (fixed) pre-assigned orientation for T(Hom(TX, vF)),0)-
(Here one assumes that the orientation for Hom(TX, vF) is that induced from
orientations of TX" and w(F).) Finally, let y(Hom(TX, vF)) ¢ H(X"; Z) denote
the Euler class of the bundle [cf. 15, p. 34]. Then there is the

Proposition 5.1.3. I(F) = # (or, 0o) = {x(Hom(TX,vF)), [X"]) = n(X").
(1) () A3) (4)

Remarks. 1. This proposition is a generalization of Morse’s result on
the alternating sum of the critical indices of a single non-degenerate mapping
f? X" — R

2. The first three numbers are defined in “decreasing genericity.” I(F)
is defined only for F a T — I'P-structure, #(dr, 0o) is defined whenever
the singular points for the local projections are isolated (although perhaps
degenerate) and {y(Hom(TX, vF)),[X]) is defined for any F.

Proof. (1) = (2) Let pe X" be a singular point for F, ie., a zero of g,
and let f; be the unique (Lemma 5.1.2)) local projection of F containing x
in its domain. It suffices to show that #(or, 6o)Xp) = (— 1)*, where A is the
index of p as a singular point for f;.

Let (y1, ..., ya; U), U = U; be the coordinate system given by the lemma

of Morse, ie., f; = fip) — Z vi+ Z y2 throughout U. Without loss of

m=Ai+1
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generality, it may be assumed that d/0y; |,,,...,c'?/0y,, |,, gives a positively
oriented frame for TX}. Let my: TX — X be the bundle projection. Then
a positively oriented frame for T(TX) o) is given by ¢ = (6/dy, |(p,o), A
0/0yn |(p, 0, €1(0), ..., e,0)). Here ey, ..., e, is the basis corresponding to the
standard basis of p%(TR") under the isomorphism T(rnx }(U)) = pHTU)®
p3(TR"), p;1, p, the projections: U x R* — U, U x R" — R", resp. Now,
since v(F) is an oriented line bundle it is trivial, and hence under the bundle
isomorphism A4: Hom(TX, vF) — w(F) ® T*X) — W(F) ® TX = TX, the
frame { for Hom(TX, v(F)) at (p, 0) corresponding to ¢ under A is given by
¢ =(a 3/0y1lip.0pera 0/0ynlip.0)s a-€1(0),...,a e, 0) for a>0eR. To
identify the frame £*, consider T(oopXTX,). Since this space has no com-
ponent in the fibre direction, one has

*) Too(pX6/2y; |p) = 8/0y; 1,00, 1 = 1,0 00m.
(Here o, is regarded, via A, as e['®(TX™)).

Further, we are given that o and o, intersect transversally, and so the
image of the collection of vectors {d/dy; |p}, j=1,...,n under T(opXp) fills
up the subspace of the tangent space of Hom(TX, vF) at (p, 0) spanned by
{a-ef0)}, j = 1,...,n. Thus it suffices to compute the coefficients a;; in the
expression T(ap)pX0/0yx | ») = 2, a;ef0). But this is exactly the information

j=1
given by the lemma of Morse. Indeed, in terms of the local product structure
for TX" over U, since p is contained in U; — U U;, or can be thought of

j=i
as a map taking U — R", of = (df;/0y1, ..., 0fi/0y,) and thus one has:

n aZfl
gt - e40
p> j; Oyx 0y; g

(*%) T(op)(p)< a—if

k

which in turn implies that

0 k+#j
akj= —2 k=] IS]S}\.

2 iy o

Combining (*) and (**) one sees that with respect to the basis {, the matrix
of &* is diagonal with det(matrix (£*)) = (— 2)*-2" * which is positive or
negative as A is even or odd.

(2) = (3). Since X" is compact, there is an r > 0 such that Im(oy) =
(D(Hom(TX, vF))), the disc bundle of radius r associated to Hom(TX, vF)
by a choice of fibre metric. Let S(Hom(TX, vF)) be the associated sphere
bundle of radius r. To vaoid using cohomology with compact supports, we
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consider the Thom class U as an element of the group HD(Hom(TX, vF)),
S(Hom(TX, vF)); Z); it is the unique class which when restricted to the fibre
corresponds to the given orientation generator Uj,e H"(D(Hom(TX, vF)),,
S(Hom(TX, vF)),; Z) =~ HYD";S""';Z) = Z. Let [0,] ¢ H(D(Hom(TX, vF));
Z) = (00)x [X"], [0F] = (6F)« [X"], and let {' ¢ H,,(D(Hom(TX, vF)), S(Hom
(TX, vF)); Z) be the fundamental homology class.

Assertion. Under the (inverse to the) Lefschetz duality isomorphism for
manifolds with boundary,

H"(D(Hom(TX, vF)), S(Hom(TX, vF)); Z) Q_C, H, (D(Hom(TX, vF)); Z),
5 ghselund [00], U maps into [o,], where the isomorphism is given by capping
with the fundamental class. Indeed, it follows directly from a theorem of
Leray-Hirsch [cf. 22, Thm. # 9, p. 258] that if u, denotes the homology ge-
nerator dual to Uy, then [ X"] @ pp = 1(U 0 (') ® upe Z ® 2Z. This in turn
implies [X"] = 1, (U N {) = > 604[X"] = 00514(U N ) = U N, as clai-
med. To establish the desired equality, one now observes that according to
[4, (13.5), p. 337, see also (13.26), p. 343], # (dF,00) = <L.D.[aF] U L.D[oo],

"¢'>. Since o is homotopic to gg, [or] = (6F)«[X"] = (60)x[X™] = [00]. Thus

int # (0f, 0¢) = <L.D.[ao] OLDleg). = R H A ("> by the Assertion.
A consideration of the following diagram

H'X";Z) i H?*"(D(Hom(TX, vF)), S(Hom(TX, vF)); Z)
}//1 > I Y2
HiX":Z) A 4 W el H,,(D(Hom(TX, vF)), S(Hom(TX, vF)); Z)

where ¢ is the Thom isomorphism, the vertical isomorphisms correspond
to the choice of a dual generator, and ¢ = Y5 ' ¢/, then shows that int
# (or,00) = ULV U,L) =¢™H(U L U), ¢ ' ') = {y(Hom(TX, vF)), [X])

To prove that (3) = (4) (and thus conclude the proof of the Proposition)
is immediate. As previously remarked, Hom(TX, vF) = TX" and so < y(Hom(TX,
v X ] h= CH(TX), [ XD = y(X™ by [15, Thm. 17, p. 52].

Corollary 5.1.4. Let (X", F) be as above. Then S{(TX, vF) has a funda-
mental homology class over Z, and if P.D.[S(F)] denotes the Poincaré dual of
the corresponding fundamental class for S;(F) = o '(S1(TX, vF)), then y(X") =
I(F) = {P.D.[S;(F)], [X"])

Proof. Define [S;(TX, vF)] to be (50)s[X"] = [00]: Since S{(TX, vF) =
S1(TX, vF) (cf. (3.1)), the conclusion that this construction yields a fundamental
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homology class in the sense of [ 7] follows directly from the usual construction
of [X™] [Cf. 22, p. 301] and the fact that o, is a diffcomorphism onto its image.
Consider y(Hom(TX, vF)). According to [15, Thm. 1.2, p. 41] this class is
equal to g*i*U where g ¢ [*(Hom(TX, vF)) and i* : H¥(D(Hom(TX, vF)); Z)
— H*(D(Hom(TX, vF)), S(Hom(TX, vF)); Z) is induced by inclusion. In par-
ticular, then, y(Hom(TX, vF)) = o¥(i*L.D.[S;(TX, vF)]) by the assertion in the
previous proof, which is in turn equal a}(P.D.[S1(TX, vF)]) [cf. 22, p. 297-298].
The result now follows from Proposition 5.1.3 and Lemma 1 of Section 3,
asserting that since oy is a T-map, P.D.[S,(F)] exists and is equal to o§(P.D.
[S4(TX, vF)]).

It is easy to show that the equality I(F) = y(X") does not require that
X" be orientable, since for F as above, o defines a vector field whose index
sum is I(F). On the other hand, if F is the T— I'?-structure on S***! given
by f(X1,...,X2k+2) = X2+ then F is invariant under the identification of
antipodal points of $2**! and so define a T — I'{-structure Fo on RP**!
with S(F,) a single point. It follows that the equality requires that F be trans-
versally oriented. It should also be noted that since # S(Fo) mod(2) =
{by(Fo), [RP"]2), bs(Fo) # 0 and so the homotopy class of F, contains neither
a Morse function nor a foliation.

5.2. Let X" be a connected, compact (with or without boundary) C*
n-manifold, and F a I'?-structure on X", 1 < g < n. It is the goal of this final
section to prove a modified transversality theorem for such pairs (X", F) in
order to show that the global homotopy invariants of F, B(F) and R(F) (when
the latter is defined) can always be “realized” as the classes dual to the local
singularities in X" of some F’ in the homotopy class of F. Recall that if F ~
foliation E, then E provides the desired realization (cf. the proof of thm. (3.3.2)-2).

To be precise, one makes the following

Definition 5.2.1. Let (X", F) be as above. Then the class B(F) (resp. R(F))
can be realized geometrically in X" if there is an F’ in the homotopy class
of F such that B(F') (and so B(F)) is equal to P.D.[S(F)], ie. b{F’) = P.D.
[S{F)] (resp. r{F) = P.D.[S:(F)], 0 < i,j < q.

The result is then the following theorem:

Theorem 5.2.2. Let X" be a C*, compact, connected n-manifold and F a
I'y-structure on X". Then F is homotopic to a T — I'y’-structure F'.

Corollary 5.2.3. Let (X", F) be as in theorem 5.2.2. Then the classes B(F)
and R(F), when defined, can always be realized geometrically. In particular, for
1 < q < n the classes q{Wi(X" — &%) (resp. qa(pm(X" — €%) are always (resp.
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when X" is orientable and n — q is even) dual to the homology class defined
by the singularities of T'y-structure. [Compare 7, p. 8-02, Cor. 2].

Proof. The first statement is a consequence of Theorem 5.2.2 and Lemma 1
of 3.3. The second follows by taking F = {U,, f;, y3j}i. s With {U;} any open
cover of X", f; = f| U, for f: X" — RY and v{; = identity, Vi, j, x; for which
WF) = &L

Remark. The reason that the complexified class B(F) does not appear
in this result is that since codim(S$(TXC€, vF€)) = 2i(n — q + i) and not
i(n — q + i) the transversality of or does not imply that of 67 except in the
case where F is a foliation and i = 0 is the only relevant sub-bundle.

Corollary 5.2.4. Any I'{-structure F on X" is homotopic to a T'{-struc-
ture F' such that S(F') is a finite collection of points.

Proof. This follows from lemma 5.1.2.

Proof of the theorem. The idea of the proof is to first use the transver-
sality theorem of Thom (in a form applicable to the space of section of the
fibre bundle m(F) (cf. Section 2) to produce an element i ¢ I'*(m,(F)) sa-
tisfying certain first-order transversality conditions similar to those in the
definition of T — I'y’-structures. It is then shown that the I'g’-structure F’
defined by F' = i’ }(E) (E the horizontal foliation on the graph of F) is indeed
a T— I'?-structure, utilizing the properties of the graphs of F and F'

Let m(F) be the graph of F as in Theorem 2.1 and m;(F) the RY bundle
associated to it. That is, m(F) is given by a smooth fibre bundle

RY! — M,

Pg
X"

together with the zero-section ir : X — M. Recall (Thm. 2.2) that M (F)
is defined up to fibre bundle isomorphisms within M, the total space of m(F),
which leave the (image of the) zero-section pointwise fixed.

Consider J!(m,(F)), the associated 1-jet bundle of m;(F) [cf. 17, p. 64].
This is a fibre bundle with fibre over x & X", J!(m(F)), = R? x R"? and
structural group G equal to G; x G, x Gi where G, is the group of the
bundle m(F), G, denotes the group of the vector bundle TX, and G} denotes
the group of non-singular linear transformations of R? of the form T(g) g ¢ G,.
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ie., the group of “l-jets of elements of G;.” If (v, B;j)¢ R? x R™, and (g, h,
T(g')) € G, the action is given by (v, Byj, g, h, T(g’))l — (g(v), h - By T(g')), where
h, T(g') are considered as n x n, ¢ x q matrices, respectively, and the dot
signifies matrix multiplication.

As in Section 3.1, let Si(n, q) = {n x q matrices B;; with rank g — k},
0=k <4 Set Su(my(F)), = JY(m(F)), equal to RY x Si(n, q) and let .Sy(m,(F))
= U Si(m1(F))x. Then, as Sy(m;(F)), is invariant under the action of the group

G, Sk(ml(F)) is a sub-bundle of J!(m,(F)) and so a submanifold of J!(m(F)).
For o ¢ I'*(m,(F)), let j'(c) be the 1-jet extension of ¢. Recall [cf. 17, p. 64]
j'oXx) = {x, a(x), D" a(x)} where D'a(x) is the collection of all first order
partials of ¢ (considered locally as a map into RY) at x. The fact needed here,
which is a consequence of [1, Thm. (19.1), p. 48, see also Thm. 12.3, p. 31,
Thm. 12.4, p. 32], is that there exists a dense set 4 = I'*(m;(F)) such that
o ¢ A = j'(0) has transversal intersection with each Sy(m;(F)).

Now, let U be any open set in I'°(m;(F)) with ire U. As A is dense in
I'*myF)), UnA+# &;let i eUn A and set F' =i (E,). Recall that E,
is the foliation defined by the restriction of the “horizontal” foliation of E
of M to the open set M; = M. Thus F' is a I';°-structure on X, and the proof
of Theorem (5.2.2) is reduced to:

Lemma 5.2.5. Let X, F, F' be as above. Then
1) F' is homotopic to F; and
2) F' is a T— I'y-structure on X".

Proof. 1) Claim: i’ is isotopic to ir, considered as embeddings of X"
into M. Indeed, define H: X" x I — M, by H(x, 1) = ti'(x) + (1 — 1) ig(x).
Since i, ir are global section, the points i'(x), ir(x) are well defined in (M),
independent of the choice of local product representations. As such, H is
a well defined C* function. Further, since each H,: X" — M, is a section,
it is an embedding. (1) now follows from 1.4 — 3.

2) The proof of (2) follows from the fact, to be shown subsequently, that
q
j'(ir’) has transversal intersection with S(m(F')) = | ) Sum(F) = J*(my(F).

Indeed, it is then trivial to show that under the canonical identification of
JY(my(F')) with the bundle m(F’) @ Hom(TX, vF') (they have the same fibre
and group) and the induced identification of the corresponding spaces of
sections, that j!(if-) corresponds to ip- @ o and thus o5 is a T-section. Thus
we restrict our attention to jl(ip).

Assertion: There exists a tubular neighborhood N’ of i(X") in M, such
that, considered as an R? bundle over X" (make the canonical identification

A e R s
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of i'(X") with X" under pg), N’ is isomorphic to m;(F’). Further if o: N — M
(= total space of m(F’)) is the isomorphism, the following diagram is com-

mutative:
—> M/

Indeed, as ir, i’ are isotopic embeddings of X" in M, there exists a vector
bundle isomorphism /: v(ig(X") — w(i'(X")) covering the diffeomorphism
i oip 't i X" — i'(X"), where W(ir) (resp. v(i')) is the normal bundle to the
embedding iy (resp. i'). Hence, by the Tubular Neighborhood Theorem [11,
Theorem 9, p. 73] there exist open neighborhoods N -of i{X"), N’ of i'(X")
and a diffeomorphism : N' — N such that y o i’ = ip. Further, with respect
to the R%bundle structures on N’, N inherited from w(i), v(ir), respectively,
¥ is actually a bundle map and hence a bundle equivalence. Note that the
bundle structure on N is exactly that induced by my(F), i.e., the projection
map is just pF|N.

Since F is homotopic to F’, by Theorem 2.1 — (3), m(F) & m(F’) and
restricting h to M; = M defines a zero-section preserving fibre bundle iso-
morphism h: my(F) — m(F’). As (up to the equivalence given by Theorem
(2.2)), N represents m;(F), the composition o = h | Noyy: N — my(F') is a
well-defined isomorphism, and certainly satisfies the property claimed. This
proves the assertion.

Define j!(a): JY(N') — J*(m,(F')) (N" considered as an R%bundle over
X" by ja)j (i)x)) = j (o i(x)), x & X", ie T*(N’). Since a is maximal rank
on each fibre, j'(a i) e Smy(F’)) if and only if j'ie SYN’) for 0 < k < q.
Thus j'(«) restricts to give a well-defined difftomorphism on each Si(N').
Since j!(«) is a global diffeorriorphism, it is trivial to check that j(i') trans-
versal to S(N') > j(a)j(i')) = j*(« - ') is transversal to S(m;(F')). In view of
the Assertion, then, the transversality of j!(ir-) is equivalent to proving

) j1(i') has transversal intersection with S(N').

To that end, let V be a neighborhood of i’ in I'*(m,(F)) sufficiently small
so as to satisfy ¢ V = > Im(s) = N'. Let ev; : [T *(my(F)) x X" — J'(m;(F))
be the map evy(a, x) = j'o(x) and let x ¢ X". According to [1, Thm. 12.4, p. 32]
ev; is a submersion (and hence an open mapping) and so if W is any neigh-
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borhood of x, evy(V x W) = {j(i(y)|ie V,ye W} is open in J'(my(F)). As
a result, T(J'(my(F)));lix can be identified with T(evy(V x W));li(x and the
transversal intersection of jli' with S(my(F)) at j'i'(x) =j'i’ is transversal
to evy(V x W) N S(m,(F)) there. On the other hand, it follows from the cons-
truction of V' and N’ that V may be considered to be an open subset of I'*(N").
Hence, if evy: T°(N’) x X" — JY(N’) is the 1-jet evaluation map for N’,
by identifying evi(V x W) with evy(V x W) and viewing i’ as a section of
N, it follows that j'i’ is transversal to evy(V x W) S(N') at j'i(x), which
proves (*). Thus lemma (5.2.5) is established, and the proof of the theorem
is complete.
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