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Minimal submanifolds of the bicylinder boundary

Thomas F. Banchoff*

In this paper we wish to describe a collection of closed 2-dimensional
surfaces embedded or immersed in equilibrium in the (3-dimensional) boun-
dary C? of the bicylinder D? x D? = {(x, y,u, )| x2 + y2 < 1, u?> + v® < 1}
in R*. Several of these embeddings are analogous to a set of minimal em-
beddings of closed surfaces in the ordinary 3-sphere = {(x, y, u, v) |x2 + 2 +
u®> + v* = 1} constructed independently recently by B. Lawson. In order to
motivate the concept of a minimal submanifold of a non-differentiable surface
such as the bicylinder boundary, we begin with an elementary treatment of
the analogous problem in one lower dimension — that of finding closed geode-
sics on the boundary C? of an ordinary cylinder {(x, y, u) |x2+y2<1,u2 <1}
in R3. This section indicates the basic advantage of working in cylinder boun-
daries as opposed to spheres — the cylinder boundary can be decomposed
into disjoint pieces, each of which can be realized isometrically in Euclidean
space as a convex cell with identification along its boundary, and therefore

classical facts about geodesics and minimal surfaces in ordinary Euclidean

space can be used to construct these examples in higher dimensional spaces.
In this paper we shall present equilibrium embeddings of all orientable sur-
faces with Euler characteristic of the form y = 2n(2 — n), and we also present
a minimal immersion of the Klein bottle.

Lawson, in his thesis, was the first to construct closed minimal surfaces
of higher genus in the standard 3-sphere [1]. In the final section of this paper,
we sketch a theory of closed equilibrium surfaces in the 3-sphere with the
metric given by taking two standard 3-discs in R* and identifying them along
their boundaries. In this 3-sphere, we obtain examples of embedded surfaces
in equilibrium of arbitrary genus by a construction precisely parallel to that
used in [1], but again using only classical facts about minimal surfaces in R>.

1. Closed Geodesics on the Cylinder Boundary

In this section, we describe the collection of all closed geodesics on the
cylinder boundary C?, i.e., curves which are in equilibrium on C? in the same
way that great circles are in equilibrium on the ordinary sphere S2. A useful
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physical interpretation of a geodesic on a convex body is given by considering
the curve as a string under tension and constrained to lie on the surface.
The string will be in equilibrium on the surface if at each point there is no
preferred direction in which to move which will make the curve shorter.
With this definition, any curve of the surface which is pointwise fixed under
a reflection of space through a plane which sends the surface to itself must
automatically be in equilibrium since there cannot be any preferred direction
in which any point of the curve would move under the influence of the ten-
sion of the string. Therefore the great circles on the sphere will be in equili-
brium and we may find analogous equilibrium curves of symmetry on the
cylinder boundary C2. Through any point of the sphere S, there will be a

closed geodesic in every direction, but we shall show that the centers of the
discs of C? are the only two points of C? with this property. In addition to
the lateral curve of symmetry of C?, there are embedded equilibrium curves
on C? which are not curves of symmetry obtained by taking other horizontal
curves {x> + y? = 1, z = ¢, a constant with ¢* < 1, ¢ # 0}. These two classes
of equilibrium curves contain the only embedded equilibrium curves on C?,
but C? has equilibrium curves which are not embedded (and which are not
merely multiple coverings of an embedded closed geodesic). In fact we shall
show that through every point other than the centers of the end discs there
pass (exactly) countably many closed equilibrium curves.

Before describing some non-embedded closed equilibrium curves, we
discuss the nature of the equilibrium condition at a point P on one of the
rim curves {x?> + y> =1, z = + 1} of C>. For one of the geodesics already
described passing through the centers of the discs, the curve meets the rim
orthogonally from each side. The tension on the string may be represented
by a pair of unit vectors at the point on the rim, each pointing in the direction
of the tangent to a piece of the curve at P. The resultant tension vector is
then directed orthogonal to the rim, and this is precisely the condition which
insures that there is no force tending to move the curve along the rim at P.
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The situation is similar in the smooth case. There the tension vector
at the point of a curve is a constant multiple of the curvature vector of the
curve, ie., the principal unit normal vector multiplied by the curvature at
a point. In the case of a great circle on the sphere, the curvature vector at
any point is directed toward the center of the sphere and orthogonal to the
tangent space. Consequently there is no tangential component of the tension
vector tending to displace the curve along the surface and the curve is there-
fore in a equilibrium at each point where the curvature vector is normal to
the surface on which the curve lies.

Next we observe that any equilibrium curve y on C? is such that the
part of y which meets either of the end discs must consist of a collection of
straight line segments. In order to determine the nature of the part of an
equilibrium curve which meets the lateral part of the cylinder, we may cut
this lateral part along a generator and bend the resulting piece of surface
into a rectangle in the plane, where “bend” is used in the classical technical
sense which requires that no lengths measured along the surface will be
changed during the bending process. Under this deformation, generators are
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mapped into vertical lines and horizontal circles into horizontal lines. (with
end points identified) In fact since distances along the surface are unchanged
under the bending, any part of an equilibrium curve which lies on the lateral
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section of the cylinder must correspond under the bending to a straight line
segment on the rectangle. It follows that each equilibrium curve on C? meets
the lateral part of C? in a collection of pieces of helices. Recall that for a helix
on a right circular cylinder, the curve normal is always directed orthogonal
to the tangent plane of the cylinder in accord with the remark at the end
of the last paragraph.

A helix on the lateral part will meet each of the vertical generators at
the same angle, say o, and we wish to describe the equilibrium condition at
a point P on the rim, which will say that the resultant of the tension vectors
from the two pieces of curve at P will lie in the plane H? orthogonal to the
rim at P. But this condition is satisfied if and only if both tension vectors
make the same angle a with H? and if the vectors lie on opposite sides of
H? (since the components of the tension vectors orthogonal to H? must

balance one another). There is precisely one continuation of the curve into
the end disc which satisfies this condition, so with any given point as beginning
and any initial direction there is a well-defined equilibrium curve on C2.
We now wish to examine the cases in which this curve will be periodic, i.e.,
it will return to the same point with the same direction.

In preparation for this we give an alternate description of the equilibrium
condition at a rim point P. We consider the lateral surface represented as
a rectangle in the plane with vertical sides identified, and we represent the
top disc as a disc in the plane tangent to the rectangle at P (so that its circum-
ference is to be identified with the top edge of the rectangle).

The equilibrium condition at P is then seen as an instance of the con-
dition that “The angle of incidence equals the angle of reflection.” If we con-
tinue the line from P on the top disc until it meets the rim again at Q, then
the continuation into the lateral surface again will meet the generators at
the angle (— «). (In the diagram, we “roll” the disc along the top edge of the
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rectangle until Q is the point of tangency, and we then continue into the
rectangle, meeting the bottom rim at a point R.)

We may then obtain a closed equilibrium curve in the form of a “figure
eight” on C? by finding an angle « such that the point R in the figure below
lies directly below the point P, on the same generator.
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The condition on « is seen to be that the length @ of the arc plus the
lengtl'/l_\of the segment QP (through B) on the top of the rectangle gives 2.
But PQ = — 20 and QP = PRtano = 2tana, so the condition on « is
that 1 — 20 + 2tana = 2z, or o + ©/2 = tano, and this equation has at
least one solution in the interval [0, 7/2] by the intermediate value theorem,
and at most one solution by the mean value theorem. By taking the equilibrium
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curves for this value of « and its negative, we obtain exactly two “figure eight”
type equilibrium curves through each point of either rim.

In order to find closed equilibrium curves which have more than one
self-intersection but which still meet each end disc in precisely one segment,
we consider the lateral surface not as a rectangle with vertical edges iden-
tified, but as an infinite strip {(x,y) ‘yz < 1} with identifications (x, y) ~
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(x + 2m, y). As before, in order to have a closed equilibrium curve at P which
meets each end disc precisely once, we want the point R, the first point where
the curve from Q meets the bottom rim, to lie directly below a point identified
with P. The condition for this is that # — 2a + 2 an @ = 27m, where the integer

m indicates the number of times the helix winds around the lateral surface
before reaching the bottom rim. As before, we have precisely one solution
to the condition a + [(2m + 1)/2] = = tan« in the domain [0, 7/2] for each
non-negative integer m.

To find the most general closed equilibrium curve which meets each
end disc in precisely n segments, we find solutions to the equation = — 2o +
2 tan o = 27n(m/n) where m/n is a non-negative rational number in lowest
terms. This will give all closed equilibrium curves, because if the number
g(@) = m — 2o + 2tan« is not a rational multiple of 2x, then the numbers
{ng(a){mod 2m)} for positive integers n are dense on the interval [0,27], ie.,
for any open sub-interval (a, b) of [0,27], there are integers n and m such
that a < ng(a) — 2mm < b. It follows that if an equilibrium curve on C? is
not closed, then it is dense on the lateral part of the cylinder. However no
such infinite geodesic is dense on C? since every chord in which the curve
meets an end disc stays at a distance sin o from the center. The chords are
dense however in the parts of the end discs outside the open discs of radius
sino about the centers.

Remark. An example of the phenomenon described above occurs in a
ball of string wound around a cardboard cylinder. There is always a circular
hole at the top and at the bottom. (I am indebted for this observation to
Steven Galovich.)

Minimal submanifolds 43

2. Closed Minimal Sufaces on the Bicylinder Boundary — The Orthogonal Case.

In this section we describe a collection of examples of closed surfaces
in equilibrium in C3, the boundary of the bicylinder DP DTy, 1 U
| x2 + y2 < 1, u® + v* < 1}, analogous to the “classical” closed minimal sur-
faces on S3, i.e., the great sphere and the flat (Clifford) torus. We then proceed
to give some minimal immersions of the torus (which are not merely covering
surfaces of the flat torus) and we conclude with an example of a minimally
immersed Klein bottle.

First we describe a method for expressing C* as a union of three sets
which can be realized isometrically as subsets of R* analogous to the decom-
position of C? in the previous section, and we then proceed as before to des-
cribe the intersections of equilibrium surfaces with each of these pieces, and
to describe the way these intersection surfaces fit together at the boundary.

We may express C* = (boundary of D* x D?) as

yuo)|x+y2 =1, + 0 <1JUu{x® +)y? =Lu? +v* =1}
U 2t A5, u? 4 ¥ =)

The second set is simply a torus obtained by identifying opposite edges of
a square of side length 27, and each of the other sets is a solid torus which
can be expressed as a solid cylinder in R* with end discs identified.
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As in the lower dimensional case, we may describe a collection of equili-
brium surfaces in a 3-manifold by finding an isometry of the entire space R*
which leaves the surface pointwise fixed and which sends the 3-manifold
into itself. For example, a great 2-sphere in S* may be described as the fixed
set under a reflection in a 3-dimensional linear subspace through the origin,
e.g., (x,y,u,v) — (x, y,u, — v). This last-mentioned transformation also sends
C? into itself and the fixed surface consists of two lines {x* + y* =1,v =0,
u = + 1} in the torus, two discs {x* + y* < 1,v =0, u = £ 1} in one of the
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solid tori, and a rectangle with two sides identified {x* + y*=1, v=0, u* <1}
in the other solid torus. The union of these pieces gives a 2-dimensional sphere
isometric to the cylinder boundary C2, in fact C? is precisely the intersection
of C* with the hyperplane {v = 0}.

©\

s e .,

In a similar way we obtain a C? in equilibrium in C? whenever we take
the intersection of C* with a hyperplane which is orthogonal to a vector
either in the x — y-plane or in the u — v-plane, so any point of C? lies in
at least two of these closed surfaces isometric to C? in equilibrium in C>.

Since the surface is in equilibrium, the intersection of the surface with
each solid torus must be a collection of surfaces which themselves are in
equilibrium, and in the case given above these intersection surfaces are planar.
In general, if we think of these surfaces as elastic membranes in R* under
a uniform tension which tends to make them assume the smallest area locally,
then the tension vector will be a constant multiple of the mean curvature
vector, which is itself the average of all the curvature vectors of the normal
section curves formed by taking the intersection of the surface with planes
containing the normal to the surface. The equilibrium condition in general
then requires that the mean curvature vector be zero at any point of a sur-
face interior to a solid torus so the intersection surfaces will be pieces of mi-
nimal surfaces. It will then follow (as in the case of the helix on the cylinder
boundary) that the mean curvature vector at a point of one of these surface
pieces will be directed orthogonal to the solid torus at each point when the
3-manifold C? is “reassembled” in R*.

We now consider the nature of the equilibrium condition where the
pieces of minimal surfaces fit together along the torus “rim.” In the examples
of the “great C*” on C3, at each boundary curve of a surface piece in one
of the solid tori, the tension may be represented as a vector tangent to the
surface and orthogonal to the curve. If the example at hand, the intersection
curves with the torus rim are geodesics on the torus so there is no tension
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vector arising from this curve on the surface. The equilibrium condition
then requires that the resultant of the tension vector directed into the two
solid tori be orthogonal in R* to the tangent plane to the torus at the point
in question. In order to check this condition in-R3, we bring the three pieces
of C3 together at the point p of the torus rim. If the intersection curve with
this rim at p is a geodesic, then the equilibrium condition at p in the two solid
tori, which are orthogonal to the intersection curve at p, will be negatives of
one another, i.e., they will lie on the same straight line. In our example, the
condition is satisfied easily since the tension vectors from the surface pieces
are all orthogonal to the torus rim. :

We now turn to construct some examples of greater interest.

First we recall that the other classically known closed minimal surface
of $*(\/2) is the flat or Clifford torus given by T? = {(x, y, u, v) |x2 +y% =1,
u? + v? = 1} (where for convenience we work with $3(\/2) = {x* + ) +
u?> + v? = 2} rather than the unit sphere). This surface is in equilibrium be-
cause it represents the set of points which are equidistant from two symme-
trically situated circles {x? + y?> =2} and {u* + v®> =2} in the same way
that a great sphere is the set of points equidistant from by two symmetrically
situated points, say {v? = + 2, s = 0 = y = z}. Furthermore, the tension vec-
tors at a point (xo, Vo, 4o, Vo) from the two “factor” circles x* + y* =1 and
u® +v? =1 are just given by the vectors (— xo, — Vo, 0, 0) and (0,0, — uq, — vo)
which have as resultant tension vector the negative of the position vector
to the point on the 3-sphere, so each point is in equilibrium.

For these same reasons the torus rim, which is identical with this flat
Glifford torus, is in equilibrium on C3, but we wish to describe a class of
less apparent examples.

In describing curves on the flat torus, it is convenient to give a para-
metrization of this surface by setting x = cos 6, y = sin 0, u = cos ¢, v = sin ¢
for 0 < ¢ < 27, 0 < ¢ < 2n. The intersection curves of the C? surface first
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described above would then be ¢ = 0 and ¢ = n. We now consider the pair
of curves given by the condition 6§ = ¢ and 0 = ¢ + 7.

¢ (0,2m (m, 2m)

(2m, 2m)
//
74
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The corresponding curves on the boundary of each solid torus are pairs
of helixes symmetrically situated with respect to the axes. We fill each of
these pairs in with portions of helicoid, a minimal surface which is ortho-
gonal to the boundary cylinders at each of its points.

e

Because the helicoids come into the boundary cylinders of the solid tori
at right angles, and because the intersection curves are geodesics on each
boundary cylinder, the equilibrium condition is satisfied and the surface
obtained by identifying the two pieces of helicoid along the boundaries is a
closed surface in equilibrium on C3. Since the surface is embedded in the
boundary of a convex body in R*, it must be orientable (by central projection
we get an embedded surface on S°, and by stereographic projection from a
point not on the image we get an embedded surface in R?, so the original
surface must be orientable). Moreover, the surface is the union of two topo-
logical cylinders with boundary circles identified, so the equilibrium surface
is a torus.

By taking other curves on the rim torus it is possible to find a family
of immersed tori in equilibrium on C3. Let m and n be two relatively prime
odd integers and consider the two curves mf = n¢ and mf = n¢ + m on
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the torus. As in the case of closed geodesics on the cylinder boundary, it
becomes convenient to think of the solid torus as an infinite solid cylinder
with identifications, e.g., {(x,y,¢)€ R3] x2 + y? < 1} with (x,y,0) ~ (x,y,¢ + 2m).
The curves mf = n¢ and ml = n¢ + n then become a pair of helices on
this infinite solid cylinder which are symmetric with respect to the axis, so
we may fill this pair in as above with a helicoid. Under the identifications in
the infinite cylinder, this helicoid becomes an immersed surface in the solid
torus, with the only multiple points lying along the axis. This surface will
be periodic since the helices themselves are periodic in the torus rim. Each
of the pieces in each solid torus is bounded by two closed curves, so each
piece is homeomorphic to a cylinder (orientable) and the identification rule
on each of the closed curves is the same so the surface is a torus in equili-
brium on C3. :

If we take m or n even, for example m = 2, n = 1, we get a different phe-
nomenon. In one of the solid tori we get a helix that is symmetrical to itself

A
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under reflection through the axis, so we can fill this in with a piece of helicoid
which forms a Mbius band. In the other solid torus however we get a single
curve which does not span a minimal surface which comes in orthogonal
to the boundary cylinder. However, if we take the two curves 20 = ¢ and
20 = ¢ + m in the torus rim, then in the second solid torus we have a pair
of symmetrically situated helices which span helicoid which is an ordinary
cylinder in the solid torus. In the other solid torus however, we obtain two
self-symmetric helices, each spanning a Mobius band. We may still make
the identifications indicated on the torus rim to obtain a closed connected
surface in equilibrium on C3, of Euler characteristic zero since it is a union
of a cylinder and two Mobius bands, and non-orientable. Thus we have a
Klein bottle in equilibrium on the 3-manifold C.
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Remark. The minimal immersions obtained in this way for the torus
and the Klein bottle are not flat — the helicoid pieces are of negative curva-
ture, and there is a positive curvature contribution at the edges where the
surface meets the torus “rim.”

Remark. This immerson of the Klein bottle into C* leads to an immer-
sion into R® which is qualitatively different from the “usual” immersion.
To describe this immersion, we take an immersed circle in the x — z plane
in the form of symmetric “figure eight” with its intersection point on the
circle x2 + y* =1, z = 0. We then construct a “twisted surface of revolu-
tion” by letting the intersection with the half-space bounded by the z-axis
and making an angle of 6(0 < 6 < 2) with the half-space y =0, x > 0 be
given by rotating the original curve about its center through an angle of 6/2.
When we return to the original position, the two halves of the figure eight
have been interchanged so we obtain a Klein bottle. The top and bottom
points of the eight together describe a single closed curve and the compliment
of this curve is the union of two Mobius bands intersecting along the circle

X2 ey = L=,
¢ ' ‘
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This immersion differs from that of the “usual” immersion of the Klein
bottle in which the curve of intersection possesses two orientable cylinder
neighborhoods.

3. Closed Minimal Submanifolds of the Bicylinder Boundary — The
Non-Orthogonal Case.

In this section we shall describe the construction of closed surfaces of
arbitrarily high genus embedded in equilibrium in C3, the boundary of the
bicylinder. The main property used in the construction is a basic existence
and uniqueness theorem in the classical theory of minimal surfaces, ie., if
g: S* — R! is a piecewise smooth map of the unit circle into the line, so
that G(6) = (cos 0, sin 6, g(0)) is a picewise smooth embedding of the circle
S! into R3, then there exists a unique minimal surface F(r, 6) = (r cos 6,
rsin 0, f(r, 0)) defined over the unit disc {0<r<1,0<6<2n} such that
f(1,0) = g(0) for all 6. Because of the uniqueness, if the original curve G(0)
possesses any symmetries, then the surface F(r,0) will also possess these
symmetries, for example if g(0) = — g(6 + o) for some fixed a then we have
f(r,0) = —f(r,0 + a).

To motivate the construction of the following set of examples, we recall
some properties of the standard flat torus embedded as a minimal subma-
nifold of S3, given by {(x,y,u,v)eR* | x? + o= g =4} or
{cos 0, sin 6, cos ¢, sin ¢) lo<0<2n 0<¢ < 2n}. If we take the inter-
section of this flat torus with the flat torus given by {(x*> +v?=1,u* +y*=1)}
we obtain the curves x = + u, y = + v, or cos 0 = + cos ¢, sin 0 = sin ¢,
which yields the curves § = + ¢, 0 = + ¢ + . These four curves represent
circles on the torus and they divide the torus up into eight regions bounded
by spherical quadrilaterals. In the flat torus itself each of these quadrilaterals
is contained in a hemisphere, and the regions which they bound are portions
of minimal surfaces in the sphere S°, ie., they represent the surfaces on S°
with the smallest area bounded by the given quadrilateral.

" We now wish to describe an analogous construction-on the boundary
of the bicylinder. On the torus rim we take the four circles 0 = £ ¢, 0=+ ¢ +7
and we consider the frame composed of pieces of helix obtained from these
curves on the boundary of each solid torus.

We may think of the boundary of the first solid torus as a union of
four horizontal circular cylinders, on each of which the framework formed
by the four curves is given by a quadrilateral with four helical sides.
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A

This quadrilateral is piecewise smooth curve given by a function G(6) =
(cos 0, sin 6, g(0)) where g(0 + /2) = — g(0) and where g(—0) =g(0) =g(n/2—0),
since the quadrilateral is invariant under the symmetries of R* given by
(x, v, u) — (— x, y,u), (x,y,u) — (x, — y,u). The unique minimal surface
spanned by this quadrilateral will have all the same symmetries, and in par-
ticular, the surface will have as lines of symmetry the segments EF and GF
joining the midpoints of opposite helical arcs on the quadrilateral. In fact
this piece of minimal surface can be considered as a union of four minimal
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surface pieces, obtained by reflecting the minimal surface spanned by the
quadrilateral OGBF with center at the origin 0.

We may then fill the frame on the first solid torus with four pieces of
minimal surface, and then do the same for the second solid torus by consi-
dering its boundary as the union of four vertical cylinders and filling in a
minimal surface on each of the quadrilaterals on these cylinders. In this way
we obtain an embedded closed surface on C* with 8 vertices, 16 edges, and
8 faces, so the surface is an orientable surface with Euler characteristic = 0,
i.e., a torus. We claim that this surface is in equilibrium on C3.

In order to show that the surface is in equilibrium, we must show that
at each point of a vertex or edge of a piece of minimal surface, the resultant
tension vector will be orthogonal to the torus rim, and as in the previous
section, to do this we must show that if the solid cylinders representing the
isometric images of the pieces of C3 in R* are brought together at a point
P of the boundary, then the tension vectors which point into each of the solid
cylinders should be opposite. This condition is certainly satisfied at a mid-
point of a helical arc since the tension vector tangent to the surface and or-
thogonal to the helical arc will be directed orthogonal to the cylinder.

In order to show that the equilibrium condition also holds at edge points
other than the midpoints, we show that in fact there is an isometry of all
of R*® which fixes the point of contact and the plane which represents the
torus rim and which interchanges the two pieces of minimal surface. Speci-
fically, we may introduce coordinates of the first cylinder by taking (x + 1)* +
z?2 =1 and the second cylinder by (x — 1)?> + y? = 1, where the common
tangent plane at the origin is x = 0.

The straight line in the plane which is tangent to each helical arc is given
by x =0 and y + z = 0.

We wish to consider two pieces of minimal surface, one in each solid
torus, which arc identified at a boundary point P, other than the midpoint
of a helical edge. We may then translate in R* so that the point P becomes
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the origin, and we may parametrize the helical segments at P by (1 +cos(6 — ),
0 — a, sin(0 — o)) on the boundary of the solid cylinder with equation
(x—1)?>+2z*=1 and by (— 1 — cos(f — ), sin(0 — «), 6 + a) to get an
oppositely oriented helix with the same pitch on the cylinder (x + 1) +y* = 1.
The point P then corresponds to the point of the helix with value 0 = a.

Under the isometry of R3 given by (x, y,z) — (— x, z, y) the point
P =(0,0,0), the line x =0, y + x =0, and the plane x = 0 are all mapped
into themselves and the two pieces of helical arc are interchanged. Morever,
the quadrilateral in the first solid cylinder of which the helical arc with
0 < 0 < /2 is an edge is sent under isometry to the corresponding quadri-
lateral in the second solid cylinder, and consequently, the unique minimal
surfaces spanned by these quadrilaterals are interchanged under the isometry.
But the tangent vectors to the minimal surface pieces at P which are ortho-
gonal to the line x =0, y + z = 0 lie in the plane y = z, and under the iso-
metry each of these vectors is sent into its opposite. It follows that the tension
vectors at P directed into each of the solid cylinders have resultant vector
which is orthogonal to the torus rim at P and consequently the surface sa-
tisfies the equilibrium condition at any interior point of a helical segment
on the torus rim.

The only remaining points at which the condition must be checked are
the “corner” points where the circles = + ¢ and 6 = + ¢ + = intersect
on the flat torus. At each of these points there are four pieces of minimal
surface, two from each solid cylinder. Again, as above, the portions inside
the solid cylinders may be interchanged by an isometry of R* so the equi-
librium condition is satisfied — there is no preferred direction toward which
the point is displaced.

For the construction of surfaces of arbitrarily high genus in equilibrium
in C3, we follow the same procedure as above using 2n circles on the flat
torus given by 0 = + ¢ + 2n/n. These circles intersect in 2n” vertices, each
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of which has four edges emanating from it. The frame on the boundary of
each solid torus may be considered as a union of 2n “semi-regular” 2n-gons

composed of helical segments on a circular cylinder and each spanning a
unique minimal surface possessing all the symmetries of the 2n-gon.
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These 4n minimal surface pieces fit together to form a closed surface
in C3 of Euler characteristic y = 2n> — 4n> + 4n = 2n(2 — n) and of genus
g=122 -y =@m-1>.

To show that these surfaces are in equilibrium on C3, we may use the
same sort of symmetry arguments as in the case of the torus n = 2. At a point
P, we consider helical arcs of the form (1 + cos(d — a), 6 — o, sin(f — a))
where 0 < 8 < n/n, on one solid cylinder and (— 1 — cos(6 — «), sin(6 — «), 6 — o))
on the other (where P corresponds to the origin, where 6 = «). The 2n-gons
on the boundaries of the solid cylinders are obtained by taking the union
of 2n congruent helical arcs such as the above and as in the case of the torus,
n = 2, the 2n-gons and the minimal surface spanning then are interchanged
under the isometry (x, y, z) — (— X, z, y). The equilibrium conditions follow.

We conclude by. noting a special case of this construction occurs when
n = 1, so we get two vertices, four edges, and four faces, Euler characteristic
two, and genus zero. Thus we get another embedding of the sphere as a sur-
face in equilibrium in C3.

4. Minimal Submanifolds of 3-Cylinders and Double Discs.

There are other metrics on the 3-sphere which are analogous to that
given by the bicylinder, for example, that given by d{(x,y,x,t)€ R*|x2 +
y? + z2 < 1, t* < 1}. This boundary is composed of three parts, a pair of
3-discs {x2 + y? + 2> < 1,1 = 1} and a “lateral” surface {x* + y* + 2> =1,
t* < 1} isometric to the product of a 2-sphere with an interval, and these
parts are identified along their common boundary, a pair of 2-spheres
{x? + y* 4+ z? = 1, t* = 1}. In the same way that we found embedded closed
geodesics on the cylinder boundary in R3, we may find equilibrium surfaces
given as the fixed sets of isometric involutions. For example, the set = didn
be obtained by taking the involution (x, y, z,t) — (X, y, — z, t), and as before,
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we have a collection of equilibrium spheres given by taking t = ¢, ¢ < 1.
Unfortunately, the piece {x* + y*> + z* =1, t* < 1} is not flat, so it is not
isometric to a region in R*® with identifications, so the main advantage of
the method used in the above sections is lessened.

We may however apply some of the techniques of the previous sections
if we shrink the lateral part of the above manifold down to zero, thus obtaining
a metric on the 3-sphere by taking two 3-discs in R*® and identifying them
along their boundary. This is similar to the situation where we had two solid
tori identified along their torus “rim,” and in this situation all the curvature
is concentrated around a rim which is a 2-sphere.

In order to get a better picture of the situation, we may consider first
of all the analogous case in one lower dimension. If we take a can of height
2h, ie., the boundary of the set {x* + y* < 1, u* < h?}, then the condition
that a curve be in equilibrium is given by © — 2o + 2htan o = p/q2n for
integers p and ¢q. In particular, if h = 0 we have a double disc and we have
a closed geodesic on this double disc if and only if o is a rational multiple
of n. The only such curves which pass through the centers of the discs are
doubly covered diameters, and if a geodesic is not closed, then it is dense
on the complement of two circular discs about the centers. The- circle rim
itself is in equilibrium because there is no preferred direction in which it
can be displaced.

In the double 3-disc we have analogous equilibrium 2-spheres given as
fixed point sets of isometric involutions, e.g., the 2-sphere rim and the doubly
covered 2-discs passing through the centers of the 3-discs. These last exam-
ples have the property that the intersection with the rim sphere consists of
geodesics and the surface is orthogonal to its rim at each place where it touches
the rim. We may express this by placing the two 3-discs in R* so that their
boundary 2-spheres coincide and such that the boundary circles of the two
2-discs in the 3-discs are identified.
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The two tension vectors directed into the 3-discs then represent two
copies of the same vector, so their resultant vector is also pointing directly
to the center of the sphere, orthogonal to the boundary 2-sphere. This is
the equilibrium condition at a point of the rim sphere where two pieces of
minimal surface meet-along a great circle arc.

We may make use of this equilibrium condition to construct surfaces
of arbitrary genus embedded in equilibrium in the double 3-disc by making
use of the construction used by Lawson in his thesis [1] to obtain closed
minimal submanifolds of S3.

In the preliminary construction, Lawson described a framework on S
consisting of two great circles through the poles at right angles to one another,
together with their horizontal diameters. One of the quadrilaterals composed
of two great quarter circles and two radii is filled in with a (unique) minimal
surface of the topological type of a disc, and this is reflected several times
to give a surface in the 3-disc bounded by the four great semicircles.

To obtain the part of the surface lying in the second 3-disc, we take the
image of this surface under the antipodal involution (x, y, z) = (—x, — y, — z),
and we then identify the two pieces along the four great semicircles along
the boundary.

If we take any point P on the interior of one of these edges, then the
tension vectors tangent to the surfaces at the point P in the two 3-discs corres-
pond to one another under the isometric involution given by reflecting
through the great circle.

Consequently, the resultant vector is orthogonal to the 2-spehre rim
and the surface is in equilibrium at each such point.

At the north or south pole, the contributions from the two pieces of
surface in each of the two 3-discs are interchanged under the isometric map
given by rotation through m/2, so the resultant tension vector is directed
orthogonal to the rim sphere.

The closed surface in equilibrium obtained in this way has two vertices,
four edges, and two faces, so it represents a torus (since it is embedded).
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Similarly if we take n great circles, we obtain an embedded closed surface
in equilibrium with two vertices, 2n edges, and two faces, so we have Euler
characteristic 2(2 — n). Note that the case n = 1 leads to the doubly covered
disc as an equilibrium 2-sphere in the double disc.
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