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Coefficient rings of isomorphic group rings

M. M. Parmenter*

Let R, S be commutative rings with 1 and let {x) be an infinite cyclic
group. The problem of determining when the group rings R{x) and S<{x»
are isomorphic-was previously studied in [3] and in [4]. In particular, it
was shown in the latter paper that, in a very special case (namely when R
and S have no idempotents except 0 and 1), R{x) ~ ${x, implies R and
S are subisomorphic.

In this paper, we drop all conditions on R and S from the above theorem.
Specifically, we prove that R{x) ~ S{x) always implies R and S are sub-
isomorphic.

1. Preliminary Results.

In this section, we note some basic facts which will be required in the
proof of the main theorem. The proofs of the first two lemmas previously
appeared in [4] and will not be repeated here.

Lemma 1.1.4. Let R be a commutative ring with 1. If Za;x" is a unit in
R{x) and (Zax’)"! = ZbxX', then Zab_; =1 and a;b; is nilpotent whenever
i+j#0.

Lemma 1.2.4. Let R be a commutative ring with 1. Then x — Za;x' in-
duces an R-automorphism of R{x) if and only if the following two conditions
hold:

(i) Taix' is a unit in R<x).

(ii) a; is nilpotent whenever i # 1, — 1.

However, the major result required in the proof of the main theorem
is the following:

Lemma 1.3. Let R be a commutative ring with 1 and let Za;x' be a unit

in R{x) such that aqo is nilpotent. Then:
(i) R{Za;x') is a group ring.
(ii) If r = g(x) (Saix’) — 1) where re R and g(x)e R{x), then r = 0.

*Recebido em Julho de 1976.
*This work supported in part by National Research Council of Canada grant A-8775.



60 M. M. Parmenter

Remark. Result (i) in the above Lemma simply means that powers of
Ta;x' are independent over R.

Proof. Before beginning, we note that since Zg;x' is a unit in R<x>, Lemma
“1.1 says that Za;b_; =1 and g;b; is nilpotent whenever i + j # 0 (where

Thix' = (Za;x’)~"). Note that if P is a prime ideal of R and a; ¢ P, then b; e P
whenever i + j # 0 since a;b; is nilpotent. Also b_; ¢ P since ab_; =1 in
R/P. This then implies that a;e P for all j # i since a;b_; is nilpotent. We
conclude that each of the pairs {a;, b_;} have associated disjoint sets of prime
ideals P for which a;¢ P and b_; ¢ P. In particular, we note that a;a; and
bib; are nilpotent if i # j.

Now let us prove (i). Assume to the contrary that Xc;(Za;x’)’ =0 for
cj€ R. We will first show that each ¢; is nilpotent — if not, let n be the largest
integer such that ¢, is not nilpotent and let P be a prime ideal of R such that
cn¢ P. We know also that there is a unique i such that g;¢ P and b_; ¢ P.
In R/P (x>, we have

Y efax’y +-Co+ ¥ fb_x") I =0.
j>0 ji<o
Note that since ap = 0, all powers of x involved are different. If n > 0, we
get c,a; = 0 which means ¢, = 0 or a; = 0 and contradicts the choice of P.
If n = 0, we get ¢, = 0 which is impossible. H n < 0, we get ¢,b-7 = 0 which
is again a contradiction. Hence c; is nilpotent for all j.
Let I be the (nilpotent) ideal of R generated by the c;, the nilpotent a;
and b;, all terms a;b; where i + j # 0, and all terms a;a; and b;b; where i # j.

Choose (if possible) k so that all ¢; lie in I* but some c¢; does not lie in I**1.
In R/I** 1 {x), Zc{Zax’y = 0 becomes

Y efZalx) + o + Y ¢(Zhiix ") =0

>0 i<o

since ¢;a;a; = 0 and ¢;b;b, = 0 if i # I. Let m be an integer such that a,, is
not nilpotent- note that m exists since Za;b_; = 1 and m # 0 by assumption.
Multiplying by a,, yields

e— ‘+ i - o . I 2
Y Cida Tt X™ + Colm + Y. Ciamb i x™ =0
ji>0 j<o

since ¢;ama; =0 if m # i and ¢;a,b; =0 if m + i # 0. Since m # 0, all po-
wers of x involved are different. Thus we have c¢;aj! =0 if j > 0 and
Ej&mE:{,, =0 if j < 0. In particular, we conclude that there exists | > 0 such
that ¢;akb",, = 0 for all j and for all m such that g, is not nilpotent.
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However, £a;b_; = 1I'in R/I**'. Thus (Za;b_;)' =1 and ¢(Zab_,) =¢;.
But this becomes ¢(Zaib";) = ¢; since ¢;a;a, = 0 if i # s. This means, by the
previous paragraph, that ¢; = 0. Thus we have shown that c;e I**! for all j.
Since I is nilpotent, ¢; =0 for all j and R{Za;x’) is a group ring.

Next we proceed to prove (ii). Thus we have r = g(x)(Za;x’) — 1) where
re R and g(x) € R{x). If P is a prime ideal of R, this becomes 7 = g(x}ax')— 1)
in R/P {x) where i is the unique integer such that a;¢ P and g(x) is simply
g(x) reduced mod P. Since R/P {x is an integral domain and i # 0 by assump-
tion, this implies that g(x)eP<x>. Since this is true for all P, we conclude
that the coefficients of g(x) are nilpotent.

Let J be the (nilpotent) ideal of R generated by all nilpotent a; and b;,
the coefficients of g(x), and all a,a; and b;b; where i # j. If g(x) = Zg.x', assu-
me (if possible)that all g;eJ* but that some g;¢ J**1.

Choose n so that a, is not nilpotent and pass to R/J**! {x). Multiplying
7 = g(x) (Za:x’) — 1) by a, we obtain 7a, = g(x) (a2x" — a,) since g(x)a,a; = 0
if n#1i

Choose t maximal so that g ¢ J**!. Assume that n i 0 for the moment.
If t # — n, we have g,a? = 0 since n > 0. If t = — n, we have g, _,az —
— g+a, = 0. Continuing, we obtain:

G+ln =G —nln =G —2nlls = .. = Gt il .
Since g4 —x, =0 for some k (note that n # 0) we have g.a, = 0.

Now assume n < 0. If t # 0, we have g.a, =0. If t =0, we have
G4 snly = GrazVAISO G 4 4 248y = G+ +485. ‘Since gl'i =0 for ‘some k, we
have g.a? =0 for some p.

Thus we have g,af = 0 for some p in all cases, and p can be chosen
so this true for any non-nilpotent a,. As before, (Zab_;)? =1 becomes
g+ = g+(Zafb?;) = 0. Thus, we have g, €J°*! which is a contradiction.

2. Main Theorem

We now prove the main result of this paper. Recall that two rings R
and S are subisomorphic if R can be embedded in S and S can be embedded
in R.

Theorem 2.1. Let R, S be commutative rings with 1. Then R{x) ~ S<{x»
implies R and S are subisomorphic.

Proof. We may as well assume R{x) = T{Za;x') where Za;x' is a unit
in R{x). Hence, Lemma 1.1 tells us that (Za;x")"! = Zh;x' where Zab_; = 1
and a;b; is nilpotent if i +j # 0. As in the proof of Lemma 1.3, we know
as well that a;a; and b;b; are nilpotent whenever i # j.
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First, let us consider the case where a is nilpotent (possibly even ao = 0).
In this case, part (i) of Lemma 1.3 says that R{Za;x') is a group ring. Hence
R{Zax’) = R{x) = T{Ea;x). Define a: R{Zax’) — T{Zaix’) to be the
inclusion map and let p:-T{Za;x') — T be the augmentation homomorphism
obtained by factoring out the augmentation ideal A7 of T{Za;x'). Clearly,
the augmentation ideal A g of R{Za;x') is contained in ker P a. Conversely,
if re R nker poa, then r = g(x) (Saix’) — 1) for some g(x) e R{x. Part (ii)
of Lemma 1.3 then tells us that r = 0.

Thus ker p oo is exactly the augmentation ideal Ag of R{Za;x') and
R ~ R{Zaix")/ Ag is embedded in T as required.

Next, we must consider the case where a, is hot nilpotent. Since Za,-b = =
and a;b; is nilpotent whenever i + j # 0, we know that agboao — do is nil-
potent and (aoho)* = aobo + n where n is nilpotent. Hence there exists an
idempotent e in R such that e — agb, is nilpotent ([2] p. 72). Since central
idempotents in a group ring have finite support group [1], e also lies in T.
Since ee RN T, e(R{x) =(eR){x> =(eR){ex, and e(TXZaix')) =(eNZaix’) =
(eT) {e(Za;x’)). Similarly for the idempotent 1 — e.

But (1 — e)(Zaix’) — (1 — aghoXZa;x’) is nilpotent. Hence (1 — e)fZa;x’) has
constant coefficient ao — agboao + m where m is nilpotent. Since ag — aoboao
is nilpotent, the equality (1 — e)R<x> =(1—¢e) T{Za;x") belongs to the
initial case of our proof. Hence we know that (1 — e) R can be embedded
in(l—eT

Also eq; is nilpotent if i # 0, so in (eR)<x> = (eT)<Eaixi>, we may assu-
me that g; is nilpotent whenever i # 0. If we could conclude that eR < eT,
then we would have R embedded in T since R ~ eR + (1 — e)R. Thus we
have reduced the problem to the following case: R{x) = T{Za;x") where
ao is a unit and g; is nilpotent if i # 0.

From now on, we will deal solely with the above case. Since x is a unit
in T{Za;x'), Lemma 1.1 says that x = Y c{Za;x'y for some ¢;e T such that
there exist dje T with Zc;d_; = 1 and such that c¢;d, is nilpotent whenever
j + k # 0. As before, we conclude that c;c, and djdi are nilpotent whenever
j# k.

Choose ¢, # 0. The T"homomorphism of T{Za;x') defined by Ta;x' —
cZaix’) + (Y e)Zaix)~! is an automorphism of T<Za;x’) by Lemma 1.2

1#k

since

[elZax) + (Y ) Eax) '] [( Y. d) (Zax’) + d_(Zax)™'] =1 +no
7k 1# 2k

where n, is nilpotent, so cy(Zax’) + (), ¢(Zax’)~ ! is a unit in T{Zax").
1#k
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Hence R(x) = T{cy(Zaix’) + (Y. c)Zax’)~*). We will now show that

l#k

elZaix’) + () c)(Zaix’)~* satisfies the condition of Lemma 1.3, namely, that
l+k

it has a nilpotent constant term (in R{x)). Once this is done, the Lemma
can be used exactly as before to conclude that R can be embedded in T
Recall that x = Zc{Za;x’y and that g; is nilpotent if i # 0. Let P be
a prime ideal of R. In R/P{x), we obtain x = X¢;a) since all other a; are
nilpotent. In fact, since P{x) is a prime ideal of R{x), we have x = ¢.a
for some particular s. Since ao is a unit, it follows that ¢, = myx + Z m; o'
where m; ; is nilpotent for all i. This is true for any non-nilpotent‘:: since,
in that case, a prime ideal P of R can be found such that ¢ # 0 in R/P{x).

Therefore, the constant term of cy(Za;x’) + (Y. c;NZax)~! is nilpotent, since
1#k

the only non-nilpotent entries in the cis are coefficients of x and the only
non-nilpotent a; is ao. Thus, Lemma 1.3 is applicable and we have R em-
bedded in T.

The identical argument in the other direction shows that T can be em-
bedded in R. Hence R and T (or R and S) are subisomorphic.
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