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On G-spaces™

Peter Hilton

0. Introduction.

In [4] the authors proved that, if the group G acts on the nilpotent group
Q then G acts nilpotently on Q (in the sense of [1,5]) if and only if it acts nilpo-
tently on Q,, the abelianization of Q. This result suggests a generalization
to groups acting on nilpotent spaces. For if X is the Eilenberg-Maclane space
K(Q,1) than X is a nilpotent space and we may interpret the result quoted
as saying that G acts nilpotently on 7, X if and only if G acts nilpotently on
H.X.

The present note provides then, the anticipated generalization to the
case of a group G acting on a nilpotent space X. We may either suppose
that G acts as a group of base-point-preserving homeomorphisms of X or
as group of based homotopy classes of self-homotopy-equivalences of X.
We prove that G acts nilpotently on m;X, i < n, if and only if G acts nilpo-
tently on H;X, i < n (Theorem 2.1.).

In Section 1 we establish the algebraic context for Theorem 2.1. It turns
out that the usual action of the group ;X on the groups m,X and H X,
where X is the universal cover of X, is enriched to an action of the G-group
7n,X on the G-groups 7,X and H, X which is compatible in precisely the
sense of [4; (0,2)]. Thus the results on compatible G-actions proved in [4]
are available to us and the appropriate algebraic context for our topolo-
gical results is that of a G-group K acting compatibly on a commutative
G-group N. This situation is studied in Section 1.

We remark that there is a small difference between the statement of
Theorem 1.1 of [4] and the result quoted at the beginning of the Introduction.
For if a group G acts nilpotently on a group Q, then Q is necessarily a nil-
potent group. On the other hand a group G may act nilpotently on the homo-
topy groups of a space X without X being a.nilpotent space. Indeed the trivial
action (of any group G) on the homotopy groups X will be-nilpotent provided
n,X is nilpotent. Thus it is necessary for us to postulate in our main theorem
that X should be nilpotent.

*Recebido em Agosto de 1976.
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Section 2 closes with the answer to a question raised by Joseph Roitberg
and independently by David Singer, relating nilpotent fibrations [2] to quasi-
nilpotent fibrations [3]. In the final section we generalize the argument used
in proving Theorem 2.1 to study the case of a quasi-nilpotent G-fibration
F — E — B. That is, we have a fibration which is quasi-nilpotent [3] in
the sense that all spaces are connected and 7;B operates nilpotently on the
homology of F; and we further assume that G acts-on F, E, B, in either of the
manners described above, in such a way that the maps of the fibration are
G-maps. It is then possible, given that the actions of G on the homology
groups of two of the spaces F, E, B are nilpotent (up to certain dimensions),
to infer that the action of G on the homology group of the third space is also
nilpotent (up to a contingent dimension).

This paper was written while the author was in Brazil at the invitation
of the Pontificia Universidade Catolica of Rio de Janeiro. He is most grateful
to PUC for the kind invitation and the opportunity to talk with colleagues
and work under very delightful conditions. He is also grateful for the oppor-
tunity thereby provided to participate in ELAM III in Rio and in the Escola
de Algebra-in Sdo Paulo.

1. Group theoretical preliminaries.

In [4] the authors discussed the situation of a G-group K acting on a
G-group N. Thus the group G acts on the groups K and N; and K acts on
N in a manner compatible with the G-actions in the sense that

(1.1) x(ab) = xa- xb,xeG, acK, beN.

We resume this theme here but we will insist that N is commutative. Since
K acts on N, we may then form the homology groups H,(K; N). Now the
condition (1.1) precisely asserts that for each xe G, the map x: N — N,
given by b — xb, b€ N, is a module-map with respect to the map x : K — K,
given by a — xa, a€ K. Thus G acts on H,(K; N) and we will call this the
induced diagonal action of G on H,(K; N). It is with this induced diagonal
action that we will be concerned in this section. In preparation for our main
result, we prove some preliminary lemmas.

Lemma 1.1. Let A and B be abelian groups and let us form A & B,
Tor(A, B). Let G act on A and B and hence diagonally on A ® B, Tor(A, B).
If G acts nilpotently on A and B, it acts nilpotently on A ® B and on Tor(A, B).

Proof. The first assertion is Lemma 1.2 of [4]. As to the second assertion,
we prove it by induction on nilgB. If nilgB = 1 the result is contained in
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Corollary 1.4.16 of [2]. If nilgB=c+1, set I =T'G B. Then '—>B—» B/l
is a short exact sequence of G-modules and we may assume that G acts nil-
potently on Tor(4,T) and on Tor(A, B/T). But ToA,T") — Tor(A, B) —
Tor(A, B/T) is an exact sequence of G-modules, so that, by Proposition 1.4.3
of [2], G acts nilpotently on Tor(4, B).

Lemma 1.2. Let K be a G-group. Then G acts on the homology groups
H,K. If G acts nilpotently on K, then G acts nilpotently on the homology
groups H,K.

Proof. We argue by induction on nilgK. If nilgK = 1, the action of G
on K, and hence H,K, is trivial. If nilcK =c¢ + 1, we set I' =I'G K and
have a central extension I'— K —> K/I' with G acting trivially on T.
In the Lyndon-Hochschild-Serre spectral sequence we have

(1.2) E3, = H,(K/T; H,T)

and we may assume that G acts nilpotently on H,(K/T'), for all p. Since, in
(1.2), K/T acts trivially on H,I', we have the short exact sequence of G-modules

H(K/T) ® H,T »— E2, — > Tor(H,—(K/T), H,)

Appeal to Corollary 1.4.16 of [2] (or to Lemma 1.1) shows that the G-actions
on H,(K/T) ® H,I' and on Tor(H,_(K/T'), H,I') are nilpotent and so there-
fore, by Proposition 1.4.3 of [2], is the G-action on Ej,. Passage through
the spectral sequence then shows that the G-action on Ej, is nilpotent and
so finally by further applications of Proposition 1.4.3 of*[2] is the G-action
on H,K.

Remark. Lemma 1.2, in the case that K is commutative, was proved
as Theorem 1.4.17 of [2].

We are now ready to state and prove the main result of this section.

Theorem 1.3. Let the G-group K act compatibly on the commutative
G-group N, so that (1.1) is satisfied, and let G act on the homology groups
H,(K; N) by the induced diagonal action. If G acts nilpotently on K and on
N, and if K acts nilpotently on N, then G acts nilpotently on H,(K; N).

Proof. We argue by induction on nilgN. If nilkN =1, we have a short
exact sequence of G-modules

H,K ® H— H,(K;N) —> Tor(H,-1K,N)

where the G-actions are, in all three cases diagonal. Since G acts nilpotently
on K, it follows from Lemma 1.2 that G acts nilpotently on H,K, H,,—1K.
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Since G acts nilpotently on N, it follows from Lemma 1.1 that G acts nilpo-
tently on H,K ® N and on Tor(H,- K, N). We again invoke Proposition
1.4.3 of [2] to infer that G acts nilpotently on H,(K; N). If nilyN = ¢ + 1,
set ' = 't N, so that, by Lemma 1.11 of [4], [ > N —>» N/T is a short
exact sequence of K-modules and of G-modules. It follows that the induced
coefficient sequence

H,(K;T) — H,(K;N) — H,(K; N/T)
is an exact sequence of G-modules. We may suppose inductively that G acts
nilpotently on H,(K;N/I') and it certainly acts nilpotently on H,(K;T)
since K acts trivially on I'. Thus, once again, we infer that G acts nilpotently
on H,(K;N) and the theorem is proved.

We require one further group-theoretical result, of a negative nature,
before proceeding to the topological applications.

Proposition 1.4. Let the G-group K act compatibly on the commutative

G-group N. If G acts nilpotently on K and K acts nilpotently on N, then G acts
nilpotently on N if and only if G acts nilpotently on Hy(K; N).

Proof. We already know from Theorem 1.3 that if G acts nilpotently
on N then G acts nilpotently on Ho(K; N). Conversely, suppose that G does
not act nilpotently on N. We argue by induction on nilgN. If nilgN = 1 then
Ho(K; N) = N and the conclusion is obvious. If nilxkN = ¢ + 1,set I’ =T\ N
so that ' — N ——> N/I' is a short exact sequence of K-modules and of
G-modules. It follows that the induced coefficient sequence
(1.3) H,(K; N/T) — Ho(K;T') — Ho(K; N) —> Ho(K; N/T)
is an exact sequence of G-modules. Since G does not act nilpotently on N,
we have two possibilities: (i) G does not act nilpotently on N/I", and (ii) G
acts nilpotently on N/I" but G does not act nilpotently on I'. In case (i) the
inductive hypothesis tells us that G does not act nilpotently on Hq(K; N/T)
and hence, by (1.3), G does not act nilpotently on Hy(K; N). In case (ii) we
know that G does not act nilpotently on Hy(K;I') and, by Theorem 1.3, G
acts nilpotently on H,(K; N/T'). It thus again follows from (1.3) that G does
not act nilpotently on Hy(K; N).

2. Nilpotent G-spaces.

Let X be a nilpotent space [2] on which the abstract group G acts as
a group of base-point-preserving homeomorphisms.* If X is the universal

*It would suffice that G be represented as a group of homotopy classes of self-homotopy-
equivalences of X.

Recall that a space X is nilpotent if 7, X is nilpotent and acts nilpotently on the higher
on the homology groups H;X,i > 1, as well as on the homology groups H;X of the universal
cover X of X.

On G-spaces 69

covering space of X then, of course, G also acts on X, in such a way that the
projection X — X is a G-map. Moreover there are induced actions of G
on the homotopy and homology groups of X and X; and it is easy to verify
that the G-group m;X acts compatibly on the commutative G-groups m,X,
H,X. Thus we are in a position to apply the results of preceding section and
we prove.

Theorem 2.1. Let the group G act as a group of base-point-preserving
homeomorphisms of the nilpotent space X, and let n > 1. Then the following
statements are ‘equivalent:

(1) G acts nilpotently on m;X, i < n;
(i) G acts nilpotently on H;X, i < n;
(iii) G acts nilpotently on m,X and on HX, i<n

Proof. We first establish the equivalence of (i) and (iii). To do this it suffices
(replacing X by X) to suppose X simplyconnected and to show that then
(i) and (ii) are equivalent. Thus let X be simply-connected and suppose that
G acts nilpotently on 7;X, i < n. Form the Postnikov tower, for m < n,

(2.1) K(n,X,m) < Xn,
!

Xm—l

Then G acts on the fibration (2.1). We assume inductively that G acts nilpo-
tently on the homology of X,,_;, certainly true if m = 2. By Lemma I1.2.17
of [2], G acts nilpotently on the homology of K(n,.X, m). In the Serre spectral
sequence we have EZ, = Hy(Xn-1; Hyn.X,m)). Thus by exactly the same
argument as that of the first step in the proof of Theorem 1.3, G acts nilpo-
tently on E2,. Passage through the spectral sequence shows that G acts
nilpotently on the homology of X,,.

We conclude that G acts nilpotently on the homology of X,. But the
map X — X, induces homotopy isomophisms up to dimension n and a
surjection of m, 4 (since 7,+1X, = 0). Thus X — X, induces homology iso-
morphisms up to dimension n; so that G acts nilpotently on H;X, i < n.

Now suppose that G acts nilpotently on H;X, i < n; recall that we are
supposing X simply-connected. Form the Cartan-Serre-Whitehead tower*,
for m < n,

*Recall that X, is obtained from X by killing the first (m — 1) homotopy groups of X.
Since X is simply-connected, X;, = X.
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2.2)

Then G acts on the fibration (2.2). We assume inductively that G acts nilpo-
tently on H;X ;,—1), i < n. This is certainly true by hypothesis if m = 3, since
X2 = X. Since Hp-1Xm-1) = #m—1 X, G acts nilpotently on «,_,X and
hence on the homology of K(n,,—;X,m — 2). In the Serre spectral sequence
we have E}; = H(X m—1); Hf(tm—y,m — 2). Thus G acts nilpotently on E2,
if p + g < n. Passage through the spectral sequence shows that G acts nil-
potently on H;Xy), i < n. Thus G acts nilpotently on H; X, i < n, m < n.
Since H,X m = m,X, it follows that G acts nilpotently on 7, X, i < n.

It ramains to prove the equivalence of (ii) and (iii); now, of course, we
merely assume X nilpotent. We exploit the Cartan spectral sequence for the co-
vering X — X which may be regarded as the Serre spectral sequence of
the ‘fibration’.

(2.3) X - X — KmX,1)

Then G acts on the fibration (2.3). We suppose that G acts nilpotently on
n,X and on H;X, i < n. It then follows from Theorem 1.3 that G acts nil-
potently on E}, = H(n,X; H‘,X~ ), provided that p + g < n. (Recall that, since
X is nilpotent, 7, X operates nilpotently on H,X). Passage through the spectral
sequence shows that G acts nilpotently on H;X, i < n.

Finally suppose that G acts nilpotently on H;X, i < n. Since G acts
nilpotently on H,X, it follows from Theorem 1.1 of [4] that G acts nilpotently
on my X. If there exists i < n, such that does not act nilpotently on H;X, let
q be the smallest such i. By Proposition 1.4, G does not act nilpotently on
E}, = Ho(n, X ; H,X) and, by Theorem 1.3, G acts nilpotently on E% = H,
(an;Hs)Z) for all r, s with r + s =q + 1, r > 2. Consider the diagram

E}, > >E}, —> >..— > E§'— >Ef c HX
(2.4) Td? tq 1 gutl

2 3 +1
I GE PR U Eitio

Since G acts nilpotently on E} ,_; but does not act nilpotently on E3,,
it follows that G does not act nilpotently on E3,. Continuing the same line
of argument, we infer that G does not act nilpotently on E§,, ..., E4; ', Eg,.
But Eg, is a G-subgroup of H,X and G acts nilpotently on H,X. Thus we
have arrived at a contradiction, showing that no i < n exists such that G
does not act nilpotently on H;X. The proof of the theorem is complete.
We may now answer a question raised by Joseph Roitberg and indepen-
dently by David Singer. Let F — E — B be a fibration with all spaces
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connected. Then the fibration is nilpotent [2] if n,E operates nilpotently
on the homotopy groups of F (including 7, F), and quasi-nilpotert [3] if n,B
operates nilpotently on the homology groups of F. We then have

Corollary 2.2. Let F < E — B be a fibration with all spaces connected.
Then the fibration is nilpotent if and only if it is quasi-nilpotent and F is nilpotent.

Proof. If the fibration is nilpotent, then, since n, F operates on the ho-
motopy groups-of F through n,F — nE, it follows that F is itself nilpotent.
Thus, by Theorem 2.1, 7, E operates nilpotently on the homology group of F.
Since n;E — m,B is surjective, n;B also operates nilpotently on the homo-
logy groups of F. Conversely if m;B operates nilpotently on the homology
groups of F so does n,E and so, by Theorem 2.1, F being nilpotent, , E ope-
rates nilpotently on the homotopy groups of F.

3. A generalization.

The argument which completes the proof of Theorem 2.1 relates to the
fibration (2.3). Essentially what we prove is that, since G acts nilpotently on
the homology of the base K(m;X, 1) it will act nilpotently on the homology
of the fibre X, up to dimension n, if and only if it acts nilpotently on the
homology of the total space X, up to dimension n.

We now generalize this conclusion. We are concerned with a fibration

(3.1) F—E—B

on which the group G acts. Moreover the fibration is to be quasi-nilpotent
in the sense already described, meaning that all spaces are connected and
71B operates nilpotently on the homology groups of F. It is then easy to
verify that the G-group m;B operates compatibly on the G-groups H,F. We
first prove a lemma.

Lemma 3.1. Let (3.1) be a quasi-nilpotent fibration on which G acts.
Then G acts diagonally on the homology groups H,(B; H,F). Moreover (i) if G
acts nilpotently on H,B, p < P, and on H,F, q < Q, then G acts nilpotently
on Hy(B;H,F), p < P, q < Q; and (ii) if G acts nilpotently on H,B and does
not act nilpotently on H,F, then G does not act nilpotently on Hy(B; H,F).

Proof. The arguments exactly parallel the proof of Theorem 1.3 and
Proposition 1.4. Thus, in particular, (i) is proved by induction on the m,B-
nilpotency class of H,F.

Theorem 3.2. Let (3.1) be a quasi-nilpotent fibration on which G acts.
Then
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(a) if G acts nilpotently on H,B, p < P, and on H,F, q < Q, then G acts nil-
potently on H,E, n < N = min(P, Q);

(b) if G acts nilpotently on H,B, p < P, and on H,E, n < N, then G acts nil-
potently on H,F, ¢ < Q = min(P — 1; N);

(c) if G acts nilpotently on H,F, g < Q, and on H,E, n < N, then G acts nil-
potently on H,B, . p < P = min(Q + 1, N).

Proof. (a) follows immediately from Lemma 3.1 (i). For G acts nilpo-
tently on E2,, p + g < N, in the Serre spectral sequence and passage through
the spectral sequence yields the result. The proof of (b) closely resembles the
last step in the proof of Theorem 2.1. Were the conclusion false we take g < Q
minimal for the property that G does not act nilpotently on H,F. Since P > 1
(otherwise the conclusion is trivially true!) we may apply Lemma 3.1 (ii) to
infer that G does not act nilpotently on E3, while, by Lemma 3.1 (i) it does
act nilpotently on E4,r + s = g + 1,r > 2. This last holds because g + 1 < Jih
and s < g — 1. Arguing as in the proof of Theorem 2.1 (see diagram (2.4))
we infer that G does not act nilpotently on Eg, = H,E, which is contradiction
because g < N.

The proof of (c) proceeds similarly. Were the conclusion false we take
p < P minimal for the property that G does not act nilpotently on H,B.
Then, by Lemma 3.1 (i), G acts nilpotently on EX, r +s=p— 1, s > 1.
This last holds because r < p — 2 and p — 1 < Q. Consider the diagram

HB=E%% =22E) =2..2E% <E% «— H,E
e hd Ldv
E§—2,1 E;—S,Z Es,p*l

Since G acts nilpotently on E;_, ; but not on E2, it cannot act nilpotently
on E3, (by Proposition 1.4.3 of [2]). Continuing in this way, we eventually
infer that G does not act nilpotently on E;5. But this yields a contradiction
since, with p < N, G does act nilpotently on H,E.

Remark. Note that, as was to be expected, the values of N, P, Q which
we get in Theorem 3.2 are precisely those of the generalized (and strengthe-
ned) Zeeman comparison theorem of [3].
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