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Abstract non-linear Hyperbolic Equation in Hilbert Spaces

Pedro H. Rivera Rodriguez*
In Lion’s paper [ 5] it was proved that the Cauchy Problem for the equation
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is well posed in I%(Q), where Q is an open and bounded subset of R". In this
paper we generalize the Lions paper and we will show that the abstract Cauchy
problem for the equation u” + (4 + P)u + Bu' = F(u,u’) is well posed in
Hilbert Spaces.

1. Introduction.

Given a non-linear function f: R* — R, the abstract Cauchy problem
for the partial differential equation
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consists in finding a mapping u: R* — H such that

(L.1) {“"“’ + (A + Pult) + Bu'(t) = Fu(t) u'(), (12 0)

u©0) = ug, u'0) = uy,

where uo and u; are vectors of the Hilbert space H; A, P and B are linear
operators of H, and F is a function from the domain D(F) = H x H into H.

In the equation (1.1), the case F = 0 is solved by Lions ([5]) in Hilbert
space I7(Q); the case F(u,u’) = M(u), P = B = 0 is treated by Browder ([1])
in Hilbert space; Medeiros ([8]) genéralized Browder’s paper to the case
A = A(1), time’s dependent; Goldstein ([ 2]) studied the case B =0, 4 and P
in the time dependent case. In Goldstein’s paper ([3]) there is a brief survey
of the literature on abstract hyperbolic Cauchy problems.

In the following we will consider a Hilbert space H with inner product
(| and norm || || Let A be a linear operator of H with the domain D(A)
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dense in H, self-adjoint and positive (i.e.: there is &y > 0 such that CAu | u) >
> ¢, |lull2, for each ue D(4)). Let us represent by W = D(4'/?) the domain
of AY2. In W we introduce the inner product

(1.2) Culvpw = <AY2u| 4V2p),  (u and v in W)

I am grateful to Professor Luiz Adauto Medeiros for many suggestions
and discussions during the development of this research.

2. The linear case.

The vector space consisting of all bounded linear operators from W into
H will be denoted by #(W, H); in this vector space we introduce the norm
T e, m = sup I Tull; we w; llully =13

We assume that B and P are bounded linear operators from W into
H such that:

2.1) a = max {“BHY(W,H)a

PH.T(W,H)} <1
2.2) Re{Bu | u) >0, forall ueW
Suppose E = W x H eqquiped with the inner product

(23) <W0|W1>E = <u0|u1>w + <Uo‘01>
for each wo = (ug, vo) and wy = (uy, vy) in E = W x H.
Let L be the linear operator defined in D(L) = D(A) x D(A'?) by

2.4) Lw =@, —(A+ P)u— Bv), w = (uv)eDL).

Proposition 2.1. L is the infinitesimal generator of a C, semigroup on
E, {G(t); t > 0}, such that

(2.5) 6l g@ < e¥?t, for all ¢>0.

Remark. If I; denotes the identity mapping of E, by the Hille-Yosida
Theorem (see [11], page 249) we need show that for each A > 5/2, the map-
ping L, = Ig — A" 'L, from D(L) into E, is bijective and L;' is a bounded
linear operator such that [|L; ]l <A/ — 5/2).

For the proof of the Proposition 2.1, we need the following result:

Lemma 2.1. For each )\ > 5/2, the mapping J; = Iy + 1" XA +IP)+
+ A" 1'B: D(A) — H is onto.

Proof. We take C;=A"2P+1"'B and N,;(u) =lu +1~24ull, (ue D(4)).
Since Iy + L1724 is onto, so, for each xe H we can construct a sequence
(u) of D(A) such that
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To b o Ao —
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If A >5/2, then A>(/2—1)"! and 1A% +2/A +1 <2. Also 2/A?
Hu”%y < N,(u), for each ue D(A). Now, for m =0, 1,... we have:

NiGms 1) = s 112 + 282 CAtt s 1 L tims 10 + 11A2 Aups |2
=_Hum+1||2 4 24— gy eq = €= W90 + s 1 +Ca 2
= |Csunll? = 1241 Punll? + 223 Re {Pun | Bupy + 102 || Bu,il|?
< ap2 {102 + 20 + 1} luall3
< a2/ 2 llunlly < a® Na(un),

where a is given in 2.1.
The last inequality implies:

2.7) Niu,) < a|xl2, m =012, ...

Putting v, = Z uj, then (2.1) and (2.7) imply that (4°v,,), is a Cauchy se-
ji=0

=
quence of-H, for s =0, 1/2, 1, therefore, there is ve D(A) such that (4°v,)m
converges to A%, (s =0, 1/2, 1) from (2.6) we obtain J,v = x.

Proof of Proposition 2.1. First, we note that L is a closed operator of E,
because A and A'/? are closed operators of H, and B and P are bounded
linear operators from W into H.

Take A > 5/2 and put L; = Iz — A~ 'L. For each we D(L) we have

Lwllg = Iwll3 + 2271 ReSol Py > (1 = 57202 [Iwllz.

Also, D(A) x H < Range (L;); in fact, if (x, y) € D(4) x H, by lemma 3.1
there is ve D(4) such that J,v =y — A~ Y(4 + P)x; taking u = x + 1" 'v,
we have (u, v) € D(L) and L,(u, v) = (x, y). This result shows that L; is a map-
ping from D(L) onto E = W x H, because D(A) is dense in W.

From (2.8) we have ||L;'w||s < A/(A — 5/2)||w||e, for each weE, and
Proposition 2.1 is a consequence of the Hille-Yosida Theorem.

(2.8)

Proposition 2.2. For each wo = (ug, u;) € D(A) x D(A'?) there is a unique
mapping u: R* — H such that:

(1) Range(u) = D(A), ue C\(R*, W) n CA(R*, H)

(2) u"(t) + (A + P) u(t) + Bu'(t) =0 (t=0)

(3) u0) =ug, u'@) =uy.
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Also if u and v are mappings from R* into H such that (1) and (2) are true
for u and v then:

@) ||u) = @l + ||w'(@) — v'@)]|* < {||(0) — O)|[& + [|'(0) — v'(0)[|} €™,
(t > 0).

Proof. We note that the conditions (1), (2) and (3) are equivalents to find
a mapping we C!' (R*, E) such that

o'(t) = Lo(t), t>0
) {w(O) = wo,

and Proposition 2.2 is a consequence of the Phillip’s Theorem (see [4], page
622] and Proposition 2.1.
3. Existence of local solutions in the non-linear case.

Let F be a non-linear operator from D(F) into H with the following
properties: i

(3.1) D(L) = D(F) = E, F(0,0)=0
(3.2) For each ¢ > 0, we have that

Y sup{llF(wl) — Foall |
) |y — ealle

wr€D., wy,€D,, w, ¢w21< + ©

f

where D, = {we D(L)I ||w”5 < ¢} (i.e.: F is Lipschitzian in D, for each ¢ > 0).

(3.3) For each T> 0 and we C* ([0, T), E) such that range (w) = D(L) the
mapping wo(t) = F(w(t)), 0 < t < T, belongs to the space C'([0, T), H).

(3.4) There exist r > 0 and p > 0 such that

Re [ SFus), w(s)|w(s) ds <rllu©)lf +r [ {lucs)ll3 + w12} ds,

for each ue CY([0, T), W) with the range in D(4) and 0 <t < T.
Given T > 0 and w, € D(L), let X be the set of mappings w: [0, T) — E
such that w is continuous and bounded in [0, T'), with the norm

3.5) leolly = Os<1rxgr||w(t)|§,; (weX, 0<t<T).

Given wo € D(L), we consider X,,, = {we X | a(0) = wy, range (w) = D(L)},
and the mapping S: X,, — X defined by
SoAt) = G(t)wo + [5Gt — s)f((s)ds (W€ Xuy, 0 <t < T),

where f(z) = (0, F(z)), when ze€ D(L).
From the hypothesis (3.2) we obtain the following results:
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Lemma 3.1. For each ¢ > 0 there is T = T(c) > 0 such that, if w,€ D(I)
and llwollg < ¢, then:

(1) ISwllx < 3¢, when we X, and llolly < 3¢

) ISw; — Sw,llx< 173w, — w,ly, when w; € X oo and lloillx < 3¢ (i=1,2)

Proof. We choose T = T, = min {2/5a3,, 2/5 In 2}, where a3, is given in
B3:2).

Remark. We observe that X, is not a complete metric space and we
cannot apply directly the fixed point theorem for contractions.

Lemma 3.2. Let C be a self-adjoint linear operator in H. If (u,), is a se-
quence in D(C) such that:

(1) (un)n converges to ue H

(2) (Cu,), is a bounded sequence of H, then ue D(C).

Proof. When f: [a,b] — R is continuous and «: [a,b]. — R is of boun-
ded variation, we have the following formula for integration by parts

b fdo = f(b)ub) — f(a)x(a) — [hodf (see [9], page 118).
If C = (T2 LdE; (see [9], page 320), from the last formula, Lebesgue’s
Theorem and hypothesis (1) we have
lim (232 dl| Ezu,l? = {222 dll Eul

n— oo

28 “Yor all* "a<'b

SO,
[*2 A2 dllEull? < sup {lCuall?; n=1,2,..} < +
and ue D(C)

Proposition 3.1. For each ¢ > 0,uq € D(A), vy € D(A'?), with ll(uo, vo)ll <
< ¢, there is a mapping u: [0, T,) — H such that

(1) range(u) = D(A)

(2) u is once differentiable in the norm of W and twice differentiable in the

norm of H

(3) u'(t) + (A + P)u(t) + Bu'(t) = F(u(t), u'(t)), 0<t<T,

4) u©0) =uo, u(0)=u.

Proof. We consider zo = (ug, vo) € D(L) and (w,)uen the sequence of X,
defined by induction in the following way: wo(t) = G(t)zg, Wy+1 = S,
0<t<T, n=0,1,2,...). By Phillip’s Theorem ([4] page 622), the sequence
(wn)ne~ is well defined, w, is once differentiable in the norm of E and

Wps1(t) = Lo+ 1(t) + flont)), O <t<T, neN)
wol(t) = Lawo(t) (0! < =i
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By Lemma 3.1, (w,)sen is @ Cauchy sequence of X, so, there is we X
such that such that (w,(t)).ey converges to «(t), uniformly for 0 <t < T..

Now, we show that o(t)e D(L), (0 < t < T)). If @,(1) = ||wi(t)||E we have
ont) < 80,0) + 8(x3)* t [ @u-1(s)ds, for 0 <t < T, and neN.

We put ¢, = max {41 + | Las[?), 81| Lewo +f(wo)||2}, c; = 8(a3.)?, then
lwyo)llg < coeT =R (0 < t < Tp, ne N). If u(t) = Py (1), u(t) = Pyoo(0),
v(t) = Py o,(t) = uy(t) and 1(t) = Py o(t), from the last inequality we find
that (Aun(t))sen and (A2 uy(t))sen are bounded sequences of H; also: (un(t))nen
converges to u(t) and (v,(t))nen is convergent to v(z), therefore w(t) = (u(t), v(t)) €
e D(A) x D(AY?) = D(L), by Lemma 3.2.

Because we X, and ﬁw”x < 3¢, by Lemma 3.1 we have

w = lim w,+; = lim Sw, = Sw

n— oo ‘n— oo

or
o(t) = G(t) @ + [o Gt — s) f(wAs)ds, (0<t<T
If u(t) = Py o(t), (0 < t < T,), then u is the solution of the problem (1) to (4).

4. Uniqueness, continuous dependence and continuation.

In the following, we say that the mapping u: [0, T) — H is a solution
of the Cauchy problem (1.1) in [0, T) (0 < T < + o0), when Range(u) = D(A),
u is differentiable in the norm of W, twice differentiable in the norm of H
and satisfy (1.1) in [0, T).
Now, we will show that the Cauchy problem (1.1) is well posed in D(A) x
x D(A'?), in the following sense:
(i) For each (uo,u;) e D(A) x D(A''?) there is a unique solution u of
(1.1).
(ii) The solutions of the differential equation in (1.1) are continuously
dependent of the initial conditions u(0) and u'(0).
In Proposition 4.1 we will show (ii) and this result implies the unique
ness of the solution u. Also, the existence of local solutions for (1.1) shown

in Proposition 3.1, the uniquness and a standard argument imply the existence
of solutions for ¢t > 0.

Lemma 4.1. For eachc > 0and T > 0, there is a constant § = f(c, T)>0
such that, if uoe D(A), uy, € D(A'?), uolly + llvoll2 < ¢ and u is a solution
of the Cauchy problem (1.1) in [0, T), then:

luollz + lw@l? < B, ©<t<T).

“i
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Proof. I g(t) = |[u(t)|[% + ||« (®)||?, (0 < ¢ < T), by hypothesis (3.4) we have
g(0) — g(0) =[5 g'(s) ds = 2 gg Reu''(s) + Auls) | u'(s)) ds
< 2rllu©)llf + @r + [IPIh § g(s) ds
and B = Blc, T) = (c* + 2rc") exp {2 + [PI)T} is the constant.

Proposition 4.1. For each ¢ > 0 and T > 0 there is y = y(c, T) > 0 such
that, if u and v are solutions of (1.1) in [0, T), with w2+ + lw Ol < ¢,
)|l + lv©Oll? < 2, then

llu(e) — o013 + @) — v @I < e{llu©) — )13 + lw'©) — )12}, 0 < £ < T).

Proof. We put z(t) = u(t) — o(t), h(t) = lz0l3 + 2|2, © <t <)
From Lemma 4.1 and hypothesis (3.2) we obtain a constant a =ag =0o(c, T)>0
such that

| Feu(e), w(@) — Fote), vl < afllzollz + 2012 © <t < ).

Also: () = 2 Re<z”ét) + Az0) | 2
= — 2 ReSBZ'(t) + Pz(t) | z’(t)>
+ 2 ReCFu(t), (1) — Fo(t), v(2)) | ()
<(IPl +1 +o0)h, ©O<t<T)

then: h(r) < " h(0) (0 <t < T), where y = y(c, T) = 1 + ||P|| + a(c, T).

Theorem 4.1. For each ug e D(A) and u, € D(A'?) there is a unique map-
ping u: R* — H, solution of the Cauchy problem (1.1) in R™.
Also, for each ¢ >0 and T > 0 there is I’ =I'(c, T) > O such that

sup_{lute) = o)l +lu6) — v @17} < T{llu©) — )l + ' 0) - v},
when u and v are solutions of the differential equation (1.1) and lu0)l3 +
+ @l + llvo)l? <.

Proof. The uniqueness and the second part are a direct consequence
of Proposition 4.

Let us fix (uo, u;) € D(A) x D(A''?), and consider the set S of the num-
bers 0 < T < + oo such that (1.1) has a solution in [0, T); by Proposition 3,
S is not empty. Putting T, = max S; if T; is finite, let u: [0, To) — H be a
solution of (1.1) in [0, Tp), by the Lemma 5

¢= sup Hlue)l3 + llw@lz}2 < oo

and T,e S (where T, is given in Lemma 3.1), we take so = Tp — T;/2, then
0 < so < Ty and there is a mapping v: [0, T,) — H, solution of the differential
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equation (1.1), with the initial conditions 1(0) = u(so), v'(0) = t/(so). By the
uniqueness shown in Proposition 4.1, we find that the mapping

u(t), 0 <t < T
ot) = 2
U(t_So), So<t<’1—;+50=To+Té/2,

is well defined, and o is the solution of (1.1) in [0, Ty + T./2); this fact is a
contradiction, because T, = max S; then T, = + oo, and the solution u of
(1.1) is defined in R*.

5. Aplication.

We represented by Q an open, bounded subset on R". Let H be the real
vector space I2(Q), with the inner product

ulvdm = fou(x) v(x)dx, (v in H).

The vector space consisting of all mappings u e C*(Q) such that u(x) = 0,
for x outside a compact set in Q, will be denoted by Cg(QQ); in this vector
space we introduce the inner product

uloduley = Y DulDpdy, @wov in CHQ).
j=1

The completion of CF(Q) will be denoted by H(Q).
If D(A) = {ueH(l,(Q)|AueH}, then the operator A: D(4) — H de-
fined by

Au=—Au=— —L—_t (u € D(A))

is self-adjoint and positive in H; also W = D(A?) = H(Q).
Given the continuous and bounded functions f =(fi,...,f,), and

g =(91,-.-,9,) from Q into R", let P and B be the operators from W into
H defined by

Py b Vg Loy L D8

j=1
Bu=g-Vu=Y g;Du, ueW=V,
ji=1

then B and P are bounded linear operators and

IPll < ( 5 ) Il < (z b>

J=1 i=1

e ——
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where a; = sug|f,{x)|, b; = sup |g,(x)| (=l eD):
X € X €

If ge CQ R, V-g(x) = ¥ Dgfx) <0 (xeQ) and Djg; are bounded

=1
functions from Q into R, then ]2<Bu | w = — fa(V-9)(x) | u(x) |2 dx > 0, for
each ue W.
Now, we consider an example for the non-linear part F. Let p > 2 be
a real number such that W = H}(Q) = I7(Q) with continuous injection, if
r =p/2 — 1 and ¢: R — R is continuously differentiable with the derivative
¢ a bounded function and ¢(0) = 0, then the mapping.

flu,v) = —c¢ lul"u — do(v)  (ueIP(Q), ve IX(Q)
satisfies hypothesis (3.1), (3.2), (3.3) and (3.4), when ¢ > 0 and d > 0.
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