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The Relation Between C* and Topological Stability

James Damon*

1. Introduction.

The basic problem we will discuss here is the stability of smooth (C®)
proper mappings f: N — P between smooth manifolds (without boundaries).
We denote Cp(N, P) the space of proper smooth mappings between N and P.
Then, we first say that f is C®-stable if there is a neighborhood U ou f in
Cx(N, P) so that if ge U then there are difffomorphisms ¢ : N - N and
Y : P — P such that f =y .go ¢. If we weaken the condition to just require
that  and ¢ be homeomorphisms, then we have instead the notion of topolo-
gical (C°) stability. When f and g are related by f = ¥ - g - ¢ with ¥, ¢ diffeo-
omorphismis (homeomorphisms) then f and g are said to be C*-equivalent
(CC-equivalent).

The study of C*-stability is a natural attempt to generalize the earlier
results of Morse and Whitney, which described dense sets of mappings between
manifolds of specific dimensions. For instance for the Morse functions we
recall:

1. Definition by Local and Global Properties: A Morse function of f: M — R
is a real valued function which satisfies the conditions a) at singular points x
(where D, f = 0), Df is a non-degenerate quadratic form, and b) images of
the singular points via f give distinct values in R.

2. Local Classification and Local Normal Form: For a singular point x of a
Morse function f, coordinate systems can be chosen near x and f(x) so that
f is defined locally by

S =xt+xi+...+x2—x2;—...— x2

(for some integer 1 < g < m).

3. Density: The set of Morse functions is dense in Cj(M, R) (with the Whitney
topology).

4. Stability: Morse functions are C®-stable.
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Whitney gives a similar description in terms of local and global properties
and normal forms for the types of mappings which he considers from 2-mani-
folds to 2-manifolds and from n-manifolds to ‘m-manifolds with m > 2n — 1.

This suggests the following basic question for the theory of stability of mappings.

Question: Are these principal properties, namely, definition by local and
global properties, local classification, local normal forms, and density, valid
for stable mappings between arbitrary smooth manifolds N, P?

Mather’s work [19] gives a complete answer to this question, describing
exactly how these properties are related to the stability of mappings. Earlier
in the Thom-Levine notes [16], it was shown that C®-stable mappings are
not dense in all dimensions. Mather was able to determine exactly the range
of dimensions, (1, p), with n =dim N and p = dim P, where stable mappings
are dense in Cpy(N, P). This range of dimensions is called the nice dimensions.

Outside of the nice dimensions, this introduces the problem of ignoring
entire open subsets of Cp(N, P) if we consider only (*-stability mappings.
To avoid this difficulty, Thom and Mather [20], [21], [31], [33] considered
the weaker notion of C°-stability. Mather, following ideas proposed by Thom,
proved that for all (n, p) C°-stable mappings are dense. However, the proof
gives no clue to the classification or local forms of singularities occurring
for C°-stable mappings.

One possibility for improving our understanding of these theories would
be to study the relationship between them, with the hope of filling the gaps
in each of them. Several particular questions which we should ask are:

1) In the nice dimensions does the topological classification of C*-stable
mappings agree with the C*-classification?

2) Which properties of C®-stable mapping suggest potentially useful
generalizations for C°-stable mappings?

3) Do C°-stable and C®-stable mappings differ in the nice dimensions
where they are both dense?

What we will survey at this time is the present status of the answers to
these questions. We begin with a review of the key results of Mather’s theory
of C®-stability as they pertain to the properties we have described. More
thorough surveys can be found in [6], [34]. Next, we describe the key ideas
used in proving that C%-stable maps are dense. This will essentially be a des-
cription of Mather’s paper [21]. Another description is contained in [6].
Then, we turn to comparing the theories by describing the results which have
been obtained for the three questions just mentioned.
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C*-stability: We examine Mather’s theory of C*-stability, which includes
both Morse functions and Whitney’s examples as special cases. Interestingly,
however, Mather’s first characterization of C®-stable mappings differs stri-
kingly from the geometric characterization of the examples. The only earlier
hint of such an approach is given in the Thom-Levine notes for homotopic
stability [16]. This characterization might be thought of as an algebraic
characterization of stability.

Infinitesimal Stability: We begin with the reduction of stability to an
infinitesimal condition. Let Diff(N) denote the group of C*-diffeomorphisms
of N.Then, givenanf: N — P, thereisamap®; : Diff (N) x Diff (P) > C,(N, P)
given by (¢,¥) = ¥ of ¢. Then, f being stable is equivalent to the image
of ®, containing an open neighborhood of f in Cp(N, P). (The topology
on C*(N, P) is the Whitney topology. When N is compact this corresponds
to the uniform convergence of functions together with all partials.)

We may think of these as being infinite dimensional manifolds, and we
will try to interpret D®,. Let f; be a one-parameter family of functions
f,: N - P. Then, for each x, fi(x) is a curve through f(x) and d/dt f(x) is a
vector at f(x). For all x this gives us a vector field over f, i.e., a mapping
{ : N — TP such that ¢ TP

@

N——P
F

commutes. We denote the set of vector fields over f by 0(f). For 1y : N - N
we denote 6(1y) by O(N); this consists of vector fields on N. Then, let’s consider
families Y., ¢, so that ¥, = 1p and ¢, = 1y. We compute the derivative

dfdt ( of o §)|i=0 = d/dt (W) |i=0 o (f > do) + Do o Df d/dt ¢if,—o =1 of + DfE
where n =d/dt (y,) (=o€ 0(P) and & =d/dt (d),|,=0) € O(N).

Thus, if we denote wf:60(P) — 6(f) by wf(n) =nof and tf : O(N) - 0(f) is
defined by tf(&) = Df(€),. then

DD, = tf + wf : 6(N) ®O(P) — ().

If Diff(N), Diff (P) and C*(N, P) were finite dimensional or even Banach
manifolds, then by the implicit function theorem, D®, being subjective would
be enough to conclude that @, is locally onto; and f, stable. However, these
are weaker forms of infinite-dimensional manifolds, Frechet manifolds; and
the implicit function theorem is not valid in general for them [13, III, - 1].
Nonetheless, we define
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Definition 1. f is infinitesimally stable if tf + wf : O(N) @ 6(P) — 6(f) is
surjective.

Then, Mather has still proven.

Theorem 1. For proper smooth mappings infinitesimal stability is equiva-
lent to C*®-stability.

Local Classification. We examine the infinitesimal condition locally. Let
0.(f) denote the germs of vector fields over f at x. Then, if f Yy =
= {xy,..., X}, the condition in terms of germs becomes

k k
_Z Oxl(N) @ey(P) o =Z1 Oxl(f)

This says that given germs of vector fields 7y, ..., T, over f at x;...X;, there
are germs of vector fields &4, ..., & at x4, ..., X, respectively and  at y so that

Ti=tf(€i)+noﬁxi) ISlSk.

This can be seen to imply

i) 0,(N) @ 0,(P)— 0.(f) being onto, each i.

ii) D, f( Ty,N) intersect transversally in T,P, (i.e., each D, f( T,;N ) is trans-
verse to the intersection of the others).

Definition 2. f f: N, x — P, y is a germ of a mapping at x, then f is infi-
nitesimally stable at x if 6.(N) @ 0,(P) — 6,(f) is onto. In this case, f is often
simply called a C®-stable map germ (it is stable in a well defined sense).

We next describe the possibilities for these types.

Let CN) denote the germs of real-valued C*-functions at x. This is
an algebra. Let .#, denote the ideal of germs vanishing at x. Then,
f:N,x — P,y induces f* :C(P) — C.«N) by f*(g) =g of. This is an algebra
homomorphism.

We define algebras for f:

Q(f) = CAN)/f*M,.CN)
" Qpe1(f) = CAN)[f*M,.CAN) + ME*2.

Then, the classification for C®-stable germs is given by the next theorem of
Mather [19,1V].

Theorem 2. Iffand g : N,x — P,y are C*-stable map germs then f and
g are C®-equivalent as germs iff Qp+1(f) =~ Qp+1(g)- Also, if n < p then Q(f) ~
~ Qp+1(f); similarly for g.
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To evaluate this algebra, we use the fact that if R[[x,,...,x]] is the
formal power series ring with maximal ideal .#, then

CAN)/ M= R[[xy,. ... xn]]/ M*

with the isomorphism given by sending a germ to its Taylor expansion of
deg k - 1 (by choosing a coordinate system about x with x corresponding to 0).

Examples:
1) Morse singularities.
y=xt+...+x2—xti1—...—x2

Q:(f) = R[[x1, ...y xa] ]/} + oo+ x2 —x2y — .. — xX2) + M3

2) Whitney singularities R? - R? fold: fix,, x;) = (x3, X,)
Qs(f) =~ R[[x1, x2]1/(x1, x2) ~ R[[x;]]/x?)

cusp: f(x1, X2) = (x3 + x2x1, X2)

Q3(f) = R[[x, xz]]/(x? + XXy, Xa) R[[xl]]/(xf).

These algebras are the analogues of the local ring of a variety in algebraic
geometry.

Transversality. To describe how the stability can be determined using
transversality, we make use of the k-jet bundle. We recall thatif f,g : N,x = P, y
are germs of mappings at x, then they are said to be k-equivalent if using
coordinate charts about x and y, the partial derivatives of order <k are equal.
This does not depend on the coordinate charts chosen. Equivalence classes
under k-equivalence are called k-jets. Then, the k-jet bundle JYN, P) consists
of all k-jets f: N,x = P, y, (x,y)€ N x Y. The projection n : JN,P) > N x P
given by f— (x, y), the source and target of f, makes JXN, P) a smooth fiber
bundle with fiber/

JXn, p) = {k-jets f:R",0 > R?,0}

(This can be thought of as the set of coefficients for k-th order Taylor expansions
of functions.)

For a mapping f:N — P, we have a lifting jf):N — JXN, P)
the k-jet extension of f, defined by /(f) (x) = k-jet of f at x. It makes the
diagram commute.
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JYN, P)
#0) 'n
N M NxP
Using the k-jet bundle we have [16]

Theorem 3. (Thom transversality). Let £ = JYN, P) be a submanifold
and let W= {fe C*(N, P), j(f) is transverse to T} then Wis a countable inter-
section of open dense subsets of C*(N, P).

As C®(N, P) is a Baire space, this set is dense. To relate stability and
transversality, we use two groups of germs of diffcomorphisms. First, we let

A = group of germs of diffeomorphisms R",0 — R", 0.

¥ = group of germs of difffomorphisms R?,0 — RP?,0.
Then, o/ = % x &. For germs f:R",0 > R?,0,# acts on f by composition
on the right; & acts by composition on the left, and &/ acts by

@ h) . f=gofch L

This in turn induces an action of .«/*, the k-jets of germs of difffomorphisms,
on J¥n, p).

As the orbits of .o/ are invariant under the structural group of JXN, P),
they form a subbundle.

The other group we need plays a key role in Mather’s theory of C*-stable
germs.

Let % be the group of germs of diffeomorphisms of P parametrized by
points of N. Specifically, % consists of germs of mappings

h:R" x RP,0 » R?,0

such that for each x € R", h(x, .) is a germ of a difftomorphism of R? fixing 0.
Then X = R . € (semi-direct product); and X acts via ((g,h).f)(x) =
= h(x,f > g~ '(x)). Geometrically o can be thought of as germs of diffeomor-
phisms of R” x R? which preserve the order of contact between the graphs
of germs of functions, thought of as germs of submanifolds, with R" x {0}
[13, VIL - 3]. Algebraically, there is the result of Mather [19, 111].

Proposition 4. The k-jets j*(f) and j(g) lie in the same A *-orbit iff Qi(f) =~
~ Qug)-
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Again X acts on J¥(n, p) and its orbits form subfiberbundles of J¥N, P).
These orbits are called contact classes.

A standard argument from differential geometry shows that since #™*
and «/* are Lie groups acting smoothly on J¥(n, p), the orbits are immersed
submanifolds. However, using an even stronger result from algebraic geometry,
we can conclude that since #™* and .o/* are algebraic groups acting algebraically
on J¥n, p), the orbits are actually (semi-algebraic) submanifolds [19, V].

A simple argument using the Thom transversality theorem shows that
for any stable mapping f and k > 0, /*(f) is transverse to all .«/* and X *-orbits
[34, - 3], [19, V]. However, transversality is only a local condition and we
saw earlier that infinitesimal stability also involves a relation between points
in f~'(y). This extra condition ii) is contained in Mather’s formulation of
multi-transversality. If we let N =N x N x...x N (k copies), then we
define N® = {(xy,...,x)) € N*| x; # x; if i # j}. The projection n : JYN, P) -
— N x P induces a product mapping =*:(J'(N, P)* -» N* x P*. We let
JUN, P) = ()" Y(N® x P*). Then, J'N, P) is a fiberbundle over N® x P*
with fiber (J'(n, p))*. There is also a lifting '(f) : N® — ,JY(N, P) given by
G'F)(x1, .., x1) = (f(x1), ... jf(xi)). We obtain .o/' orbits in J(N, P) by
letting Diff (N) x Diff (P) act on each component of ,j'f, and ,#" orbits by let-
ting "' act independently on each component. These are again submanifolds
of J'(N, P). More importantly, the Thom transversality theorem extends to
multitransversality [19, V].

Theorem 5. (Multi-transversality). If £ < JYN, P) is a submanifold, then
{fe C*(N, P) |k]'f is transverse to X} is a countable intersection of open dense
sets.

Lastly, we can give Mather’s characterization of stability using multi-
transversality.

Theorem 6. The following are equivalent for f : N — P (smooth, proper).
Let k>p, r=p+1.
i) f is stable;

ii) ,J*f is transverse to all ,o/*-orbits;
iii) j'f is transverse to all ., *-orbits.

To give a direct interpretation of multi-transversality, we suppose
7Yy ={x1, ... xi}. Suppose jf(x;) € Z;, a #'-orbit. Then ,j'f is multitrans-
verse at (xy,...x) iff i) jif is transverse to Z; at x; and ii) the D, f(T, Z{f))
are transverse 1 <i < k. (Z(f) = {xe N|jf(x)e Z}).
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This characterization of stability using multi-transversality proves
useful in 1) determining (n, p) where stable mappings are not dense, and also
in 2) determining whether C°-stable mappings are C*-stable. Also, the use
of multitransversality is a key idea in proving C°-stable mappings are dense
for all (n, p).

Normal Forms and Unfoldings. While theorem 2 classified stable map
germs, it left open the question of for which algebras Q are there C*-stable
germs f :R",0 - RP,0 with Q(f) ~ Q; and when there are, is there a normal
form for such an f? We describe Mather’s answer to this question.

If Q ~ Q(f) for some f, then Q is a local algebra with maximal ideal .#.
Then, Q/.#**' ~ Q\(f) which is a quotient algebra of R[[x, ..., x,]]/#k"".
Welet 0 = li;_n Q/#** !, Thisisa quotient algebra ofléi}@ R[[x1,. -, Xa]]/A*?

~ R[[xy,--.,xa]] = R[[xa]]-
We can, in fact, answer the question on the basis of Q. First, we write
such a quotient algebra in the form

Q = R[[x.]]/I with I c .4}

We let b =minimum number of generators of I, and denote i(0)=a-b.
To attempt to construct an unfolding of /Q\ we proceeed as follows: Suppose
n-p < i(@), so we can choose d generators for I (d=a+(p—-n)) ry,...,"a
Let M, = M,x Myx ...x M, (d copies), similarly for I¥. Also, we let L
be the submodule of .#® generated by

arl ard 2
a,—<a—l,,5x’l> lglﬁa.

Let V be the quotient module V=.#?/L + I°. Then, the condition we
need is that | = dimp V < p—d. If this is so, let v;e #® (1 <i <) be elements
whose projections form a basis for V. We write v; = (vy, ..., ig). Then, we
define a map germ f:R",0— R?,0 by

1
y,-=r,-+2t,-vﬁ ISlSd
j=1
yi=t d <. = D.
Then, by the results of Mather [19,1V] this is a C*-stable map germ.

Let’s first make some observations about this method. First, we compare
the space #(®/L + I with the normal space to #'(g) where g is defined by

g(xa) = (rl(xa)’ ey rd(xa))'
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Because germs are only defined locally, 64(g) can not only be thought
of as a Co(R“)-module, it is, in fact, free of rank d generated by 0/dy;, ..., 0/0ya.
If we combine the homomorphism Cy(R?) — R[[x,]] obtained by sending a
germ to its Taylor series. Then, the composition

Mbo(g) = MCo(R) — M
sends tg(#0o(R%) + g*.# 00(g) to M ,L + I and induces an isomorphism
M 00(9)/(tg(M Bo(R%) + g* M o(g)) = M| ML +1?.

The vector space on the left is exactly the normal space to " .g, [19, III].
The germs for which this has finite dimension are ¢ '-finitely determined,
i.e., a finite jet the germ actually determines its C*-type up to J# -equivalence.
Then, #®/L + 1 is obtained from #®/.4,L +1® by dividing by the
vector space by 0y,..., 0, This subspace < 04,...,0, > is the tangent space
to the image of the mapping x, — germ of g at x,. If we define

g(xa’ t) = (gl(xa’ t)’ o) gd(xa’ t))

where

1
gk ) =ri + 2 Livji,
ji=1

then the image of the mapping t — §(x, t) has a tangent space = <vy, ..., v;>.
Thus, the mapping (X,, t) = germ of g (as a function of only x,) at (x., t) gives
a normal section to ¢ . g. This § is called a ) -versal deformation of g (or I).
See, for example, [24]. Thus, the stable map germ f is the “graph” of the
versal deformation §: f(x, t) = (g(x, t), t). Usually f is called a universal unfol-
ding of g.

The third remark about the unfolding is the point of view taken by Mather
[21, - 13]. An unfolding f of g can be viewed as a diagram

I

R" — R?

J i

Re ) Rd

where by the definition of f, f is transverse to i, and the diagram is a fiber
product. Thus, we have

Definition 3. An unfolding of a map germ g : U,x - V,y is a diagram
of map germs
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/

U’, xr _i» Vl’y

J i

Ux —V,
g y

where G is C®-stable, i and j are germs of immersions and the square is formed
from the fiber product of i and G, which are transverse.

Remark. For the case n < p, we must have 0 ~ Q and dimgQ < oo.

First example. For the algebra Q = R[[x]]/(x?)
1) we can obtain a stable germ R' — R! using 1-generator x? so L = (x) and
V=(0). Thus y = x? is a C®-stable germ.
2) We can obtain a stable germ R? — R? using 1-generator x2 so again V = (0)
and we obtain y; = x%, y, = t,. This is the fold of Whitney.
3) We can obtain a germ R? —» R3 by using 2-generators (x2,0); L = (x) x (0)
and dimg V = 1 generated by (0, x). Thus, the equations are y, = x?%, y, = t;Xx,
y3 = t;. This is the Whitney umbrella.

Second example. R[[x]]/(x®). We obtain a map R? — R? using 1-gene-
rator x> so L =(x?), dimgV = 1 generated by x so y; = x> +t;x, y2 =t;.
This is a cusp.

Third example. R[[x,]]/(f). If we let A =(0f/0xy,...,0f/0x,), then we
can compare the unfolding of f from the point of view of catastrophy theory.
For catastrophy theory, a basis {v;,..., v} is chosen for .#,/A. Then, the

k

universal unfolding is given by f + Z tiv;. For the theory of mappings we
consider a basis for #,/A + (f;,=l{w1, ...,w}, and form (x,¢t)+—
- (f+ i tw;, t). In particular, when f € A, for example, when f is homo-
geneousl;; in the case of elementary catastrophies, the stable map germ is

just the graph of the unfolding in the sense of catastrophy theory. Thus from
x3 +y* we obtain the hyperbolic umbilic

f(x) Y, t) = x3 + y3 + tixy + t2x + t3y,
and the stable germ

ﬂx, Y, t) = (.f(x’ Y, t)a tly t2a t3)-
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2. Moduli and the Nice Dimensions.

As stable mappings must be transverse to all J#*-orbits for all k, then
by exhibiting an open set of mappings which are not transverse to all orbits
we will have shown that stable mappings are not dense. This behavior is due
to the presence of moduli.

Definition ‘4. We say that moduli occurs near-by a k-jet fe JXn, p) if
any neighborhood of f in J(n, p) intersects an uncontable number of J™*-
orbits.

To see how moduli can prevent transversality, consider the case where
the lines y = constant in the xy plane represent orbits and the parabola y = x?
the image under jet-extension. Then, the parabola is not transverse at its
minimum and any small perturbation of it will still have a minimum and not
be transverse there. This example can be made precise whenever there is a
manifold of codimension < n in some J¥(n, p) which consists of orbits which
form moduli [19, V].

The basic fact used in determining the structure of moduli is:

Proposition 7. Let G be an algebraic group acting algebraically on an
algebraic set V(possibly affine). Then, there is a minimal closed algebraic subset
I1 invariant under the action of G, such that V\II contains only finitely many
orbits.

This is applied to #™* acting on Jn,p) to obtain IT(n, p) = JX(n, p).
As the projection my : J%n, p) > J'(n, p), | < k, commutes with the action
of A", we have my'(IT'(n, p)) = IT(n, p). In fact, there is a k such that for [ >k
i {(IT4n, p) = ITX(n, p); we let T(n, p) = [1%(n, p) and a(n, p) = codim IT*(n, p)
(o(n, p) = oo if TT¥ = ¢). Then, Mather shows [19, V]

Theorem 8. Theset of stable mappings is dense in Cp(N, P) iff n < a(n, p).

One part of this theorem is easy to see, for the set of functions which
miss TI(N, P) is the countable intersection of open, dense sets. Similarly, the
set of functions which are multitransverse' to the finite number of orbits in
JP(N, P)\IT”(N, P) is also a countable intersection of open dense sets. Thus,
so is the intersection of these two sets, and this intersection consists of C®-
stable mappings by theorem 6.

The set of (n, p) for which n < a(n, p) yields the range of dimensions
known as the nice dimensions. The computation of a(n, p) is carried out by
decomposing Il(n, p) using the Z, singularity types,
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%, = {feJ'(n, p)|dimker Df = r}.

We let ¥ = n; !(Z,), and apply the proposition (slightly modified for Zariski
open subsets) to obtain [Tn, p). As before there is a k' such that [T, '(T¢

(n, p)) =14 n, p) 1 > k'. We denote it by I1,(n, p). Then, I(n, p) = U CIIL(n, p).
r=1

(Cl denotes closure in J¥(n, p)).

We now describe the case n <p, where by good fortune most I,(n, p)
can be described using the second intrinsic derivative. If f:R" 0 — R?,0
is a map germ of type X, with K =ker Dof and C = coker D,f, then
D3f:S*R" —» R? (S?R" denotes the symmetric product) induces the second
intrinsic derivative D3f:S?K — C (this changes linearly with a change of
coordinates). Then, f is of Z,, ;-type if dim ker D3f = j (where D3f is con-
sidered as a linear map). The importance of D3f for the X 2-orbits is that

Q:(f) =~ R ®K* @ S’K*/Im(D3 f)*
If we let Z, ;) = |J Z, () then a calculation shows that moduli are dense
j>i

in the relevant Z, ; r >4, i <2 and X3 (3. In fact, I,(n,p) =Z, ;) r > 4, and
I5(n, p) © 3, (3 Additional moduli must be computed to completely de-
termine Il;(n, p) and to determine II,(n, p). The computation yields

Theorem 9. The dimensions (n, p) with n < p belong to the nice dimen-
sions iff
e {6(p—n)+9 0<p-n<3
6(p—n)+8 4<p-n

A similar type of computation works for n > p. When these two are com-
bined we obtain the picture for the nice dimensions.

P Nice
dimensions
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For a rough picture of the structure of Il(n, p) for n < p, we look at the
Zi, ')-tprS.

iA /,

We have that the only allowable region is below the dotted line
as j < (*3?). Then, the region C consists of moduli and C < Il(n, p); for i >4,
[Tdn, p) is the region of C lying over i. The complement of [ ](n, p) lies in the inte-
rior of A U B(including the i-axis). Next, to describe those algebra types within
the region 4 U B which occur in the nice dimensions we use the fact that if
5 =dimgQ < ® and X, denotes the ¥ -orbit corresponding to Q then

codim £, = (6-1)(p—n) +7y

(where 8 is as above and y is a number computable from Q [19, VI]). Here
codim X, refers to codimension of the % ™*-orbit for k > p + 1. Then, for Q
to occur as an algebra in the nice dimensions for some (n, p), n < p, we must
have

9 0<p-n<3

n<6(p—n)+{8 4<p-n

and

n>@0-1)(p—n)+1y.

These two inequilities together determine whether Q can occur, and if so,
for which (n, p).

The surprising result when actually determining these algebras is the
following [10]

Theorem 10. In the complement of Il(n, p) n < p, there are a (countably)
infinite number of distinct algebra types. However, in the nice dimensions n <p,
there are only 76 algebra types.
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The number itself is not as surprising as the fact that it is finite because
an analysis of the low dimensions indicates that as n and p increase so do the
number of singularity-types. However, in the nice dimensions n < p, no matter
how large n and p become there are always at most 76 distinct germ types
which can occur for stable mappings f : N — P (in fact, for any particular
(n, p) the entire 76 do not all occur). Also, this is easily seen to be false for
n > p, by considering the Morse singularities f:R",0— R, 0. They are
determined by the | index | of the quadratic form Dj f. As n — o, the number
of different possible | index | = [n/p] + 1 - co. However, except for this pheno-
mena of adding quadratic terms, there are also only a finite number of pos-
sibilities for n > p.

We also see that from among the types in the complement of Il(n, p),
those that occur in the nice dimensions differ from the other types only in
that their codimensions satisfy an inequality. We would expect any other
general properties to be equally shared by all types in the complement of
I(n, p).

Definition 5. We say that a C*-stable germ type f:R",0— RP,0 is
of simple type if f belongs to the complement of IT(n, p) (i.e., iff’f €
€ J¥n, p)\IT¥(n, p)). A finite dimensional algebra Q is of simple type if Q ~ Q(f)
for some f of simple type.

Furthermore, if we consider the moduli sets IT,(n, p) in X, then any
f:R"0— RP, 0 with j'feX, but f in the complement of [];(n, p) may now
have moduli occurring nearby, ‘but it will occur in a X-type with j <r. For
these we define.

Definition 6. A C>®-stable germ type f:R"0— R?,0 is of discrete
algebra type if f is of Z,-type and belongs to the complement of IT(n, p). An
algebra Q is of discrete algebra type if Q ~ Q(f) for f of discrete algebra type.

For C®-stable map germs f we can describe these two conditions in
terms of the 7" !-orbits.

A simple type will have a neighborhood in J?*!(n, p) which intersects
only finitely many J¢?*!-orbits (this is analogous to Arnold’s definition for
functions [1]). A discrete algebra type will have a neighborhood in J”**(n, p)
which intersects only finitely many J¢"?* !-orbits of the same Z,-type. Algebras
of discrete algebra type of Z,-type can be described as the largest class of
algebras with r generators, closed under deformations, which can be clas-
sified without using moduli.
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The pleasant fact about discrete algebra types is that topological pro-
perties we will describe for C®-stable map germs in the nice dimensions
turn out, in fact, to be also valid for simple types and in many cases for dis-
crete algebra types.

Topological Stability. The rich structure of C®-stable mappings contrasts
with the non-density outside of the nice dimensions. As mentioned earlier,
Thom and Mather overcame this difficulty by replacing C®-stability by
C%-stability. Here we describe the principal steps in the proof.

In the nice dimensions, the multi-transversality characterization of
C>-stability of a mapping f : N — P is equivalent to j*f missing ITN, P)

~and f being multi-transverse to the simple orbits. Then, density follows by

the multitransversality theorem. For C-stability, the multi-transverse charac-
terization is also used, except that ITXN, P) is replaced by Zyp <= J(N, P)
and the simple orbits are replaced by a decomposition of J'(N, P)\Zy p into
manifolds which form a Whitney stratification. Again codim Xy p > dim N,
density follows by the multi-transversality theorem.

The construction of Xy p, the decomposition of J(N, P)\Zyp, and the
verification that mappings missing Xy p and multi-transverse to the stratifi-
cation are C°-stable depende upon a number of key ideas. The principal
ones are:

1) stratifications satisfying Whitney’s conditions a) and b) a generaliza-
tion of condition a) for mappings due to Thom.

2) a result of Lojasiewicz which guarantees the existence of a Whitney
stratification of semi-analytic sets;

3) Thom’s isotopy theorems,

4) Mather’s universal unfolding of germs and his generalization of this
to a global unfolding of mappings.

We briefly describe these ideas and the part each of the plays in the
(°-stability theorem.

First of all, we state the whitney conditions for submanifolds M, N = R
with xe M:

Definition 7.(1)M, N satisfies Whitney’s condition a) at x if for any se-

quence of points x;e N such that x; — x and T,; N converges in the Grassman-
nian of n-planes in R* say lim T, N =V, then V > T,M.

2) M, N satisfies Whitney’s condition b) at x if for sequences {x;} € N,
{yi} e M with x; > x, y; > x. We consider the sequence of lines {Xiy;} in
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RP*~! and suppose that it converges to a line | and as before T, N converges
in the Grassmannian to ¥, then

L V.

These conditions are invariant under diffeomorphisms so they can,
in fact, be defined for submanifolds of a manifold. Also, condition b) implies
condition a).

These Whitney conditions are important for determining the local struc-
ture of stratifications.

Definition 8. A Whitney stratification of a subset A < X (a C!-manifold)
is a decomposition of A into a union of disjoint submanifolds {N,} (at least
C!) such that

1) each N, is locally closed;

2) {N,} is locally finite;

3) if CN;) " N, # ¢ then N, = CUN,);

4) if N, = C(N,) then N,, N, satisfy conditions b) (and hence a)) at
any point of N,. (Mather prefets to call this a prestratification and to work
with the associated Whitney stratification formed by taking at each point
x € A, the set germ at x of the stratum containing x.)

Because of the Whitney conditions, Whitney stratifications have two
fundamental properties:

1) For any two sufficiently close points in the same strata, the stratification
is topologically the same in neighborhoods of the points [21, - 8].

2) In a neighborhood of a point, the stratification is homeomorphic to
a cone on a stratified set [21, - 8].

This controls quite strongly the structure of Whitney stratifications.

Next, Lojasiewicz proved a result which implies that there is a Whitney
stratification of a strongly analytic submanifold X of a real analytic manifold
M. By this we mean that X is a analytic submanifold and a semi-analytic
set. Also, X is semi-analytic if at each point x e CI(X), X is defined locally
at x by a finite number of equations fi(x) = 0, and inequalities f{x) > 0, fi(x)>0
with the f(x) real analytic.

The condition for CI(X) instead of X is to avoid the situation where

X={(x,y):y<sin%,x>0, and y <0, x <0}

As X is an open subset of R?, it is analytic; however, at 0 it is not locally
semi-analytic. Then, Lojasiewicz shows [21, - 4]
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Theorem 11. If X,Y< M are strongly analytic submanifolds with
Y = Cl(x)\X, then the set of points x€ Y where Y, X fail to satisfy condition
a) (respectively b)) is a semi-anlytic subset of M and nowhere dense in Y.

This theorem can be used to construct a Whitney stratification of a semi-
-analytic set Y: By induction on k, construct a semi-analytic subset Ny c Y
of codimensions k consisting of points where N, _ is not locally a submanifold
of codimension k or (Nj_,, Ny—;) does not satisfy condition b). Then

n=1
Y= ) (Ni\Ni+1) where n =dim Y with N;_;\N; analytic and the {N;_,\N;}

i=0
satisfy condition b).

Mather modifies this consctruction to obtain the following stratification

of the jet-space [21- 9].

Theorem 12. For each pair of positive integers (n,p) there exists an
integer k, a closed semi-algebraic subset T < J¥(n, p) invariant under s#* and a
Whitney stratification & of J¥n, p\Z, also invariant under /* such that

1) codim £ > n;

2) & is a stratification of JX(n, p)\T with only finitely many strata, each
of which is semi-algebraic;

3) Let f : N — P be a proper smooth mapping. Let Zy p denote the subfiber
bundle of JXN, P) formed from X, and ¥ p the Whitney stratification of
JXN, P\En p formed from F. Then, if f satisfies ff(N) " Zyp=¢ and j*f
is multi-transverse to the stratification ¥y p then f is topologically stable.

Then the multi-transversality theorem implies that the set of topologically
stable mappings is (open) dense in C*(N, P).

The proof of 3) of the theorem uses a global version of the local unfolding
described earlier. Given an f : N — P, which misses Xy p, with N compact,
there is a fiber diagram

v p
i i
NP
with F C®-stable and j and i embeddings. This is a global unfolding of f.

If a mapping g : N — P is sufficiently near f, then a homotopy f; from f to g
factors through F.
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N — P
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with the diagram a fiber diagram for each t. Furthermore, the f; can be chosen
to miss Xy p and be multi-transverse to & for all ¢. Then, this turns out to
be equivalent to j, being transverse to a stratification of P’ defined from Theorem
12. Then, it is enough to use Thom’s second isotopy theorem. This applies to
mappings (at least C?)

el Bl i

with A; = X; and A4, =X, closed subsets with Whitney stratifications 2,
and 2,. Suppose that rank D(f |N,) is constant on each stratum N,e 2;.
Then, we say that f satisfies Thom’s condition (a,) if for each pair of strata
(N, M) with xe M and x;e N so that x; > x and ker D,(f| N) converge in
an appropriate Grassmannian to V, then D,(f| M) < V. Then, we can state

Theorem 13. ( Thom’s second isotopy theorem). Suppose the mappings
X, —b X, —= Y are as above and f satisfies Thom’s condition (ay). Also,
suppose f maps each stratum of P, submersively to a stratum of #,, and each
stratum of 2, is mapped submersively onto Y by n. Also, supposef| Ay : A1 — A,
and n| Ay : A, > Y are proper. Then f is locally trivial over Y, i.., for ye Y
there is a neighborhood U < Y and a mapping g : By — B, and homeomorphisms
UxB; 3 (fon) 'U=A4,|U and U x B, > n~}(U) = A, | U so that the fol-
lowing diagram commutes

A |U ﬁ—(—]»A2|U AR

~

~ 1

0

leU“&l—»Bsz—n—»U

Then the theorem follows using the Thom isotopy theorem and the connected-
ness of the interval.
Because of the existential nature of this proof almost nothing is known
about the local structure of these topologically stable mappings and this
provides the big unanswered question for topological stability. However, the
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properties of the construction of the stratification do allow us to state several
properties.

1) If £,g R",0 - R?,0 are germs of topologically stable mappings in the
preceding sense and j*f-and j*g are in the same connected component of a
strata of &, then f and g are topologically equivalent. Because there are only
a finite number of components, there are only a finite number of germ types.

2) If f:N — P is multi-transverse to & (and j*f(N) n £ = ¢), then so
is fx1:NxR-PxR (ie., the property is preserved under suspension).

3) The fact that . is invariant under -%* implies that C*-stable mappings
are also multi-transverse to &.

3. C%-Classification of C”-Stable Mappings — Local Problem.

We begin to examine here the first of three questions asked earlier about
the relation between the C“-stable and C°-stable mappings. As might be
expected from our description of stable mappings, this question has both
a local form and a global one. We begin with the local problem which can be
rephrased: Are there distinct C*-stable map germs in the nice dimensions
which are topologically equivalent? If so, then, in fact, the C*-classification
of stable germs would have repetitions from the topological point of view.
We will restrict ourselves to the case of n < p.

An optimistic approach to this problem would be to seek enough to-
pological invariants for C*-stable map germs to distinguish between any
two of them in the nice dimensions. Preferably these invariants should depend
on the associated algebra. This is the approach we will take. We begin by
looking at one quite natural topological invariant of a map, namely, its fibers.

Real Multiplicity. As an example of this we recall the results of Milnor
[28,5.3] for the fiber of a complex algebraic map f :C"*' — C with an iso-
lated singularity at 0. He has shown that for z, sufficiently close 0 C, and
a ball B, of radius ¢ sufficiently small about 0e C"*!, that the fiber

on =f_1(20) m BE

only has reduced homology in the middle dimension n and that H,(F,,) =Z*
where u, the Milnor number, can be computed as

. a a
u :dlmRC[ZbZz,--"z"]/<£""’_5;f_>‘
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Question. Is there any analogous result for map germs that we are now
considering?

Two principal differences are:
1) Our mappings are real mappings f : R"0 - R?, 0, which tend to behave
badly.
2) n < p so stable map germs will have fibers consisting of a finite number
of points.

A few examples with their associated algebras indicate that the fibers
can vary considerably. However, there is equality between the maximum
fiber and d(f) = dimgQ(f). This leads us to define

cusp: R[[x]]/(x*) Sold: R[[x]]/(x?

Whitney umbrella:
RL[x]1/(x*)

Definition 9. The real multiplicty of a map germ f :R",0 — RP,0 is de-
fined as m(f) = {max k|given a neighborhood VeO0 in R", there is a y € R?
so that |f~'(y) n V| =k}. (| S| = cardinality of a set S.)

Then, a basic result used in the topological analysis of stable germs is
a theorem proven with Andre Galligo [7].

Theorem 14. If f : R",0 - R?,0 is a stable map germ of Z,-type or of
discrete algebra type, then

m(f) = &(f).

Remark. In the case n =p, there is another approach of Levine and
Eisenbud, which takes into account whether at points f~!(y), f preserves
or reverses orientation. Their method does not even require that f be stable

[12], [17].

Ry
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We give a brief idea of the proof. There are three steps:

1) It is shown that for any two C®-stable germs f; : R",0 - RPi,0i=1,2
with Q(f1) =~ Q(f2) that m(f;) = m(f3). Thus, m(f) is independent of f and
only depends on Q(f). (This much is true without any restriction on Q(f).)

2) Next, because for a germ f with dimgQ(f) < oo, it is known m(f) <4(f)
[12, VIL, - 2). It is sufficient to find a not necessarily stable g : R™, 0 — R?, 0
with Q(g) ~ O and m(g) > é(g). From this g an appropriate f can be cons-
tructed by unfolding.

3) Lastly, to find such a g we use ideas in the theory of deformations of
ideals. Let Q ~ R[[x,]]/I with I = .#Z. If we choose generators ry,...,r,
for I, then a deformation of I is a mapping R : R**! —» R® given by R(x, t) =
=(Ry(x,t),..., Ry(x, t)) such that Ryx,0) =r{x). This induces a mapping
R(x,t) = (R(x, 1), t) : R**! - R®*!. This is an unfolding, although it may not
be universal. Also, O(R) ~ Q. We construct such an R so that m(R) > &(R) = §(Q).

It is in the construction of R that we are limited by the specific types.
Let us consider a simple example to illustrate how R is constructed.

Let Q ~ R[[x, y]]/(x*> +y3, xy). We construct a diagram of (x? + y*, xy)
in the first quadrant of the xy-plane as follows: If fe (x> + y3, xy), we choose
a point (a, b) for f. This (a, b) is determined by the smallest non-zero term.
cx®y’ of f, with respect to the reverse lexicographical ordering of (a b) (so
that (a, b) < (a, b') if b < b’ or b = b’ and a < a'). If we form the set of all such
points for all fe(x? + y3, xy) we obtain a set which is called the “stairs” of
the ideal (x* + y?, xy). This was first used by Hironaka [14]. The stairs of a
typical ideal has the form

§\\\\\\\

7

In our case we have for x? + y3, (2,0); for xy, (1, 1); and for y*, (0, 4). These
determine the stairs for I = (x? + y3, xy).
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We notice that the number of points in the complement of the stairs contains
5 points and = dimgQ. We will construct an R which has one point for each
such point in the complement. Then, m(R) > 5 as desired. Consider

Ri=(x—s1)(x=5)+(—1t2) y—t3) (y—ta)

Ry =(y—t1) (x-s1)

Ry=(-t) (v-1t2) (y—t3) (y—ta)
(R, R;, R3) is a deformation of (x? + y3, xy, y*) = 1. We count the solutions
to R; =0:

If y =t, is sufficiently small, R; will still have two solutions, x = s}, 52;

If x =s, then there are solutions y =t,,1ts,t,. These give five points
for distinct t;.

For the case of I < R[[xy,...,x,]], n> 2, only I with special stairs
will have the approriate deformations [7]. We will return to discuss this
situation after we describe several additional invariants.

X, T - types. Next we see how the preceding result can be used to obtain
additional invariants. We gegin by analyzing the singularity structures near
points of type Z; X, ;. The result which we can state is

Theorem 15 [8]. For C*-stable map germs f :R",0 — RF,0, the Z-type
is a topological invariant; moreover, if p > n + (5), then the Z;-type is also
a topological invariant.

The first part of this was also proven by May in [25].

We describe the idea of the proof for Z;; the case for Z; ; is similar. The
basic fact we use is that for a stable map germ f, Z{f) U Z;_ (/) is not locally
a topological manifold near points of {f) when i > 1 [11].
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Then the idea is to inductively “peel away” the Z-types by the topological
procedure of removing at the i-th step all remaining points where the remaining
singularity set is locally a topological manifold. This will work once we have
removed Zo(f). To do this topologically, we note that at a point x € Zq(f),
f is locally an immersion so m(f,) = 1. For points x e Z,(f), m(f,)) =
= 0(f(x)) > 1. Thus, we can remove Z, by removing those x where m(f) =1.
The proof for X, (; is similar, working in X; and using induction on j again
beginning with m(f) to remove Z; ).

Now we seem to have two distinct types of topological invariants, 6 and
%, X, The Z; ;-types are defined by properties of Df, D?f, while J has a direct
geometric interpretation. The next step is to see that, in fact, the invariants
fit into a common framework.

Let f:R", 0 — RP?,0 be of I, ;-type with Q(f) ~ Q, and maximal ideal
#. Then we have

dimpQ/#?* =1 +i
and
dimgQ/.#>3 =1 +i +j.
This suggests using the Hilbert-Samuel function of the algebra.
Hilbert-Samuel Function. We recall that if Q is a local algebra with maximal
ideal .# then the Hilbert-Samuel function of Q is defined by
B(n) = dimgQ/.#4"** n > 0.

If dimgQ = é < oo then h(k) = 6, k > 0. Thus the results so far can be res-
tated as saying b(1), (2), and (k) k > O are topological invariants. This
can, in fact, be extended to

Theorem 16 [8]. For stable map germs f :R", 0 — RP,0 of discrete alge-
bra type, the Hilbert-Samuel function of the associated algebra is a topological
invariant.

Let us first see that this can be restated using the truncated algebras

Q). In fact,

Ol f) = QUf)/ M

Thus, if 6(f) = dimgQu(f), then k(k) = d,, k = 0. An equivalent version
of the theorem is.
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Theorem 17. For stable map germs f of discrete algebra type, the 6i(f),
k > 0 are topological invariants.

First, let us make several remarks about these theorems. Certainly one
of the key questions concerns the limitations imposed on the algebra types.

Question. To what extent should we hope to extend these results in the
regions where moduli occur?

The first step would be to extend theorem 14 relating m(f) = 6(f). Unfor-
tunately, we already have here a serious problem due to a result of Iarrobino
[15]. This result implies: that for k > 2, there are ideals I = C[[x,]] such
that any (complex) deformation of I, R must satisfy

m(R) < & (I) = dimgC[[x:]]/1.

Furthermore, I can be chosen to have homogeneous polynomials as generators.
For k =3, there are such I with 6 = 102; for k = 4, I witho = 24;k =5,
I with § = 26. Moreover, for k > 6, “most” ideals of type Z 4 and for k > 8
“most” ideals of type X, (3, satisfy Iarrobino’s result. Thus this comes very
close to describing the complement of the discrete algebra for k > 6; and
without doubt Iarrobino’s result is not the strongest possible!
This leads to three fundamental questions about Iarrobino’s result.
1) As m(f) only depends on Q(f) for stable f, how can it be computed
from Q when m(f) < 8(f)?
2) The difficulty already occurs for complex ideals. Is it then true that
if for a stable polynomial germ f : R",0 — R?, 0 we define the complexification
fc :C" 0= CP 0, then

m(f) = m(fc)?

(It would be interesting to even know this for n = p.)

3) Iarrobino’s result is a purely existential result. Give a specific example
of such an L
Because of larrobino’s result, the best place to begin extending the results
for the Hilbert-Samuel function is for X,-types. Here work has only just
begun, but preliminary work with Andre Galligo using the stratification of
Briangon [2] suggests that at least the first k + 1 terms of h( ) will be topo-
logical invariants when p — n = k.

In fact, it would seem that discrete invariants like the Hilbert-Samuel
function are exactly the type which would be useful in analyzing C°-stable
mappings because they are not sensitive to moduli.
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To see how the theorem is proven, we look at a stable germ f : R”,0 — R?,0
as a deformation of either algebra Q(f), or ideal I(f) by x = Q(f(;)), or I(f(,)),
for x e R. Then, the idea is to inductively use information about the Q or I
occurring in the deformation to derive information about Q(f).

There are several facts needed to allow this inductive process to work.
First, we have that for any fixed k, f(k) is upper semi-continuous as a function
of Q(fi»)- Secondly, we look at what the theorem says for particular Z; ;-
-types. For Z;, and X;,, the H-S function has the values 1, i+1,
i+2,...,0,0,.... Thus, it determined by the Z;;-type and 4. Thus, this
leaves the X, (5), Z, 3y and Zj ;) types.

These are analyzed by using the inductive process on the Z;; types.
In fact, it is not necessary to analyze all information about the b( ) for Q.y
for instance, information about &(Qx), H(3), and several other specific h( )
is enough to determine f( ) for these three cases.

Complex Algebra Type. Returning to the problem of the topological
classification, we see that the Hilbert-Samuel function fails to distinguish
between many algebra types. However, it is possible to improve upon the
topological classification with the next result.

Theorem 18 [9]. For f:R",0 > R?,0 which are C®-stable map germs
of simple type, Q(f) ®grC is a topological invariant.

The restriction to complex algebra type is necessary because the inva-
riants do no distinguish between real algebra types which differ only by a
sign in a generator; for example, R[[x, y]]/(x* + y*,xy) and R[[x, y]]/x*-y*, xy).
Very likely a more thorough analysis of the singularity sets or a modified
version of the invariant of Levine and Eisenbud will allow us to distinguish
the few remaining cases.

Similarly, the restriction to simple types is again due more to the lack
of analysis of certain singularity types, than the expectation that the theorem
is false for some discrete algebra type. In fact, a most natural conjecture would be

Conjecture. Q(f) is a topological invariant for C*-stable map germs of
discrete algebra type. This would then say that in the region where moduli are
not needed to classify algebra types, our most optimistic expectation of C*-type
being equivalent to C°-type would be correct.

For the proof of theorem, we have to look more closely at the deformation
x = Q(f») in terms of complex algebra types. For this we use
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Definition 10. If /' :R" 0 is a C* stable germ, then the algebra type Q
is a near-by algebra type if for any neighborhood of 0, U = R", there is an

xe U with Q(f) ~ Q.

This is analogous to the idea of adjacency used for functions [29].

It is easy to see that Q, being near-by Q(f) corresponds to A#7*!. f
being in the closure of #7*'- Q; (¥?*" orbit with Q,,; = Q,). Then, one
way to verify the theorem would be to inductively analyze the structure of
the sets where given algebra types occur in the deformation. In fact, there
is a very simple way to obtain a good deai of information about near-by
algebra types Q; when 6(Q;) = §(Q(f)).

If we define an invariant A =y—6 (6 and y defined earlier), then a codi-
mension argument gives:

Proposition 19:1f'Q, is near-by Q, with 6(Q1) = (Q,) then A(Q4) < AQ»).

This invariant A can be used to destinguish between types in a series
of deformations.

Type A
2o (xz i yk, xyz) 1
23,(1) (x2 iZk’yz izk,x)’,xz’yz) 2
2 Bah? b 2 e 8) 1

1'})2 x2 izkayz’xzayz) 2
bd; 45 Y a9 3

(xh tomoennzia® o ) 2

lel (x? + yz, xy, xz + y*, 2%) 3
(06® - yas %9, %2, 2% T ) 4

(xy, xz, yz, 22 + )%, x3) 3

1e2 (xy 324505 yz,.2%, %°) 4
(s X2 B B Je s o 5) 5

We illustrate this with an example. In the diagram the types 1y2, lel,
and lel, and 1€2 are all Z; (5, types with the same Hilbert-Samuel function.
We suppose that preliminary analysis has revealed
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1) that the four groups are topologically distinct;

2) that the ¥, ; and X; ;) types indicated are topological invariants; and

3) aline indicates there is a deformation from the lower to the upper type.

With this information and the A invariant we can conclude that all the
types are topologically distinct. We illustrate this for those of type 1y2.

For example, for type 1y2, the type with A =3 is topologically distinct
from the other two because it has the X; ;-type near-by. However, by the
A-invariant neither of the other two can have this one near-by. Similarly the
one with the 4 =2 has the £, ;-type near-by while the one with A =1 cannot.
As the Z,; and X; (,-types are topological invariants, the three 192 types
are topologically distinct. Then we use the 1y2 to distinguish between the
lel, and the lel, for the 1e2; and conclude that they are all topologically
distinct.

This type of argument is exactly what is used to refine the results for
Hilbert-Samuel functions, to obtain the theorem.

The preceding discussion might be summarized by saying that there
are enough easily assessible invariants, d, h( ), A, near-by algebray types,
etc., to distinguish topologically between complex algebra types (and pro-
bably real algebra types). However, these do not provide a systematic theory
to explain the singularity structures but rather only parts of the structure.
A general question then is:

Question: Is there a natural model do describe the bifurcation theory
of singularity or algebra types?

For instance, can we find models of the bifurcation sets (or their comple-
ments) similar to those obtained for the bifurcation of functions by Arnold,
Brieskorn, and Looijenga [1], [4], [18]? Perhaps this question will be best
answered for complex stable map germs f : C" — C?, while in the real case,
we must settle for the usual partial answers.

4. Global Topological-Classification of C*-stable Mappings.

We examine what conclusions we can make for global topological pro-
perties in the nice dimensions (n < p) from the local topological classification.
Suppose that f': N — P is a stable mapping (n < p). Then we have a stra-
tification of N by complex algebra-types. Let Z5(f) = {x € N | Q(fi,)®&C ~ 0}
for some complex algebra Q. Then, the local classification can be rephrased
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by saying that if f and g are C%-equivalent (f, g C®-stable mappings), where
f =1 ogo- ¢, then ¢ preserves the stratification of N given by {Z5(f)}, {Zo(9)}
and Y preserves the images in P of these stratifications.

This, in turn, yields a simple consequence for the induced map on coho-
mology ¢*. Since ¢ preserves g, and hence thein closures g, ¢* preserves
the dual cohomology classes to these singular submanifolds. These are the
Thom polynomials for the singularity sets as described in Levine’s lectures
[17]. If Po(f) denotes the Thom polynomial for Zy(f), then we can summarize
this with

Corollary 20. Iff,g : N — P are C*-stable mappings in the nice dimensions
n <p; and they are C*-equivalent by (Y, ¢) as above, then ¢*Py(g) = Py(f)

for all simple complex algebra types Q.

Certainly we cannot expect the condition for {Z5} to be sufficient, so at
this point we suppose that the conjecture of the topological invariance of
Q(f) is established for simple algebra types. Then, if /' : N — P is stable, we
have the multi-stratification of N given by j#*1(f) !(Z,), r>p + 1, where
the X, are multi-o#?*! orbits in ,j?*!(N, P). Then, as Q(fix) = Q@p+1(fix)
are topological invariants, so are the multi-orbits. Thus any C°-equivalence

N—f—+P

:ng
yd5p

U~

for f, g stable must in fact preserve the multi-stratification in N and its image
in P. The basic global problem then is

Problem: Given a topological equivalence as above, can it be replaced
by a C*-equivalence?

Unfortunately the general answer to this is no. We describe a general
procedure for constructing counterexamples to it. For this we quote a theorem
of Mazur [27], [30] from geometric topology.

Theorem 21. (Mazur) Let M, and M, be smooth manifolds of dimension
n such that there is a homotopy equivalence f : M - M,. If f*TM, and TM,
are stably equivalent as vector bundles (i.e., there is a trivial bundle 0' over
M, such that TM; @ 0' —» f*TM, ©0") then there is a diffeomorphism
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F:M; x R® > M, x R (sufficiently large N) such that F is homotopic to
£x 1%,

We choose a homeomorphism f : M; - M, between smooth manifolds
M, M,, which are not diffeomorphic, such that f*TM, is stably equivalent
to TM,. For example, we can choose M, and M, to be a Brieskorn sphere
and a regular sphere, both of which are stably parallelizable. Let N be the
smallest integer such that there is a difffomorphism

¢ :M; x RN > M, x RV,

We define two proper C®-stable mappings gi,g, : M; x RY > M; x RY
which are C°-equivalent but C*-distinct. Let k : R — R" be the suspension
of the mapping y=x2 given by k(x,...,xy) =(xy,..., Xx—1,x5). As the
suspensions of C*-stable mappings are C*-stable, we have that

g1=1XkZM1XRN—>M1XRN
and Gr=¢ 1ol x k)odp:M; x RN > M, x R

are C-stable. They are clearly topologically equivalentas 1 x k: M; x R¥ —
> M;xR" and 1 xk: M, x R¥ > M, x R" are. However,

NGNS M B Y 10),
and Ti(ga) = ¢~ '(M, x RV"1 x {0}).

By assumption, M, x R¥"! and M, x R¥~! are not diffeomorphic; hence
neither are £,(g), £,(g,). Thus, g; and g, are C*-distinct. Also, the singula-
rity k could be replaced by any other stable singularity type, with just a slight
modification of the construction. In fact, it can be arranged that g; and g,
are in the nice dimensions.

It might be thought that this phenomena can only occur for open mani-
folds such as M, x R". However, there is also a simple counter example for
C>-stable mappings M — M where M is an exotic 7-sphere. Such an exotic
sphere can be decomposed M =A” U (D’ where (A7, S®) is a 7-disc with
boundary S® homeomorphic to (D7, S°), but not diffeomorphic to it mod I°.

A7



30 James Damon

We consider mappings with just fold singularities indicated as follows:

91

)

Y

The four fold-singularity sets decompose M into a A7, D7 and 3 cylin-
ders S° x (0, 1). For g;, we see that the A7 has the preimages of three fold
“curves”, while D has the preimage coross section of g, of two. For g,, we
have that A7 has two preimages and D’ has three. Thus, the g; are topologi-
cally equivalent by interchanging A’ and D’. However, a C™-equivalence
(¢,¥) would preserve preimage curves, and hence interchange A7 and D’
cross section of g, and the cylinders S® x I. Then, the restrictions to S° of
¢ :D”— A" and ¢ : A7 - D7 would be pseudo-isotopic, and hence isotopic.
Then, this implies that M is of order 2 in the group of oxotic 7-spheres. Thus, for
any M not of order 2, there cannot be a C*-equivalence (Mike Shub and
Dave Tischler pointed out the possibility of order 2 occurring).
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A first conjecture for dimensions where we can avoid these problems
would be

Conjecture. If dim N < 7, then the C° and C* classification of C®-stable
mappings N — P agree.

To date, the only work in this direction follows from the result of Les-
lie Wilson described by Harold Levine, [17], [37]. The result of Wilson
implies that if f,g: M — N are C*-stable mappings between 2-manifolds
which are C°-right equivalent (i.e., there is a homeaomorphism h: M - M
such that foh = g) then f and g are C”-equivalent. Beyond this nothing
known.

A general conjecture for the dimensions (n < p) might be

Conjecture. Suppose that f and g : N — P are C*-stable mappings and
CC-equivalent. Suppose further that for the multi-stratification {Z,} and its
image {I',} we have (Z,, £,\Z,) (f) diffeomorphic to (Z,, Z,\Z,) (9) for all o and
and also for 'y in place of Z,, then f and g are C™-equivalent.

This avoids the difficulties we have described; but can the pieces of
difftomorphisms be put together in a smooth way?

Certainly the success that we had with the local classification fades
quickly when try to apply the results to the global C° classification. We next
turn to the question of C°-stability in the nice dimensions where the local
C°-classification proves to be invaluable.

5. CC°-stability in the Nice Dimensions.

Types of C°-stability Let us now turn to the third problem mentioned
earlier. Are C°-stable mappings in the nice dimensions C*-stable? The first
results obtained for this problem were by May in his thesis, 1973 [25]. We
begin by describing these results. First of all, there is the example of May
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of a C*-proper mapping f : R! - R' which is C°-stable but not C*-stable.
This example very nicely destroys our first intuitions about C°-stable mappings.
Its graph is shown below.

At the origin the Taylor series begins with x* and all other singularities are
Morse singularities. It is C*-stable at all points except 0. There x> can be
locally perturbed to x* + ax but in either case we still have a function C°-equi-
valent to f.

The difficulty occur because the domain manifold is not compact (alter-
nately this situation could be avoided by requiring that the homeomorphisms
used for the CP-stability be within sufficiently small neighborhoods of the
identity; this would give “e-stability”).

Thus, we will consider the problem for C°-stable maps f : N - P with
N compact. Also, before we describe the results we will give several definitions.

We recall that C*-stable mappings satisfy a number of properties:

1) multi-transversality to the .oz* and #*-orbits;

2) invariance under suspension; if f: N — P is stable, sois fx 1 : N x Y—
— P x Y for a manifold Y:

3) stability under k-deformations; if f : N — P is stable and F : N x R*—
— P x R* is a mapping such that F(x,t)=(y,t) and F(x,0)=f(x) x€ N,
then there is a neighborhood 0€ U = R* such that F|N x U is C”-equi-
valent to f x Iy.

On the other hand C%-stability in general does not have such properties.
Hence, we consider various types of CC-stability.

Definition 11. We say that a C°-stable mapping f:N — P is

1) mt-stable: if f is multi-transverse to the stratification defined by
Mather;
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2) S-stable: if fx 1¥:N x (S'* > P x (S')* is C°-stable all k > 0;

3) Uniformly stable (U-stable): if f is C°-stable under k-deformations,
i.e., as in the C®-case, we require tant a k-deformation of £, F : N x R* - P x R*
is C%-equivalent to f x 1y on the neighborhood U €0.

Relation of C° and C®-stability. In addition to proving that C°-stability
implies C*-stability for the Whitney embedding range p > 2n, and for p =1
(the Morse functions), May’s principal result may be stated.

Theorem 22. (May). If f : N — P is in the interior of the set of uniformly
stable mappings with N compact and (n, p) satisfying n>p, p <7, and
n<2(n-—p+2) then f is C*-stable.

First we describe the meaning of the inequilities which (n, p) satisifies.
In the nice dimensions n > p, two types of Z;-types occur generically, Z,
and Z,_,+,. These inqualities are guaranteeing that only the X, ., occur
generically. The Z,_,.; singularities are singularities which occur as unfol-
dings of the simple singularities determined by Arnold of low codimension
[38], [1].

The idea of the proof is to verify that such a mapping is multi-transverse
to the X *-orbits. Suppose that /(f) is not transverse at a point x to a X'
-orbit T of codim < n. May shows that f may be perturbed in a neighborhood
U of x so that for the perturbed mapping f, which is C°-equivalent to f,
j"(f~) is transverse to T except in one normal coordinate w. In the coordinate
w, the coordinate function of *(f) has only a Morse singularity x in U.

N, P)

= k)
i Nu /

Then Z(f~ ) (= ]*(f )~ }(X)) near x is homeomorphic to an appropriate cone
and hence is not a submanifold. If dim N < codim X then a separate argument
is needed (this is where uniform stability comes in). On the other hand, May
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finds a topological description of £ which is valid for transverse maps. By
comparing these he is able to show that they are topologically distinct.

Part of the difficulty which prevents May from completing the case of
n> p is that the topological information for X is obtained by looking at the
relative structure of near-by orbits using only minimal transversality assump-
tions. We are going to describe how to modify May’s construction to make
use of the local C%-classification of C*-stable germs for n < p.

We make three modifications to May’s constructions:

1) we work with some f=f x 1¥: N x (§')* > P x (S")* which we will
continue to denote by f:N — P;

2) we make two perturbations of f, f; and f5, with the following pro-
perties:

a) the f; are perturbations only on a neighborhood U, of x, and are
both C°-equivalent to f;

b) for a smaller neighborhood xe U, = Uy, fi =f, outside of U;;

¢) /*(f;) are transverse to X except in one normal coordinate w.

d) the w-coordinate function of j(f;) has a Morse singularity at x;

e) the w-coordinate function of j*(f;) is a Morse function translated
slightly on U,.

3) f1 and f; consist of C*-stable germs on U,\{x}.

With this we are able to describe precisely the singularity sets Z(f;) N U;.
Then, assuming that Z-type is a topological invariant for C*-stable germs,
we will be able to describe the topological analogue for X. We have for these
sets:

1) 2(f1) n U; is homeomorphic to a cone ), Ax? =0.
i=1
2) Z(f2) n U, isaclosed submanifold of U, (in fact, a distorted generalized
hyperboloid).

Next, we want to compute

2%g) = {x| g is C°-equivalent to a C*-stable germ of Z-type}.
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For a C*-stable germ g of Z-type we have X%g) = Z(g) is the germ of a
submanifold of dim r— 1. Now, except at X in U,, we can compute X° from
Z because at all other points the f; consist of C*-stable germs. For f,x gZ°(f;)
because we would have X°(f;) ~ C near X, which is not locally a submanifold
of the correct dimension. Similarly x & Z9(f;) because it would be an isolated
point near X. Thus

Z9(f;) N U, = C - {X} which has as a deformation retract Z(f;) N (U,\U,).
Thus, if . X¢ = B(f) o Uy Xy =2 f) o (N=Ti) and X5 <ZT%f); then
X,=X,uU0X, X,. Thus, a Mayer-Vietoris argument shows that H (X,) £
# H, (X ). Hence, they are topologically distinct. This contradicts the cons-
truction that they are topologically equivalent to f. Thus, f is not C°-stable.

This can be used to prove both transversality to all #*-orbits correspon-
ding to simple algebra types and also *(f) (N)n I(n, p) = ¢.

Lastly, multi-transversality follows by a perturbation argument for the
image of the singularity sets in P; this gives

_)(1 —Xz

Theorem 23. [9] In the nice dimensions n < p, with N compact, S-stability
implies C*®-stability.

Remark. -stability comes into the proof exactly when we replace f by
f x 1¥ and still have C°-stability.

Next, we point out that there is the following relation between certain

types of stability: (1)
e e T
i
C0 ,///
/////
(2) ¥ bl
I////I
s

1) follows because the Whitney stratification of theorem 12 is invariant
under .oZ*:
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2) follows from the construction of the Whitney stratification.

Then, the theorem states that in the nice dimensions (n < p), we can com-
plete the diagram with the dotted implication to obtain that C*, mt, and S
are equivalent in the nice dimensions n < p.

There is another consequence of the method of proof. We define

Definition 12. A singularity subset £ = J¥n,p) is a local topological
invariant if there is a neighborhood U of Z, invariant under .&/* such that
C=-stable germs j*(f) € £ are topologically distinct from those with /*(f) e U\Z.

Then, the method of proof really only relies on X being a local topological
invariant. In fact, the same method shows

Proposition 24. If X < J¥n,p), all p—n =c, is a local topological inva-
riant which is invariant under X'* and satisfies a technical condition called the
immersion condition (see [9] or [25]) then S-stable mappings f : N — P are
transverse to Z.

As mt = S, we have

Corollary 25. If T is as above, then mt-stable mappings f :N — P are
transverse to Z.

This suggests one way of better understanding the stratification defined
by Mather for C°-stability; namely, construct a stratification of local topolo-
gical invariants X as above. Then mt-stable maps must be transverse to this
stratification. As we refine this stratification we obtain a better “approxima-
tion” to Mather’s stratification. Unfortunately, almost nothing is known
about the specific stratification in the region where moduli occur. This central
problem will certainly prove to be much more difficult to solve than all of the
problems relating to C* and C°-stability described up until now.

Addendum. While at the conference it has been possible to give a rela-
tively simple topological classification of C*-stable map germs in the nice
dimensions n > p. This implies that for n > p in the nice dimensions
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where we can reverse the arrow C* = U atleastforn>p,p<7,n<2(n—p +2)
by May’s theorem. A natural conjecture is

Conjecture. In the nice dimensions the four types of stability C*, mt, S, U
are equivalent.

A. DuPlessis has indicated in a private conversation that he has some re-
sults for reversing the arrow C* = U. This leaves open the question of where
C-stability is not equivalent to all of these. This would mean finding a C°-sta-
ble map which is not S-stable. Even outside of the nice dimensions such a
map would have to be different from the mr-stable ones.
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