Replacing Tangencies by Saddle-nodes

G. Fleitas

1. In this paper, M^n is a closed *n*-dimensional manifold $(n \ge 2)$ of class C^{r+1} $(r \ge 2)$, and all the flows and ares of flows on M are supposed of class C^r . We shall prove the following:

Theorem. et X_{λ} , $\lambda \in [-1,1]$ be an are of gradient-like flows on M^n , except for the value $\lambda = 0$, which is a bifurcation point of type tangency. Then, $X_{\lambda=-1}$, $X_{\lambda=1}$ can be joined by another are with only two bifurcations, which are of type saddle-node.

That $\lambda=0$ is a bifurcation of type tangency means that there exists a generic tangency between the invariant manifolds of two singularities of $X_{\lambda=0}$. That λ_0 is a bifurcation of type saddle-node means that X_{λ_0} has a singularity which is a saddle-node and the are is generic. These definitions will be precised in the next paragraph. From [5] and the theorem above, it results the following.

Corollary. Any two Morse-Smale flows on M^n can be joined by an are with a finite number of bifurcation points, which are of type saddle-node.

It is shown in [4] that this are is stable.

2. Recall of definitions.

A flow X on M^n is called gradient-like if:

- (1) The α and ω limit of every orbit of X is contained in $\{p_1, ..., p_k\}$, where p_i is a hyperbolic singularity, i.e., no eigenvalue of $DX(p_i)$ has real part zero.
- (2) The stable and unstable manifolds of the singularities $p_1, ..., p_k$ meet transversely.

 $W^{u}(p)$, $W^{s}(p)$ denote the unstable and stable manifolds of a critical point p. Let X_{λ} be a 1-parameter family of flows on M^{n} . We say that λ_{0} is a bifurcation point of type tangency if the following conditions are satisfied: (i) X_{λ_0} verifies all the conditions of gradient-like, except that it has a pair of singularities p_{λ_0} , q_{λ_0} such that $W^u(p_{\lambda_0})$ $W^s(q_{\lambda_0})$ have a common orbit 0 where their intersection is not transversal, and $0 < \dim W^u(p_{\lambda_0}) < n, 0 < \dim$ $W^{s}(q_{\lambda_0}) < n$.

(ii) Let r be a point on 0, and let N be a local normal section to X_{λ} on r, for λ in a neighborhood $U(\lambda_0)$. There exists a λ -family of coordinates $(z, u, w)_{\lambda}$ $\in R \times R^{k_1} \times R^{k_2}$ on N such that $r = (0,0,0)_{\lambda_0}$ and $W^u(p_{\lambda}) \cap N$ is the plane z=0, u=0. There also exists a λ -family of coordinates $(x, y)_{\lambda} \in \mathbb{R}^{k1} \times \mathbb{R}^{k3}$ on $W^s(q_{\lambda}) \cap N$ with $r = (0,0)_{\lambda_0}$. And, if F is the projection of $W^s(q_{\lambda}) \cap N$ on the plane w = 0, expressed with these coordinates, it is verified:

$$\det\left[\frac{\partial p_{u^{\star}} F}{\partial x}(0, \lambda_{0})\right] \neq 0, \quad \frac{\partial p_{u^{\star}} F}{\partial y}(0, \lambda_{0}) = 0,$$

$$\frac{\partial p_{z^{\star}} F}{\partial x}(0, \lambda_{0}) = \frac{\partial p_{z^{\star}} F}{\partial y}(0, \lambda_{0}) = 0, \quad \frac{\partial p_{z^{\star}} F}{\partial y}(0, \lambda_{0}) \neq 0 \text{ and } \frac{\partial^{2} p_{z^{\star}} F}{\partial y^{2}}(0, \lambda_{0}) \text{ is not degenerated.}$$

It may happens $k_1 = 0$, $k_2 = 0$ or both; the last when n = 2.

(iii) The eigenvalues μ_1, \dots, μ_n of $DX/(p_{\lambda_0})$ with negative real part verifie: $Re \mu_{\alpha} \leq ... \leq Re \mu_{\alpha} < \mu_{1} < 0$

 μ_1 is real and has multiplicity one. Let $K_{n\lambda}$ be the eigenspace corresponding to the eigenvalues $\mu_2, ..., \mu_{\alpha}$ of $DX_{\lambda}(p_{\lambda})$. It is shown [2] that there exists a unique stable manifold $W^{ss}(p_{\lambda})$ which is tangent to $K_{p\lambda}$. We suppose that $W^{sss}(p)$ is transversal to the unstable manifolds of all the singularities, and that the limit (when $t \to -\infty$) of the tangent space to $W^s(q_{\lambda^0})$ in r: lim $(T_r \varphi_{X_{\lambda_0}}^{t_0})$ $(T_r W^s(q_{\lambda_0}))$ is the sum of $K_{p\lambda_0}$ and a subspace which is tangent to $W^{u}(p_{\lambda_0})$. Symmetrical conditions are also required for q_{λ_0} and $W^{u}(p_{\lambda_0})$. We say that λ_0 is a bifurcation point of type saddle-node if:

(i) X_{λ^0} verifies all the conditions of gradient-like, except that it has a singularity p_{λ_0} which is a saddle-node, i.e. zero is an eigenvalue of $Dp_{\lambda_0}(X_{\lambda_0})$ with multiplicity one, and all the other eigenvalues have real part different from zero. Then, it is shown [2] that p_{λ}° has invariant stable and unstable manifolds with boundary $(W^s(p_{\lambda_0}) \ W^u(p_{\lambda_0}))$. All the invariant manifolds are supposed transversal.

(ii) There exist local coordinates $(x_1,...,x_n)$ such that:

$$P_{\lambda_0} = 0, \frac{\partial X^1}{\partial x_i}(0, \lambda_0) = \frac{\partial X^i}{\partial x_1}(0, \lambda_0) = 0 \ i = 1, ..., n.$$

$$\frac{\partial (X^2, ..., X^n)}{\partial (x_2, ..., x_n)}(0, \lambda_0) \neq 0$$

$$\frac{\partial^2 X^1}{\partial x_1^2}(0, \lambda_0) \neq 0, \frac{\partial X^1}{\partial \lambda}(0, \lambda_0) \neq 0.$$

If λ_0 is a bifurcation of type saddle-node or tangency, it can be proved [7] is gradient-like for $\lambda \in V(\lambda_0)$, $\lambda \neq \lambda_0$.

49

3. Proof of the theorem.

Suppose an are of flows X_{λ} , $-1 \ge \lambda \ge 1$, with a bifurcation point of type tangency at $\lambda_0 = 0$, in such a way that $W^{\mu}(p_0)$ has a tangency with $W^s(q_0)$, as above. We will construct an are $Y_1, -1 \ge \lambda \ge 1$, such that $Y_1 = X_1$ for all λ near $\lambda = 1$, $\lambda = -1$, and Y_{λ} has only two bifurcation points, which are of type saddle-node. All the constructions will be made in a neighborhood of $p_0 \cdot p_{\lambda}$ shall denote the critical point near to p_0 of X_{λ} .

A) We shall transform X_{λ} locally into a product $X_{\lambda} = X_{\lambda}^{u} \times X_{\lambda}^{w} \times X_{\lambda}^{z}$. Consider a λ -family of local coordinates $(w, u, z)_{\lambda}$ in M, such that, for $\lambda \in V(\lambda_0)$:

$$\begin{cases} p_{\lambda} = 0 \\ W^{u}(p_{\lambda}) = \text{the plane } z = 0, \quad u = 0 \\ W^{s}(p_{\lambda}) = \text{the plane } w = 0 \\ W^{ss}(p_{\lambda}) = \text{the plane } z = 0, \quad w = 0 \end{cases}$$

and
$$\frac{\partial X^h}{\partial k}(0,\lambda) = 0$$
; $h, k = w, u, z \quad h \neq k$

Consider

$$\bar{X}_{\lambda}(x) = \mu \varphi(x) D X_{\lambda}(0) x + [1 - \mu \varphi(x)] X_{\lambda}(x) x \in V(0), 0 \ge \mu \ge 1$$

where φ is a bump-function.

 $\bar{X}_{\lambda,\mu}$ has 0 as an hyperbolic critical point, whose invariant manifolds coincide with those of p_{λ} . Transversalities are conserved, by the λ -lemma [6]. So, for μ fixed, the are $\bar{X}_{\lambda,\mu}$ is similar to the are X_{λ} . Consider a C^{∞} -function $\mu(\lambda)$: $\mathbb{R} \to [0,1]$ s.t. $\mu(\lambda) = 0$ when $|\lambda| \ge \varepsilon_1 > 0$ and $\mu(\lambda) = 1$ when $|\lambda| \le \varepsilon_2 < \varepsilon_1$, $\bar{x}_2 > 0$. Then, $\bar{X}_{\lambda} = \bar{X}_{\lambda,\mu(\lambda)}$ is similar to X_{λ} , $\bar{X}_{\lambda} = X_{\lambda}$ for all λ near to $\lambda = 1$ or $\lambda = -1$, and $\overline{X}_{\lambda}(x) = DX_{\lambda}(0)x$ for $x \in V(0)$, $\lambda \in V(\lambda_0)$.

B) Let $r \in V(0) \cap W^{\mu}(p_{\lambda})$ be a point of tangency of $W(q_0)$ with $W^{\mu}(p_0)$. Let $N = W \times U \times Z$, be a normal section to X_{λ} , where W, U, Z are contained in the planes w, u, z. Let F be the projection of $W^s(q_{\lambda}) \cap N$ on $0 \times U \times I$ \times Z. The image of $DF_{\lambda_0}(r)$ is close to the plane u. Let u' be coordinates on Im $DF_{\lambda 0}(r)$. F can be expressed in such a way that

$$x = P_{u'} \cdot F(x, y, \lambda); r = (0, 0)$$

$$\frac{\partial p_z \cdot F}{\partial x}(r, \lambda_0) = \frac{\partial p_z \cdot F}{\partial y}(r, \lambda_0) = 0.$$

Let C_{λ} be the set of points of $W^{s}(q_{\lambda}) \cap N$ where DF_{λ} is not onto; C_{λ} is the graph of a map $y = \varphi(x, \lambda)$. Then $F(C_{\lambda})$ is the graph of $G_{\lambda} = p_{z} \cdot F(u', \varphi(u', \lambda))$ and $\frac{\partial G_{\lambda}}{\partial \lambda}(0, \lambda_{0}) = \frac{\partial p_{z} \cdot F}{\partial \lambda}(0, \lambda_{0})$ which we suppose negative.

In the following, replace the coordinates $(w, u, z)_{\lambda}$ by $(w, u, z - k\lambda)$, where k > 0 is fixed and verifies:

$$\frac{\partial G_{\lambda}}{\partial \lambda}(0,\lambda_0) + k > 0, \frac{\partial G_{\lambda}}{\partial \lambda}(0,\lambda_0) + \frac{1}{2}k < 0.$$

Then:

$$0 < G_{\lambda}(0) < \frac{1}{2} k\lambda < k\lambda = p_{\lambda} \text{ for } \lambda > 0$$
$$p_{\lambda} = k\lambda < \frac{1}{2} k\lambda < G_{\lambda}(0) < 0 \text{ for } \lambda < 0.$$

C) Consider the family of local flows $Y_{l, \epsilon, \rho, \alpha, \beta, \lambda}$ where:

$$\begin{split} Y^z_{l,\,\,\varepsilon,\,\,\rho,\,\,\alpha,\,\,\beta,\,\,\lambda}(w,u,z) &= l\,K(z,\varepsilon,\,\rho,\,\alpha,\,\beta)\,\varphi\,(w,u,z) \,+ \\ &\quad + \left[1 - l\varphi(w,u,z)\right]\bar{X}^z_{\lambda}(z). \\ Y^w_{\lambda} &= \bar{X}^w_{\lambda} \qquad Y^u_{\lambda} &= \bar{X}^u_{\lambda} \qquad (w,u,z)\,\varepsilon\,V(0). \\ K(z,\varepsilon,\,\rho,\,\alpha,\,\beta) &= -z^3 + (\varepsilon-\rho)z^2 + (\varepsilon\,\rho-\alpha-\beta)z - \alpha\rho \,+\,\beta\varepsilon. \end{split}$$

In particular

$$K(z, \varepsilon, \rho, 0, \beta) = (\varepsilon - z)(z^2 + \rho z + \beta)$$

$$K(z, \varepsilon, \rho, \alpha, 0) = (-z^2 + \varepsilon z - \alpha)(\rho + z)$$

 φ is a bump-function, supp $(\varphi) \subset V(0)$ and $\varphi = 1$ in $V_1(0)$. Consider the C^{∞} -real functions:

Insider the C -real functions:
$$f(t) = e^{-1t}, \ t > 0$$

$$= 0 \quad , \ t \le 0$$

$$g(t) = \frac{f(t)}{f(t) + f(1 - t)} \qquad h(t) = g(2t + 2)g(-2t + 2)$$

$$l(\lambda) = h\left(\frac{\lambda}{a_0}\right) \qquad a_0 > 0 \text{ small and } 0 < a_1 < a < \frac{1}{2}a_0.$$

$$\varepsilon(\lambda) = k(\lambda - a_1)g\left(\frac{\lambda - a_1}{a - a_1}\right) + ka_1 \qquad \rho(\lambda) = \varepsilon(-\lambda)$$

$$\beta(\lambda) = \frac{k^2 a^2}{4} g\left(\frac{\lambda}{a}\right) \qquad \alpha(\lambda) = \beta(-\lambda).$$

Then, for $\lambda \in [-1, 1]$, define $Y_{\lambda}(z, u, w) = Y_{l(\lambda), \epsilon(\lambda)', \rho(\lambda), \alpha(\lambda), \beta(\lambda), \lambda}(z, u, w)$ for $(z, u, w) \in V(0)$

and $Y_{\lambda} = \bar{X}_{\lambda}$ otherwise.

 Y_{λ} verifies the properties stated in the theorem.

References

- [1] G. Fleitas A classification of gradient-like flows on dimensions two and three. Boletim da Sociedade Brasileira de Matemática, V. 6.2. (1975).
- [2] M. Hirscg, C. Pugh and M. Shub *Invariant manifolds*, Springer Verlag Lecture notes on Mathematics n.° 583 (1977).
- [3] S. Newhouse and J. Palis Bifurcations of Morse-Smale dynamical systems, Symposio of Salvador on Dynamical Systems, ed. by M. Peixoto. Academic Press 1973.
- [4] S. Newhouse, J. Palis and F. Takens Stable arcs of diffeomorphisms and flows. To appear.
- [5] S. Newhouse and M. Peixoto There is a simple arc joining any two Morse-Smale flows, Astérisque n.º 31 1976.
- [6] J. Palis On Mose-Smale dynamical systems, Topology 8 (1969) 385-404.
- [7] J. Sotomayor Generic bifurcations of Dynamical Systems, Symposio of Salvador on Dynamical Systems, ed. by M. Peixoto, Academic Press 1973.

Instituto de Matemática Pura e Aplicada Rio de Janeiro