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A Remark on Strongly Nonlinear Elliptic
Boundary Value Problems.

Jean-Pierre Gossez*

This note is concerned with the existence of solutions for variational
boundary value problems for quasilinear elliptic operators of the form

(1) Zjaf <m (= ) D* Ay, u, Vs .., V)

in the case where the coefficients 4, do not have polynomial growth in
u, Vu, ..., Vi Existence theorems for problems of this type have been given
in [4,5]; they provide natural extensions to the case of rapidly or slowly
increasing A,s of the basic results of Browder [1] and Leray-Lions [9]. These
existence theorems apply to the Dirichlet or the Neumann problems, but,
as remarked at the end of [5], it is not immediate to use them to treat other
kinds of boundary conditions. The main reason for this is explained in section
2 below.

It is our purpose here to indicate one way of treating the so-called “third
problem”. As will be seen, although our result allows the consideration of
boundary conditions different from the Dirichlet’s or the Neumann’s, it does
not go in the direction of the questions raised in section 2.

To avoid technicalities, we will concentrate on the simple equation

BB Ju
@) m i; t?—x.-l}o (5)7)] + o) = f,

but our result could easily be extended to operators of type (1), along the
lines of [4,5]. Here ¢: R — R is assumed to be continuous, increasing with
¢(+ ) = + o0, and odd at infinity, ie.

< | o)

< <R
Az T

for some r, R, o« > 0 and all ¢ sufficiently large; note that no growth assumption
is imposed on ¢ which can behave at infinity for instance as an exponential,

*This research was carried out while the author was visiting at the University of Brasilia.
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or as a logarithm. The third problem for (2) asks for a solution u of (2) in Q
satisfying

L ou
i +Su=0
3) igl(p( a)q)v L Su

on the boundary T or Q, where v; denotes the i* component of the exterior
normal to I" and S in an operator acting on functions defined on I, for instan-
ce Su = @(u).

Section 2 introduces some notations and briefly recalls how to solve
the Dirichlet and the Neumann problems for (2). In section 3, the results
of Fougeres [3] about the trace of a function in W' Ly(Q) are extended
to the case where the N-function M has arbitrary growth. The third problem
for (2) is studied in section 4.

2. Preliminares

Let Y and Z be two real Banach spaces in duality with respect to a con-
tinuous pairing <,> and let Y, and Z, be closed subspaces of Y and Z res-
pectively; the quadruple (Y, Y,; Z, Z,) is called a complementary system if,
by means of ¢,), Y¥ can be identified to Z and Z§ to Y. For instance, if Ly(€2)
denotes the Orlicz space on a bounded open subset Q of R" corresponding
to a N-function M, if E,(Q) denotes the closure in Ly(Q) of L*(Q) and if
M denotes the N-function conjugate to M, the (Lp(Q). Em(Q); La(), Ex(€2)
constitues a complementary system.

The Sobolev space of functions u such that u and its first distributional
derivatives lie in Ly(Q) [Ex(Q)] is denoted by W' Ly(Q) [W'Eyn(Q)]. These
spaces will always be identified to subspaces of the product[ Ly (n + 1 factors);
they are Banach spaces. The a(TIL ; [1Ey) closure of D(Q) in W' L(Q) is de-
noted by W3L(Q) and the norm closure of D(Q) in W!Ly(Q) by WEuM(Q).

To get duality results for these spaces, we need a method by which, given
a complementary system (E, Eo; F, Fo) and a closed subspace Y of E, one
can construct a new complementary system (Y, Yo ; Z, Z,). Define Yo =Y Eo,
Z =F/Y$ and Zo = {u + Y§; ue Fo}, where Y5 = {ueF; <{v,v) =0 for
all ve Yo}.

Lemma 1. cf. [4, p. 166; 6, section 2.1]). The pairing between E and F
induces a pairing between Y and Z if and only if Y, is o(E, F) dense in Y. In this
case, (Y, Yo; Z,Z¢) is a complementary system if and only if Y is o(E, Fo) clo-
sed in E.
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When Q has the segment property, then C*(Q) is o(I1L,,, I1L,,) dense
in W!'Ly(Q) and D(Q) is o(I1Ly, TILy) dense in W{Ly(Q) (cf. [4, p. 167]) so
that the above lemma can be applied to both W' Ly(Q) and WELy(Q), star-
ting with the complementary system (IILy, I1Ey ; TILy, TIEy,). We get in
this way two complementary systems (W!Ly(Q), W'E\(Q); *, *) and
(WHLM(Q), WHEMQQ); *, #), which, for brievety, will be denoted below by
(Y, Y5, Z',Z5) and (Y”, Yg; Z", Z5) respectively.

More generally the above lemma can be applied to a space Y satisfying
the following three conditions:

WELM(Q) = Y €« W Ly(Q),
Y 6(TILy, TIE3;) closed in W! Ly(Q),
Y n I1Ey, o(I1Ly, I1L3) dense in Y.

This is in contrast with the L variational theory where one starts with an
arbitrary closed space Y lying between W *(Q) and W' -F(Q). The understan-
ding of the above rectrictions on Y in terms of boundary conditions is not
clear yet. For instance, what about the space of functions u in W!L,(Q)
which are zero on some given part I'; of I'? Of course, when M satisfies the
A, condition (i.e. M(2t) < k M(t) for some k > 0 and all ¢ sufficiently large),
things are easier: Ejr = Lz, and so o(I1Ly, [1Ez) = o(I1Ly, I1L3).

We now briefly indicate how to solve the Neumann problem for (2).
The treatment of the Dirichlet problem is similar.

Take a N-function M(t) such that

4 lo(t)] < Cy M~*M(C,t) + Cs,
5 o(t).t = C4 M(Cst) — Ce,

for all ¢t € R, where the Cis are positive constants with C4, Cs > 0 and where
M~ denotes the reciprocal function of M on R*. Such a N-function is easily
constructed; if ¢ were odd and strictly increasing, one could simply write
M(1) = [6 o(z) dr.

Consider now the Orlicz-Sobolev spaces corresponding to M(t), as above.
Let F e Z,. The Neumann problem for (2) asks for an element ue W' Ly(Q)
such that @(0u/0x;)e Ly(Q) for i =1,...,n, ¢(u)e Lyz(Q) and

i 0 0
L [i; ¢>< a;‘)% + olu) vJ dx = (v, )

for all ve W'Ly(Q). The existence of a solution for this problem is a con-
sequence of the following two propositions.
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Proposition 1. cf. [4,5]). Let (Y, Yo; Z, Z,) be a complementary system
with an admissible norm and let T be a mapping with domain D(T) in Y and
values in Z. Assume that (i) Tis monotone, (ii) Tis pseudo-monotone with respect
to Yy, (iii) each z € Z, has a norm neighbourhood A in Z such that {ue D(T);
Tue A} is bounded in Y. Assume also that T(Y,) meets Z,. Them R(T) > Z,.

Proposition 2. cf. [4,5]). Consider the complementary system (Y',Y5;
Z',Z5) and define T: D(T) = Y' - Z' by

du
6x,-

(v, tu) = L[i (0(%) 66;) + o(u) vjl dx for veY

Then T satisfies the assumptions (i), (ii), (iii) of proposition 1.

D(T)={ueY’;q)< ),(p(u)eLM(Q) farigii=1, 0,0}

Some explanations are needed. The existence of an admissible norm is
not a serious restriction; it is guaranteed in any complementary system built
from (ITLy, [1E,, ; TILy, T1Ey) by applying lemma 1 to a space Y satisfying
the theree conditions mentionned above (cf. [4, p. 170]). Now a mapping
T :D(T) < Y — Zis called pseudo-monotone with respect to Y if (a) D(T) = Y,
and T is continuous from each finite-dimensional subspace of Y, to the
o(Z, Y,) topology of Z, (b) for each bounded net y;e Y, with y; > ye Y for
a(Y,Zy), Tyi— ze Z for o(Z, Yp) and lim sup <y;, Tiy) <y, z), it follows
that ye D(T), Ty = z and <{y;, Ty:) = <y, 2).

3. Trace

In this section and in the following one, we assume that the boundary I
of our open bounded set Q is sufficiently good so that questions in €, near T,
can be transformed, by using a partition of unity and local charts, into similar
questions in R%, near R"~*. This will be certainly so, for our purposes below,
if T is assumed to be C!.

Consider the “restriction to I'” mapping:

¥:C%Q) — C(I) :u - ur

We will show that it is constinuous for the following topologies on C*(Q)
and C(I') respectively:

(©) W' Lar(@) = || | LD,
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™ o(TILA(QY), TEx€Y) — o(La(T), Es(T)),
®) o(TILpdQ), TIL(Q)) — o(La(T), L)

From (8) and from the fact that C*(Q) is o(IILy, I1L3) dense in WLy (Q),
it follows that 7 can be extended into a continuous mapping y from W!Ly(Q),
o(ITLy, T1L5) to Ly(T), o(Ly, Liz). Condition (7) implies that y is continuous
from W!Lp(Q), o(I1Ly, TEs) to Ladl), o(Ly, Ex). Since C®(Q) is norm
dense into W!Ep(Q) (an easy consequence of the o(I1L,, I1L3) density of
C=>(Q) in W'Ly(Q)), condition (6) implies that y is continuous from W!E,(Q),
| || to EadD), || ||- For u in W!Ly(Q), yu is called the trace of u on T.

Proof of (6), (7), (8). By using a partition of unity and local charts, we
are reduced to the following situation: ue C!(Q), with support intersecting
only the part X of dQ, where Q is, say, a cube in R% and £ = dQ n R"1:

A Xn
Q
supp u
g
////lx o
E = (Xl ..... Xn_l)
We have
ux,0) = — J M (%)% dx,
0 6xn
and so, for 1(x') e Ly(Z),
(9) J; ux',0) v(x)dx' = — L ; L (s Xn) VX, %) dx’ dx,
Xn

where %X/, x,) is defined by Hx/, x,) = v(x'). Since v(x'). Since (x)e Ly(X)
[Ei(Z)] implies Ax', x,) € Li(Q) [Es(Q)], we immediately deduce (7) and (8)
from (9). By going to the supremum in (9) when (x’) varies in a bounded
set in E(Z) and after noting that the mapping v(x) € Ex(Z) — (X', x,) € EF7(Q)
is bounded, we deduce (6). Q.E.D.

Green’s formula holds: if ue W!'Ly(Q) and ve W!LiQ), then

(10) u ﬁdx + e vdx = | uvv;dl.
6xi 6x,-
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Indeed first note that the three integrals in (10) are well defined. Now (10)
is true for u and v in C*(Q). Since C*(Q) is o(I1L37, [1E5) dense in W!Ly(Q)
and since y is continuous for (7), we derive (10) for ue W!Ly(Q) and ve C*(Q).
Since C*(Q) is o(I1Lxy, [1L,) dense in W!'Lz(Q) and since y is continuous
for (8) (with M and M interchanged), we derive (10) for ue W!Lp(Q) and
ve WLi(Q).

We will now show that, as in the usual L” situation, W§Ly(Q) [WAEw(Q)]

can be interpreted as the space of functions in W!Ly(Q) [W!'Ep(Q)] will
zero trace on I.

Proposition 3. The kernel of the trace mapping y : W' Ly(Q) — L) is
WLm(Q). The kernel of the trace mapping y : W'Ep(Q) — E(I) is WAEM(Q).

Proof. Since W§ Ey = WiLy N W'E, (an easy consequence of the
o(ITLy, T1L57) density of D(Q) in WELyy), the first assertion implies the se-
cond. And to prove the first assertion, it suffices to show that kery = WLy,
since the other inclusion follows from the continuity properties of 7. So let
us take ue W'Ly(Q) with yu = 0. We will show that

& Ly I in Q
0 outside Q
belongs to W'Ly(R". Once this is done, the conclusion follows by using
standard arguments (partition of unity, translations-near the boundary, re-

gularization), exactly as in the proof of part (b) of theorem 1.3 of [4].

It is clear that ue Ly(R"). Write
ou .
— in Q
5x,- ;

v =
0 outside Q.

Of course v; € Ly(R"), and we have to show that du/dv; = v; in the distribu-
tional sense on all R". Let ¥ € D(R"). We have, using Green’s formula and

the fact that yu =0,
ou
—yd
L ax,- w R

J v; Y dx
R,
= —L 6—¢—dx +J;ul//v,-dr
ax,-

W o
Lu o, b J-R"u o, X

which concludes the proof. Q.E.D.
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In the particular case where M satisfies the A, condition, the above
results have been obtained by Fougeres. [3]. A basic question in the study
of the trace of a function in W'Lyd(Q) is of course that of characterizing the
range of the trace operator y. Some results in this direction have been obtained
by Lacroix [7] and Lami Dozo [8].

4. Third problem for (2)

Let S be a mapping with domain D(S) in Ly(I") and values in L(T).
Here M(t) is, as before, a N-function associated with ¢ in such a way that
(4) and (5) hold. Let fe Z,. The third problem for (2) asks for an element
u e W'Ly(Q) such that ¢ (du/0x;) € Lz(Q)fori = 1, ..., n, o(u) € Li(S), yu € D(S)
and b(u,v) = <v,f) for all ve W! L\(Q), where

b(u,v) = L[anl ® <§Z> s;) + o(u) v:l dx + J;S(yu) .yvdr.

It is easily seen, by formal application of Green’s formula, that this problem
is equivalent to that of finding a solution of (2) satisfying (3).

Theorem 1. Assume that S : D(S) < Ly(I') = Lj(I') is monotone and pseu-
do-monotone with respect to Ep(I'). Suppose also that So € Ep(T'). Then, for
any feZy, the third problem for (2) has at least one solution.

Here is an example of mapping S satisfying the above conditions. Let
Y :R - R be continuous, increasing, with

|W(6)] < C7 M *M(Cgt) + Co
for all te R and some positive constants C,, Cg, Cy. Define
D(S) = {we Lu(I); y(w(x)) e Lu(D)},
Sw = Y(w).
Clearly S is monotone and So € Es(I); the pseudo-monotonity of S follows
from [4; example 2.3 and theorem 4.1].

To prove theorem 1, denote by T; : D(Ty) = Y' — Z' the operator in-
troduced in proposition 2 and by T, : D(T;) < Y’ — Z’ the operator defined by
D(T;) = {ueY'; yue D(S)},
(v, ou) = [ S(yu).yvdl’ for veY'

Then theorem 1 will be proved if we show that fe R(T; + T>), where T} + T,
is defined as usual by

D(T, + T3) = D(Ty) n D(T3),
(Th + Ju = Tyu + Thu



60 Jean-Pierre Gossez

The following two lemmas will be needed.

Lemma 2. Assume that S :D(S) = Ly(l') = L(I") is pseudo-monotone
with respect to Ex(I") and strongly quasibounded with respect to some yu with
ue W Ep(Q). Then the corresponding mapping T, : (Ty) = Y' — Z' is pseudo-
monotone with respect to Yo and strongly quasibounded with respect to .

Here a mapping T:D(T) =« Y > Z in a complementary system (Y, Yo ;
Z,Z,) is called strongly quadibounded with respect to ye Y, if for each
as, a; > 0 there exists k(a;,a,) such that for ye (T) n Y, with ||y < a,
and {y — 3, Ty> < a,, one has || Ty|| < k(a,, a;). Of course “bounded” im-
plies “strongly quaseibounded”, but the converse is not true (cf. [4, p. 172]).
It is known that if T is monotone and if D(T) contains some ball By, Y),
€ > 0, then T is strongly quasibounded with respect to y (cf. [2, proposition
14]). Consequently the mapping S of theorem 1 satisfies the assumptions
of lemma 2.

Proof of Lemma 2. We first show that T, is pseudo-monotone with res-
pect to Y;. Condition (a) about continuity on finite dimensional subspaces
of Y, is immediate. To verify condition (b), let u; be a bounded net in Yj
such that u; - ueY’ for a(Y', Zy,), Tou; > ge Z' for o(Z, Yy) and lim sup
{ui, Tujy < <u,g>; we must show that ue D(Ty), Tou = g and {u;, Tou;» —
— {u,gy; as usual, it suffices to prove the latter for a subnet.

Note first that yu; remains bounded in Ej(T') and that, passing to a sub-
net if necessary,

§r Styw) . (yus — yi) dT-= <w; — @@, Tyu;y < Cst,,

which implies, by the strong quasiboundedness of S, that S(yu;) remains
bounded in L3(I'); we can thus assume that S(yu;) > we L) for o(Li#T),
Ep(I')). Now consider the two linear forms on Y':

v—><v,9>
v [rw.yvdl;

both are a(Y’, Z’) continuous, and by going to the limit in
v, o) = [ S(yuy) . yodl'

for ve Yo, we see that they coincide on Y ; since Y§ is a(Y’, Z') dense in Y’,
the above linear forms coincide on all Y. We now apply the pseudo-mono-
tonicity of S : yu; remains bounded in Ly(I'), yu; — yu for o(Ly, Exg), S(yu;) —>w
for o(L#, Ex), and
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lim sup [y S(yw) . yu; dU = lim sup u;, Tou;) < (u,g) = [rw.yudl;

consequently yue D(S), S(yu) =w and [ S(yu).yu;dl’ > [rw.yudl. The
corresponding conditions for T, follow then easily.

The verification that T, is strongly quasibounded with respect to # is
immediate. Q.E.D.

Lemma 3. cf. [4, proposition 2.4]). Let (Y, Y, ; Z, Z,,) be a complementary
system and let T; :D(T)) c Y—>Z and T, :D(T;) = Y > Z be two pseudo-
monotone mappings with respect to Y. Suppose that T, is strongly quasiboun-
ded with respect to some y€ Y, and that there exists | : R* — R* continuous
such that {y — y, Tyy) > — l(||y||) for yeYy. Then Ty + T, is pseudo-mo-
notone with respect to Y.

Note that the existence of such a function [ is automatically guaranteed
when T; is monotone. This is the case in the application of lemma 3 below.
Note also, in this application, that none of the mappings T; and T, is boun-

ded, in general, which excludes the use of the more classial proposition 2.3
of [4].

Proof of theorem 1. We wish to apply proposition 1 to the mapping T; + T,
in the complementary system (Y’, Yy ; Z', Z). Clearly Ty + T, is monotone,
and by lemmas 2 and 3, it is pseudo-monotone with respect to Y,. Moreover
(Ty + T:XYo) meets Zj; in fact (T, + T,)0€ Z,.

Thus, to prove theorem 1, it suffices to verify the local a priori bound
condition (iii) of proposition 1.

Since S(0) e E;(I"), the linear form

v—*j'rS(O).vdl“

is continuous on Y’ for a(Y’, Zy); consequently there exist functions a;, ag
in Ep(Q) such that

J;S(O).vdl“ - L[ AL aov]dx
=1 0x;

for all ve Y'. Now let ge Z;, be given:

b ov
{v,g) = L[igl gi(?_xi -+ gov] dx

for ve Y’, where g; and g, € Ez(Q). Take r > max {1, 2/cq4, 1/cs} where Cq,
Cs are the constants appearing in (5), choose a number s such that
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J [i M(r3g) + ]\-/I(rzgo):l dx <s

Q

and define

N ={heZ ;T h;, hoe Ly(Q) with

J [i M(r?h;) + M(rzho)] dx <s+1 and

{v, h) =L[Z h; — + hou]dx for all ve Y}.

i=1

A"is a (norm) neighbourhood of g in Z’; this follow from the construction
of Z' as a quotient space (cf. section 2) and from the fact that the convex
functional

w = [o M(w) dx

is (norm) continuous on a (norm) neighbourhood of EQ) in Lif(Q), cf. [4,
example 4.10]. We claim that

{ueD(Ty + To); (T, + Tr)ue 4}
is bounded in Y'. Indeed if ue D(T; + T3) with (T; + T,)ue 4, then

b(u,u)zL[i h; ‘+hov

i=1

dx
for all veY, and in particular

b(u’ u) = LI:Z h + hou_ dx.

i=1

Using inequality (5) in the definition of b(u,u) together with the fact that

J;S(yu) yudl = J;[S(yu) — S(0) yu dI' + L[Z a;— 0x + aouJ dx

where the second integral on I' is > 0 by monotonicity of S, we obtain

L[z M< >+M(C5u):| dx <2Cs meas(Q)+L|:Zn: -+-h0u:| dx
i=1 =
L [121 a; a + aou:| dx.
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By Young’s inequality, the right-hand side above is less than

e 1 Ou il
2C Q) +2 M| - — -
6 meas(Q) n[i; (rz 6x,-> + M(r2 u):l dx +

o

J FZ": M(r’h) + A_l(rzho):l dx +
o Li=1

+J (Z M(r*a) + M(r ao):ldx < Cst. +
ol

| i=1

2 2 1 Ou 1
T Y . -
r L l:i; r 6x,-) + M(r u>] a5

where we have used facts that r > 1 and that M is convex. By the choice of r,

a bound on L[Z M (Cs g) 4 M(Csu):l dx can thus be derived and it

i=1 i

follows that u remains bounded in Y. Q.E.D.
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