An Exceptional Decomposition of the Augmentation Ideal of PSL (2,7)

K. W. Roggenkamp

In [2] (cf. also [1, pp 58/59]) K.W. Gruenberg and the author have given a criterium for the integral augmentation ideal of a finite group to decompose. In case of a solvable group, this criterium is necessary and sufficient. In this note we shall construct a decomposition of the integral augmentation ideal of PSL(2, 7), which can not be derived from our criterium.

If G is a finite group, we denote by g its integral augmentation ideal; i.e. if $\varepsilon : \mathbb{Z}G \to \mathbb{Z}$ is the augmentation homomorphism, then g is the kernel of ε (as additive group g is free on the elements $\{g-1\}_{g \in G\setminus\{1\}}$).

We recall from [2]:

Theorem. Let U be a π -Hallgroup of G with $U^g \cap U = 1$ or U for every $g \in G$ and such that $N_G(U)$ is a Frobenius group with kernel U unless $U = N_G(U)$.

Then
$$g \simeq A \oplus B$$
,

where $\mathbb{Z}_{\pi} \oplus_{\mathbb{Z}} A$ is projective and \mathbb{Z}_{π} , $\oplus_{\mathbb{Z}} B$ is projective. (Here π' is the complementary set of divisors of |G| to π and \mathbb{Z}_{π} is the semi-localization at all the rational primes in π .)

We call such a decomposition a (π, π') -decomposition.

Remark 1. The 3-Sylow subgroup and the 7-Sylow subgroup of PSL(2,7) satisfy the hypotheses of the above theorem; and so there exists a $(\{3\}, \{2,7\})$ – and a $(\{7\}, \{2,3\})$ -decomposition of the augmentation ideal of PSL(2,7). However the 2-Sylow group does not satisfy the conditions of the above theorem.

Proposition. The augmentation ideal g of PSL(2,7) has a $(\{2\},\{3,7\})$ -decomposition.

Proof. Let A be a cyclic subgroup of G = PSL(2, 7) of order 4 and D a 2-Sylow subgroup of G:

$$A = \langle a : a^4 = 1 \rangle, D = \langle a, i : a^4 = i^2 = 1, a^i = a^{-1} \rangle.$$

Augmentation ideal of PSL (2, 7)

75

Let a be the integral augmentation ideal of A and denote by α the $\mathbb{Z}D$ -module, a on which i acts via conjugation. Then

$$M = (\alpha \cdot)^G = : \mathbb{Z}G \oplus_{\mathbb{Z}_+} \alpha \cdot$$

is a left $\mathbb{Z}G$ -module of \mathbb{Z} -rank 63. For a \mathbb{Z} -lattice X and a rational prime p we write X_p for the completion of X at p.

Claim 1. M_3 is \mathbb{Z}_3G -projective and M_7 is \mathbb{Z}_7G -projective; moreover, $M_3|g_3$ and $M_7|g_7$ (where X|Y indicates that X is isomorphic to a direct summand of Y).

Proof \mathfrak{a} is a $\mathbb{Z}D$ -lattice; i.e. a module over a 2-group, and so $(\mathfrak{a} \cdot)_3$ is \mathbb{Z}_3D -projective and $(\mathfrak{a} \cdot)_7$ is \mathbb{Z}_7D -projective. But then the corresponding induced modules are projective over \mathbb{Z}_3G and \mathbb{Z}_7G resp.

For a prime divisor p of |G| we have a decomposition

$$\mathbb{Z}_pG=P_0(p)\oplus P_1(p),$$

where $P_0(p)$ is the uniquely determined projective \mathbb{Z}_pG -module such that $\mathbb{Q} \mid \mathbb{Q} \oplus_{\mathbb{Z}_p} P_0(p)$. Then $P_1(p) \mid \mathfrak{g}_p$. In fact, $P_0(p)$ is the projective cover of \mathbb{Z}_p , and so we the two exact sequences

$$0 \to \mathfrak{g}_p \longrightarrow \mathbb{Z}_p G \to \mathbb{Z}_p \to 0$$
$$0 \to X_p(p) \to P_0(p) \to \mathbb{Z}_p \to 0$$

and the uniqueness of the projective cover shows $P_1(p) \mid g_p$. Because of the exact sequence

$$0 \to (\mathfrak{a}^{\boldsymbol{\cdot}})^G \to (\mathbb{Z}A^{\boldsymbol{\cdot}})^G \to \mathbb{Z}^G \to 0$$

 $(\mathbb{Z}A \text{ becomes a } \mathbb{Z}D\text{-module } \mathbb{Z}A \cdot \text{ if } i \text{ acts via conjugation on } A) \text{ we see that } \mathbb{Q}$ is not a direct summand of $\mathbb{Q} \oplus_{\mathbb{Z}} (\mathfrak{a} \cdot)^G$ and with the first part of the claim and observing that the Krull-Schmidt-theorem holds of \mathbb{Z}_pG -lattices, we conclude $M_3 \mid P_1(3)$ and $M_7 \mid P_1(7)$; i.e. $M_3 \mid g_3$ and $M_7 \mid g_7$. This proves the claim.

Claim 2. Let χ be the rational character of $\mathbb{Q} \oplus_{\mathbb{Z}} M$. Then

$$\chi(g) = 0$$
 for g a 3-element or g a 7-element.

For the 2-elements we have

$$\chi(a) = -1$$

 $\chi(a^2) = -1$
 $\chi(a^3) = -1$

All other 2-elements are conjugated to one of these.

Proof. Since M_3 and M_7 are projective \mathbb{Z}_3G -and \mathbb{Z}_7G -modules resp. we have

$$\chi(g) = 0$$
 if g is a 3-element and $\chi(g) = 0$ if g is a 7-element.

Moreover, every element in PSL(2,7) is of prime-power order and so it is enough to compute $\chi(x)$ if x is a 2-element. To do so we first compute the character μ of $\mathbb{O} \oplus_{\mathbb{Z}} \mathfrak{a} \cdot \mathbb{O} \oplus_{\mathbb{Z}} \mathfrak{a}$ is \mathbb{O} -free on the elements (a-1), (a^2-1) and (a^3-1) . We have the following operations:

$$a: (a-1) \mapsto (a^{2}-1) - (a-1)$$

$$a: (a^{2}-1) \mapsto -(a^{3}-1) - (a-1)$$

$$a: (a^{3}-1) \mapsto -(a-1)$$

$$a: (a^{3}-1) \mapsto -(a-1)$$

$$a^{2}: (a-1) \mapsto -(a^{3}-1) - (a^{2}-1)$$

$$a^{2}: (a^{2}-1) \mapsto -(a^{2}-1)$$

$$a^{2}: (a^{3}-1) \mapsto (a-1) - (a^{2}-1)$$

$$a^{3}: (a-1) \mapsto -(a^{3}-1)$$

$$a^{3}: (a^{2}-1) \mapsto (a-1) - (a^{3}-1)$$

$$a^{3}: (a^{2}-1) \mapsto (a^{2}-1) - (a^{3}-1)$$

$$i: (a-1) \mapsto (a^{2}-1) - (a^{3}-1)$$

$$i: (a^{2}-1) \mapsto (a^{2}-1)$$

$$i: (a^{3}-1) \mapsto (a-1)$$

$$ai: (a^{2}-1) \mapsto (a^{3}-1)$$

$$ai: (a^{2}-1) \mapsto (a^{3}-1)$$

$$ai: (a^{2}-1) \mapsto (a^{2}-1)$$

$$ai: (a^{2}-1) \mapsto (a^{2}-1)$$

$$ai: (a^{2}-1) \mapsto (a^{2}-1)$$

Moreover

$$ai a^{-1} = a^2 i$$
 and $a^3 i = i(a^i) = (ia)^i$ $ia = (ai)^i$

Hence we have

$$\mu(1) = 3$$
; $\mu(a) = -1$, $\mu(a^2) = -1$, $\mu(a^3) = -1$
 $\mu(i) = 1$, $\mu(ai) = -1$, $\mu(a^2i) = \mu(i) = 1$, $\mu(a^3i) = \mu(ia) = \mu(ai) = -1$.

To compute the induce character, we put

$$\dot{\mu}(g) = \begin{cases} \mu(g) & \text{for} & g \in D \\ 0 & \text{for} & g \notin D. \end{cases}$$

Then

$$\chi(g) = \sum_{n \in N_1} \dot{\mu}(ngn^{-1}),$$

where N_1 is a fixed 21-Hallsubgroup of G (e.g. N_1 is the normalizer of a 7-Sylowsubgroup). If $\operatorname{nan}^{-1} \in D$, then $\operatorname{nan}^{-1} \in A$, since $|\operatorname{nan}^{-1}| = 4$; hence $na^2n^{-1} \in A$ and so $na^2n^{-1} = a^2$. But G has exactly 21 involutions, which are conjugate by the elements in N_1 . Hence n = 1 and so

$$\chi(a) = \mu(a) = -1$$

similarly

$$\chi(a^{-1}) = \mu(a^{-1}) = -1.$$

The remaining elements in D are all involutions, which are conjugate in G, and so it suffices to compute $\chi(a^2)$. Hence there are well determined elements n_j , $0 \le j \le 3$ such that $(a^2)^{nj} = a^ji$. Thus

$$\chi(a^2) = \mu(a^2) + \mu(i) + \mu(ai) + \mu(a^2i) + \mu(a^3i)$$

$$= -1 + 1 - 1 + 1 - 1$$

$$= -1$$

This proves the claim.

Remark 2. Let $\mathbb{Z}(G//N_1)$ be the permutation representation on the left coset space of G modulo N_1 , where N_1 as above in the normalizer of a 7-Sylow subgroup of G. Then we have an epimorphism

$$\epsilon_{N_1}: \mathbb{Z}(G//N_1) \to \mathbb{Z},$$
 $qN_1 \to 1$

and we put g/N_1 the kernel of ε_{N_1} (g/N_1 is \mathbb{Z} -free on the elements gN_1-N_1). Then we have the exact sequence

$$0 \to \pi_1^G \to \mathfrak{g} \to \mathfrak{g}/N_1 \to 0.$$

If we complete at 2, then $(\pi_1^G)_2$ is \mathbb{Z}_2G -projective and so the above sequence is split exact; i.e.

$$g_2 \simeq (\pi_1^G)_2 \oplus (g/N_1)_2$$
;

moreover,

$$(\pi_1^G)_2 = P_1(2)$$
 (cf. above).

Let S_3 be a 3-Sylow subgroup of G, |S| = 3, and put $N_2 = N_G(S_3)$; then $|N_2| = G$. We can view σ_3 , the augmentation ideal of S_3 as a $\mathbb{Z}N_2$ -module $\sigma_3 \circ$, by letting the involution in N_2 act by conjugation. We put

$$M_1 = (\sigma_3 \circ)^G \oplus \mathfrak{q}/N_1;$$

then M_1 has \mathbb{Z} -rank 63.

Claim 3. Let ψ be the character of $\mathbb{Q} \oplus_{\mathbb{Z}} M_1$. Then $\psi = \chi$. Proof With similar arguments as above one concludes that

$$((\sigma_3 \circ)^G)_7$$
 is \mathbb{Z}_7G -projective and $((\sigma_3 \circ)^G)_2$ is \mathbb{Z}_2G -projective.

Moreover as above one shows

$$((\sigma_3 \circ)^G)_7 \mid g_7$$
 and $((\sigma_3 \circ)^G)_2 \mid g_2$.

In addition we have that $(g/N_1)_7$ is \mathbb{Z}_7G -projective; in fact it suffices to show this when $(g/N_1)_7$ is viewed as a \mathbb{Z}_7S_7 -module, where S_7 is the 7-Sylow subgroup of which N_1 is the normalizer. Let $x \in S_7$, then $x(gN_1 - N_1) = xgN_1 - N_1$ and if x has a fixed point, then $gN_1 = xgN_1$, i.e. $g^{-1}xg \in N_1$ i.e. $g^{-1}xg \in S_7$. but since $g \notin N_1$ and since S_7 is a trivial intersection group, $S_7 \cap S_7^g = 1$. Thus S_7 acts fixed point free on $gN_1 - N_1$ and so $(g/N_1)_7$ is \mathbb{Z}_7G -projective. Therefore $\psi(g) = 0$ if g is a 7-element. Let now g be a 3-element. We may assume without loss of generality that $N_1 = \langle S_7, i \rangle$ where i is the involution in D (cf. above). If v is the character of $\mathbb{Q} \oplus_{\mathbb{Z}} \sigma_3 \circ$, then v(g) = -1 and for $x \notin N_2, g^x \notin N_2$ and so the character of g in $\mathbb{Q} \oplus_{\mathbb{Z}} (\sigma_3 \circ)^G$ is -1. We have to compute the character of x in $\mathbb{Q}_{\mathbb{Z}} g/N_1$. This is done by observing

$$g(iN_1 - N_1) = iN_1 - N_1$$
, since $i \in N_G(\langle q \rangle)$ and $q \in N_1$.

If

$$g(a^{j}N_{1}-N_{1})=a^{j}N_{1}-N_{1},\ 0\leq j\leq 3,\ \text{then}\ a^{-j}ga^{j}\in N_{1}.$$

If

$$a^{-j}ga^j = g^{-1}$$
, then $a^{-j} = i$, a contradiction.

Hence

$$a^{-j}ga^{-1} \in S_3^{\tau}$$
 for some $1 \neq \tau \in N_1$ with $|\tau| = 7$.

Case 1 $a^{-j}ga^j = (g^{-1})^{\tau}$, then $a^{-j}ga^j = g^{i\tau}$ and so $a^ji\tau = ia^{-j}\tau$ stabilizes g; i.e., $a^{-j}\tau = i$.

But since a^{-j} and i lie in D, so must τ , a contradiction to $|\tau| = 7$.

Case 2 $a^{-j}ga^j=g^{\tau}$, then $a^j\tau$ stabilizes g and so $a^j\tau\in S_3$ but then $a^j\in N_1$, a contradiction.

Therefore $g(a^jN_1 - N_1) \neq a^jN_1 - N_1$. Similarly one shows $g(a^jiN_1 - N_1) \neq a^jiN_1 - N_1$.

Hence $\psi(g)=0$ if g is a 3-element. It remains to compute $\psi(g)$ if g is a 2-element. For the character ψ_1 of $\mathbb{Q} \oplus_{\mathbb{Z}} (\sigma_3 \circ)^G$ we have for a 2-element g, $\psi_1(g)=0$ since $(\sigma_3 \circ)^G$ is \mathbb{Z}_2G -projective. Since

$$g_2 \simeq (g/N_1)_2 \oplus P_1(2)$$

we conclude that the character ψ_2 of $\mathbb{Q} \oplus_{\mathbb{Z}} g/N_1$ has value -1 at g. This proves the claim.

To proceed with the proof of the proposition, we observe that by Claim 3

$$\mathbb{Q} \oplus_{\mathbb{Z}} (\mathfrak{a} \cdot)^G \simeq \mathbb{Q} \oplus_{\mathbb{Z}} [(\sigma_3 \circ)^G \oplus \mathfrak{g}/N_1].$$

We now choose a $\mathbb{Z}G$ -lattice M_0 such that

$$M_{0_2} \simeq ((\sigma_3 \circ)^G)_2 \oplus (g/N_1)_2$$

$$M_{0_3} \simeq (\alpha \cdot)^G_3$$

$$M_{0_3} \simeq (\alpha \cdot)^G_7$$

Then M_0 is a local direct summand of g, and so g decomposes. This proves the proposition.

Remark. In the proof we have used heavily the structure of PSL(2, 7). I have tried hard to extract the essentials or to derive a more general theorem; however I have not been able to do so.

References

- K. W. Gruenberg, Relation Modules of Finite Groups, Regional Conference Series in Mathematics 25 (1974).
- [3] K. W. Gruenberg K. W. Roggenkamp, Decomposition of the Augmentation Ideal and of the Relation Modules of a Finite Group, Proc. London Math. Soc. 31 (1975), 149-166.