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An Exceptional Decomposition of the Augmentation
Ideal of PSL (2,7)

K. W. Roggenkamp

In [2] (cf. also [ 1, pp 58/59]) K.W. Gruenberg and the author have given
a criterium for the integral augmentation ideal of a finite group to decompose.
In case of a solvable group, this criterium is necessary and sufficient. In this
note we shall construct a decomposition of the integral augmentation ideal
of PSL(2, 7), which can not be derived from our criterium.

If G is a finite group, we denote by g its integral augmentation ideal;
ie. if € :ZG »Z is the augmentation homomorphism, then g is the kernel
of € (as additive group g is free on the elements {g — 1}, c 6\(1))

We recall from [2]:

Theorem. Let U be a n-Hallgroup of G with U " U =1 or U for every
g € G and such that Ng(U) is a Frobeniusgroup with kernel U unless U = Ng(U).

Then g~ A @B,

where Z, @z A is projective and Z,, @z B is projective. (Here ' is the comple-
mentary set of divisors of |G| to n and Z, is the semi-localization at all the
rational primes in m.)

We call such a decomposition a (7, n')-decomposition.

Remark 1. The 3-Sylow subgroup and the 7-Sylow subgroup of PSL(2, 7)
satisfy the hypotheses of the above theorem; and so there exists a ({3}, {2, 7}) —
and a ({7}, {2, 3})-decomposition of the augmentation ideal of PSL(2,7).
However the 2-Sylow group does not satisfy the conditions of the above
theorem.

Proposition. The augmentation ideal g of PSL(2,7) has a ({2}, {3,7})r
-decomposition.
Proof. Let A be a cyclic subgroup of G = PSL(2, 7) of order 4 and D a 2-Sylow
subgroup of G:

A={(a:at=1,D="{(ai:a*=i*=1, a =a ).
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Let a be the integral augmentation ideal of 4 and denote by a- the ZD-module,
a on which i acts via conjugation. Then

M =@ = :ZG Dz, o

is a left ZG-module of Z-rank 63. For a Z-lattice X and a rational prime p
we write X, for the completion of X at p.

Claim 1. M; is Z3G-projective and M, is Z;G-projective; moreover,
M3;| g3 and M |8, (where X |Y indicates that X is isomorphic to a direct sum-
mand of Y).

Proof a* is a ZD-lattice; i.e. a module over a 2-group, and so (a*); is Z3D-
-projective and (a-), is Z;D-projective. But then the corresponding induced
modules are projective over Z3;G and Z,G resp.

For a prime divisor p of |G| we have a decomposition

Z,G = Po(p) ©® P:(p),

where Po(p) is the uniquely determined projective Z,G-module such that

Q| @z,Po(p). Then Py(p)|g, In fact, Py(p) is the projective cover of Z,
and so we the two exact sequences

0-g, -2, —-Z,-0
0— Xy(p) = Polp) > Z, =0

and the uniqueness of the projective cover shows Py(p)|g,.
Because of the exact sequence

0> () > @ZAK ->2Z°-0
(ZA becomes a ZD-module ZA " if i acts via conjugation on A) we see that Q
is not a direct summand of @ @; (a*)° and with the first part of the claim and
observing that the Krull-Schmidt-theorem holds of Z,G-lattices, we conclude
M;|Py(3) and M, |Py(7); ie. M3|gs and M;|g;. This proves the claim.
Claim 2. Let y be the rational character of @ ©®; M. Then

x(g) =0 for g a 3-element
or g a T-element.
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For the 2-elements we have

xa) =-1
xa®) =-1
xa®) =-1

All other 2-elements are conjugated to one of these.
Proof. Since M3 and M are projective Z3G-and Z;G-modules resp. we have

x(g) =0 if g is a 3-element and
x(g) =0 if g is a 7-element.

Moreover, every element in PSL(2,7) is of prime-power order and so
it is enough to compute y(x) if x is a 2-element. To do so we first compute
the character pof @ @z a*. @ @; a- is O-free on the elements (a— 1), (a* - 1)
and (a®-1). We have the following operations:

a: (a@a-)m» @-1)—(@ -1
a: @-)mm—-—@-1)—(@a —-1)
a: @—-D+»—@ -1

a2: @ - —-@-1)—-@-1
at: (@-1)we —(@-1
a¢: @-D» (@ -1)—-(@*-1

ad: (@ -1 —-@-1
SOTLEE M s T )
et S TR | PRI
: @ —1)
i @-1)~> (@-1
i @@= (@ -1

)
ai: (@ —1)m—»—(@ —1)
ai: @-0)-»> @-1)—(@@ =1
ai: @-0)m- @—-1)—(@ —1)
Moreover
did *="d'l and
a’i = i(d") = (ia)’
ia = (ai)’
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Hence we have
1) =3; wa) = — 1, p@* = — 1, wa’) = — 1
ui) =1, plai) = — 1, wa*i) = pi) = 1, p(@) = u(ia) = wai) = — 1.
To compute the induce character, we put
= fh o it
Then
Ag) = ZN filngn™"),

where N is a fixed 21-Hallsubgroup of G (e.g. N, is the normalizer of a 7-Sy-

lowsubgroup). If nan~'eD, then nan~'e A, since |nan~'|=4; hence

na*n"'e A and so na’n”! = a® But G has exactly 21 involutions, which

are conjugate by the elements in N;. Hence n =1 and so
xa) = wa) = — 1
similarly
xa™h) =p@ ') =-1

The remaining elements in D are all involutions, which are conjugate in G,
and so it suffices to compute y(a?). Hence there are well determined elements
nj, 0 <j <3 such that (a®>)¥ = a’i. Thus

xa®) = wa®) + u(i) + wai) + pa®i) + pai)
T e 5 U [FR T (R W |
= —1

This proves the claim.

Remark 2.Let Z(G//N,) be the permutation representation on the
left coset space of G modulo N,, where N, as above in the normalizer of a
7-Sylow subgroup of G. Then we have an epimorphism

en, 1 Z(G/ /N1) = Z,
gN; — 1

and we put g/N; the kernel of €y, (g/N; is Z-free on the elements gN; — N,).
Then we have the exact sequence

0-n§—>g—g/N;, -0

Augmentation ideal of PSL (2, 7) an

If we complete at 2, then (n,°), is Z,G-projective and so the above sequence
is split exact; i.e.

82 = (1,); ®(g/Ny)y;
IMOIeoVer,
(1), = P1(2) (cf. above).
Let S3 be a 3-Sylow subgroup of G, |S| =3, and put N, = Ng(S3); then

| N, | = G. We can view o3, the augmentation ideal of S; as a ZN,-module
030, by letting the involution in N, act by conjugation. We put

M, = (030 ®g/Ny;
then M; has Z-rank 63.

Claim 3. Let Y be the character of @ @z;M,. Then Y = y.
Proof With similar arguments as above one concludes that

(630)%7 is Z,G-projective and
((630)%, is Z,G-projective.

Moreover as above one shows

(a3 %) | g7 and

(03 °)%)2 | 92-
In addition we have that (g/N,), is Z;G-projective; in fact it suffices to show
this when (g/N,)- is viewed as a Z,S,-module, where S is the 7-Sylow subgroup
of which N, is the normalizer. Let x € S5, then x(gN; — N;) = xgN, — N,
and if x has a fixed point, then gN; = xgN,, i.e. g 'xge N, i.e. g 'xge S,
but since g¢ N; and since S, is a trivial intersection group, S; N S;¢ = 1.
Thus S, acts fixed point free on gN; — N, and so (g/N,); is Z,G-projective.
Therefore Y(g) =0 if g is a 7-element. Let now g be a 3-element. We may
assume without loss of generality that N, = (S, i> where i is the involution
in D (cf. above). If v is the character of Q@ @z g3 o, then v(g) = — 1 and for
X ¢ N, g*¢ N, and so the character of g in Q @7 (03 .)% is —1. We have to
compute the character of x in Qz g/N;. This is done by observing

g(iNy — N{) =iN; — Ny, since ie Ng((g)) and ge N,.
If
g(@’Ny — Ny) =a’N; — Ny, 0 <j <3, then a ‘ga’e N,.

If
aJga’ =g !, then a™/ =i, a contradiction.
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Hence

a~'ga”'€S3 for some 1 + 1€ N; with |[t| =7.
Case 1 a iga’ = (g7 '), then a iga’ = g™ and so @it = ia~ 't stabilizes g;
e, ol =1

But since a~’/ and i lie in D, so must 1, a contradiction to |t| =7.
Case 2 a”’ga’ = ¢*, then a’t stabilizes g and so a’t€ S5 but then a’e Ny, a
contradiction.
Therefore g(a’N; — N,) + a’N; — N;. Similarly one shows
g(@’iN; — Ny) + @/iN; — N,.
Hence Y/(g) = 0if g is a 3-element. It remains to compute y/(g) if g is a 2-element.

For the character y; of Q@ @; (03 .)° we have for a 2-element g, Y;(g) =0
since (03 0)° is Z,G-projective. Since

32 ~ (9/N1)2 ®P.(2)

we conclude that the character y, of @ @z g/N; has value —1 at g. This
proves the claim.

To proceed with the proof of the proposition, we observe that by Claim 3
Q @ra)’ = Q &;[(032)° Dg/N4].
We now choose a ZG-lattice M, such that
M,,.~ ((a32)%); @ (a/N1)2
Mo, ~ (a %
M07 = (Q )(';

Then M, is a local direct summand of g, and so g decomposes. This proves
the proposition.

Remark. In the proof we have used heavily the structure of PSL(2,7).
I have tried hard to extract the essentials or to derive a more general theorem;
however I have not been able to do so.
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