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Essential selfadjointness of singular elliptic operators

Jens Frehse*

1. Introduction and statement of the theorems

Recently, some attention was given to the question of essential selfad-
jointness of the elliptic L defined by

Lu = — Zy0i(aulxu) + qu (= )
with D(L) = C&([R") < IZ(R"), R(L) = LA(R")
Under the assumptions
(1.1) q € L, (R"), real,
(1.2) ag € HL® (R"), real, i,k=1,...,n
(i.e. the ay are Lipschitz continuous), the operator L is defined and is elliptic if
(1.3) Zaaux)Ex > 0 (iiks=.1,. .5, 1)
L is called formally selfadjoint if
(1.4) i = ki k=M1, 'n)

In the case n = 1, if g is bounded below, it is well known and essentially due
to Hermann Weyl [22] that L is essentially selfadjoint. In the case n >3,
however, examples of Ural'tseva [19] and Laptev [9], cf. also Maz'ya [10],
show that this property of L may fail for higher dimensions. Both these exam-
ples rely on the fact that the a are rapidly increasing since they take g = 1.

On the other hand, there are several results which guarantee the essential
selfadjointness of L if the coefficients a are well behaved. Inthecase L = — A
there is already a large number of results. In particular, we mention the papers
of B. Simon [15], T. Kato [7], and C. Simader [14] which treat the problem
under the minimal regularity assumption g € I* resp. g € I2,., as we do here.

In the case of variable coefficients a;, under suitable conditions on the
potential g, the essential selfadjointness of L was established if the largest
eigenvalue A(x) of the matrix (ax(x)) does not grow substantially faster then
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K|x|? as | x| — 2. Some additional power of In| x| is also possible. This
is due to Ikebe — Kato [4]. Results which allow a faster growth of A(x) are,
among others, due to K. Jorgens [5], H. Triebel [ 18], Stetkaer-Hansen [16],
J. Walter [20], [21], and Kalf-Walter [6]; cf. in particular a recent paper
of Devinatz [2] and the paper of Laptev [9] mentioned above.

In the case the largest eigenvalue A(x) of (au(x)) grows substantially
faster than K {x 2 it seems that the conditions given up to now for the essential
selfadjointness of L imply that the lowest eigenvalue A(x) of (ax(x)) has the
same growth behaviour as A(x) in some sense. See e.g. Laptev’s case ag(x) =
= a(|x|)d where L is essentially selfadjoint, and Devinatz’ result [2] of which
a variant is given in theorem 1.2 of this paper. Note, however, that Laptev’s
counterexample has the form

ai(x) = a(x)du

where A(x) = A(x). So, the above comparison of the growth of A(x) and A(x)
has to be understood in a specific sense. For a precise formulation, see theorem
1.1,.and,.1.2;

In this paper, we give some contributions to this argument. The first
result states that L is essentially selfadjoint if the largest eigenvalue A(x)
does not grow faster that K |x|*A(x), in the sense that

(1.5) sup{A(x) | x € B,g — Bg}/inf{A(x) | x € B,z — Br} <. KR?* + K

for all R > 0 with some constant K. Here, Bg denotes the ball of radius R with
the origin as center. — For simplicity of exposition we restrict ourselves to
the case that g is bounded below, i.e. that there is a constant ¢ > 0 such that

(1.6) it

and we do not allow first order terms b;0;u. — Our first result reads

Theorem 1.1. Under the assumptions (1.1) — (1.6), the operator L is essen-
tially selfadjoint.

Note that in (1.5) a slightly faster growth of the type KR*(InR)* instead
of KR? is possible but we omit the proof (this can be done with a “hole-filling-
-method” from non-linear elliptic analysis). Theorem 1.1 is proved in 3. The
proof employs an inequality which follows from the Moser-technique [11]
in the theory of non-linear elliptic equations. With this method, we obtain
also another version of Devinatz’ result [2] assuming less regularity for the

ay. For this purpose, the following condition is sufficient: There exist constants
K and r > 0 such that
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(1.7) sup{A(x)| x € B(y)}/inf{A(x) | x€ B,(y) < K, yeR"
for all balls B/(y) with radius r and center y.

Theorem 1.2. Under the assumptions (1.1) — (1.4), (1.6), (1.7), the operator
L is essentially selfadjoint.

The proof is given in 3. Note that (1.7) is almost a “pointwise” condition
for the quotient A(x)/A(x) since r may be small. — We also intend to give a
pointwise condition for a; which yield essential selfadjointness:

(1.8) A(x)/Mx) < K, xeR"
and
(1.9) |Vai,,(x)|/,1(x)sK, ik =il . X € R,

with some constant K > 0. .
In this case we need more integrability for the potential g

(1.10) g€ LindR")

Theorem 1.3. Under the assumption (1.1) — (1.4), (1.6), (1.8) — (1.10), the
operator L is essentially selfadjoint.

The proof is given in 3 and uses an interesting inequality about non-
-variational elliptic operators due to Pucci [12] and Alexandroff. Because
this technique works only for HZ" (R") — solutions this explains why we
need condition (1.10). Furthermore, let us mention that it is an open problem
to prove essential selfadjointness of L if one assumes instead of ¢ = —c the
condition, that L is bounded from below in % ie.

(1.11) (Lo.o)= —i]el3 @eC§ (R,
some constant A (| . |, = P-norm; (.,.) = scalar product in [?). This is
interesting even for the case L = — A + ¢. For this problem, we present

the following observation:

Theorem 1.4 Let g€ 3, for n = 2,3 and let q € I5,c, p > nj2 forn > 4.
Furtheormore, let |ag(x)| < K + K |x|?, xeR", with some constant K and
suppose (1.2) — (1.4), (1.11). Then L is essentially selfadjoint.

The proof is given in 3. For the case of regular coefficients, cf. Wienholtz
[24]. The only difficulty is to obtain a certain regularity theorem (cf. theorem
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2.2). — The proofs of the theorems are all based on the fact that L is essentially
selfadjoint if there is a A€ R" such that Lu + Au = 0 has only the trivial
[*-distribution solution.

We finally remark that some of the analytical tools of the “theory of
essential-selfadjointness” can be used nicely to derive simple proofs of Liou-
ville-type theorems (e.g. solutions of Au =0 which are bounded in all R"
must be constant). Some examples of this type are given in the appendix to
this paper.

Throughout the paper, %, and H{;?, denote the usual Lebesgue and
Sobolev spaces which consist of all functions which are (locally) p-integrable
(with m—th derivatives in If,, for ue H{.R).

The results of this paper were found by the author in 1973 during his
stay in Berkeley and presented in talks in Gottingen and Linkdping 1974.
We did not publish these results yet because of the lack of physical applica-
tions. But the recent work, cf. references, gives now sufficient motivation to
justify this. For a mathematical application or motivation see Triebel’s paper
[18] and also the work of H.O. Cordes on Banach algebras of pseudo differen-
tial operators (to appear), where he needs that powers of second order elliptic
operators with variable coefficients are essentially selfadjoint, cf. [1].

The autor wishes to thank to H. O. Cordes, T. Kato and H. Kalf for
interesting discussions on the subject.

2. Regularity theorems.

A function u e I3,{R") is called a distributional solution of equ. Lu =0
iff (u, [*¢) =0 for all ¢ e C§(R"), where [*¢ = — Zy0i(audip) + q0,
(i,k=1,...,n). — For the proof of theorem 1.1 and 1.2 we need

Lemma 2.1. Let ue I3,.(R") be a distributional solution of Lu =0. Assume
(1.1) — (1.3) and that q > 0. Then
ue HL2(R")

Proof Let we CF(R"), w >0, and fwdx = 1. Set wy(x) = w(h™'x) and let
w, * v denote the convolution between the I3,.-function v and the mollifier
w,. Furthermore, for | > 0 set v, = min{|v|, I} sign v. Now, inequ. (4, L p) =0
set

@ = Wy * [Tz(wh * “)1]
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where T € CP(R",t > 0,and t = 1 on a ball Bg of radius R. This yields — with
U= (wp*u) —

2.1) O=wLp)=A+B+C
where A= (u, (6,‘(1“) 6,- [w,, * (1.’2 U)]),

B = (u, ay [(akwh) * 0; (rZU)])
C = (qu, wy * (12U)).

Here and in the following we use the summation convention i,k = 1,...,n.
Since ue I3, and axec H..®, we may estimate

(2.2) |A|SK+KH1.’VU“2
with a (generic) constant K = K(r) not depending on h and |

(In the following, we use the same letter K for different constants). We rewrite
B in the form

(2.3) B = (Odwy * u), awdi(t*U)) + D
where
D = (u, a[8xwp * (8:(12U)] — Oxoop * [and; (12U)])
and estimate
24) D] <K|[V@*U) |2 | Von [l sup {ffau—aul. — 1) [ = [l < kh}

where | . | o:;r denotes the [°-norm taken over a neighbourhood Tof supp
1. — Since a; is Lipschitz and u € I2, the last factor of the right hand side of
(2.4) remains bounded for h —» 0, | » o0 and we obtain

(2.5) |[D| <K+ K|VU|,

finally, we observe that for h — 0

(2.6) C - (qu, t*uw)

From (2.1) — (2.5) we conclude

2.7 (Odop * u), ayd;[tH(wh*u)]) + C =E
where

(2.8) |E| < K + K| tV(wy*u) |2

uniformly in h and [. Since ay € H..@, the ellipticity constant is uniform on
compact domains of R". Thus we conclude from (2.7)
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(29) c.|tV(wy*u)||3 + C<E+F
where ¢, > 0 and

F = — (O@n * u), aad0it*) (wn * u)).
Performing partial integration we obtain

| F| < | (con*u, [ai0:t%)] (wn * w) + auldit*) Odon * u)y) |
and thus

(2.10) |F| < K + K | tV(wn* u) ] 2
uniformly in h and I. From (2.8) — (2.10) we conclude

(2.11) %c, | eV(@ws*u)|3 + C <K,

uniformly in h and I. For fixed /, the number C remains bounded as h — 0
on account of (2.6). Since this holds for all te C§(R"), T = 0, we obtain

w e Hy* (R
and, by weak compactness and lower semi-continuity
%ct [tV || 3 + (qu, T*u) < K,
Since ¢ = 0, we conélude from the last inequality
2.12) 2el Vw3 <k

uniformly in I. From this, it follows that also ue H;2(R"), q;e.d.

Theorem 2.1. Under the hypotheses of lemma 2.1
ue Lg.n HEA(RY

Proof : Since we know already ue Hj.%, we conclude from (u, L) =0 the
inequality »

(2.13) (audeu, 0:9) + (qu, ) =0

for all ¢ € C&(R"). By approximation, (2.13) extends to all pe L°n H LY(R")
with compact support.

Thus we may set ¢ = 72y |w|?~" and obtain
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(214) (a,-kﬁku, ai(rzu, |u,|"_ 1)) <0

where we could drop the term containing g since ¢ > 0. — Inequality (2.14)
is the starting point of the first part of the Moser-technique [11], and since
all te CZ(R"), p =1, 1 > 0 are admissible, it is well known, cf. [8], [11],
how to conclude the local boundedness of u from (2.14). Thus ue LG (R")

and the HZ;2-property follows by the linear theory of elliptic operators since
— Ofandu) = — que I3, in the sense of distributions. g.e.d.

Corollary to theorem 2.1. If additionally qe€ Li,. then ue H 2R
This follows from standard IP-coerciveness results of the theory of elliptic
equations.

Theorem 2.2. Under the assumptions of theorem 1.4 — without assumption
(1.11) — every distributional solution uel3,(R" of Lu =0 belongs to
o Hig2(R).

Proof: We omit the proof for n = 2,3 which is a simple consequence of Gardings
inequality in L, s < n/(n — 1). — Thus, let n > 4. By hypothesis, g€ Lf,.
with p > n/2 and we may write p = (n + nd)/2, 6 > 0. We first prove: If
(ue Lb,{R") with B =2 then ue ¥ where

B =0 if n/f—25/1+9) <0,
B is an arbitrary number if n/f — 26/(1 +9) =0,
B =n/[n/B—28/(1 +8)] if n/p—25/(1 +0)>0.

In fact, since u € If,. and q € I%,., we have uqg € L, and thus Lue Li,. where t
satisfies 1/t = 1/ + 1/p = 1/B + 2/(n + nd). By the I’-regularity theorems
of elliptic analysis, V2u e L!,, and by Sobolev’s inequality we obtain ue Ly
where B = nt/(n — 2t) = n/[n/t —2] = n/[n/B—258/(1 + )] provide that
n/B—28/(1 +6) > 0. Otherwise, f’ = oo or f arbitrary. — By recursion we
obtain u e I29(R") where B(0) = 2, B(i + 1) = (B()) and (.) is defined above.
If n/B() — 20/(1 +8) <O for some i then ue L5, (R") for all re [1,00]. If
n/B(i) — 26/(1 +8) > 0 for all i =0, 1,2,... we show that B(i) = oo (i = )
and hence ue I;,(R") also in this case. — Suppose the sequence (B(i)) were
bounded. Then it converges to some number B, since f(i + 1) > B(i). Ho-
wever, this leads to the contradiction B, = n/[n/Bs, — 26/(1 +6)] > Pw- —
From ue L}, re[l,], and g€ L, p > n/2, we conclude que Lf,., with
p* = p*(p) > n/2. Thus Lu € LE(R") and V2u e LE.(R". By Sobolev’s theorem,
us Le.~n HLAR") which proves the theorem.
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3. Auxiliary lemmata and proof of the theorems.

As it is well known, cf. e.g. [3], the essential selfadjointness of L follows
if one can prove the existence of a number A€ R such that Lu + Aou has
no non-trivial distribution solutions u e I?(R"). In the following, we prove
this under the assumptions of theorem 1.1 — 1.4, respectively. The theorems
then follow from the corresponding lemmata as a corollary.

During the calculations, the letter K denotes a generic constant, namely
a constant not depending on the critical parameters which may be different
in each use. Finally, since L is real, it suffices to consider the real I*(R").

Lemma 3.1. Under the hypotheses of theorem 3.1, there are no non-trivial
distribution solutions ue I*(R") of the equation Lu + Aqu = 0 if Ao = ¢ where
¢ is given by (1.6).

Proof: We consider balls B of radius R and center 0. Let {bg,4} denote a set
of k, open balls of radius R/4 and center y € 0B;g;, which cover 0B3g,, and
let bg), the corresponding concentric balls. The number k, can be chosen
independently on R. Now, let 7 be any Lipschitz continuous function with
support in bgj,. Since ue Lij.n H}*(R") according to theorem 2.1 we have

for all ¢ e C&(R")
(audiu, 0:p) + (qou, ) =0, qo=q + 4o =0,
and for any p > 1 by an approximation argument
(awdiu, 04t%u |u|P~ 1) + (qou Tu|ulP~') =0
Since g, = 0 we obtain
(awdiu, 0; (t*ulu|?~ 1) <0

The last inequality is the starting point of the first part of the Moser-technique
[11] which is used in the theory of non-linear elliptic differential equations.
With an appropriate choice of T one obtains a recursion relation for the
[P-norms of u taken over certain balls < bg,,, and, as it is well known, arrives
at the inequality

ess-max {|u(x)|? | x € br2} < C [r |u|?dx
where jR denotes integration over bgr and
C =KR "(A /A_)"?

where
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A_ =inf {A,(X)‘XEBZR 3 BR}
A, =sup {A(x)|xe Bz — Bg}

A(x), A(x) being the largest resp. smallest eigenvalue of (a;(x)). Here we have
used the fact that bg;, = Bor — Br. The size of C above is well known in
non-linear elliptic analysis (cf.e.g. [23]); it is a simple exercise to derive it
via the Moser-technique. On can derive it also via homegeneity (even the
factor (A, /4_)"? but this requires care). By assumption (1.5) it follows that C
remains bounded as R — oo and thus

ess-max {|u(x)|? | x € bra(y)} < K [y |u|?dx

where K doesn’t depend on R and j* denotes integration over B,g — Bg.
Since the bg/4(y) are open and cover 0Bj3g, we conclude

3.1) ess-max {|u(x)|?|xe U} < K [, |u|?dx

where U is some neighbourhood of 0B3g/,. Now, we use the fact that weak
solutions of Lu + Aqu = 0 satisfy a maximum principle in the sense that

(3.2) ess-max {|u(x)|? | x € B3g)2} < ess-max {|u(x)|?>xe U}.

This follows from the inequality g + 4o > 0 and a truncation argument,
cf. e.g. [8], using testfunctions

¢ = ess-max {o,u — I}, | = ess-max {u(x)| xe U} etc. — From (3.1)
and (3.2) we obtain the statement of the lemma if we pass to the limit R - 0

since [, |u|?dx = 0 (R - o).

Lemma 3.2. Under the hypotheses of theorem 3.2 there are no non-trivial
distribution solutions u € I*(R") of the equation Lu + Aqu = 0 if o > ¢ where ¢
is given by (1.6).

Proof: Let By the ball of radius R and center 0, and y € 0Bg. We consider
balls B,(y) of radius r and center y. Let T be any Lipschitz continuous function
with support in B,,(y). As in the proof of lemma 3.1 we conclude for all p > 1
(recall ue L.~ HL2(R") by (2.1)

(a,-kaku, 0;(‘!:211 |u|”' 1 )) <0
From this inequality, we obtain with the Moser-technique [11],
lull%r < Cla |ul?dx

where | . ||, denotes the L°-norm taken over By(y), {2, the integration over
B,,(y). The constant C depends on r and the eigenvalues of (au(x)), in fact,
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C = Kr~"(sup{A(x) | x € By()}/inf {A(x) | x € B2,(y))"*.

By our assumption (1.7), C is bounded uniformly with respect to ye€ 0Bg
and ReR, if r is fixed. — Since ue I?, |5, |u|?dx < ¢ for R > R() und thus

Py bee < Te SR = RiE)
From the maximum principle (cf. the proof of lemma 3.1) we conclude
ess-max {|u(x)|?|x e Br} < ess-max {|u(x)|?|x€ 0Bz} < Ce.

Passing to the limit R —» o0 we obtain the statement u = 0. q.ed.

Lemma 3.3. nder the hypotheses of theorem 3.3 there are no non-trivial
distribution solutions ue I*(R") of the equation Lu + Agu = 0 If Ao = c where
c is given by (1.6).

Proof: Let Bg the ball of radius R with the origin as center, and for each y € 0Bg
let us consider balls B,(y) of radius r and y as center. Let e H** such that
t =1o0nB,y),r =00nR" — By(y),t = 0,and |V1| < Kr™',| V1| < o
From the corollary to theorem 2.1 we know that ue H 2:R") and thus, if
Iu + Aou in the sense of distributions,

a,-ka,-aku = (5,-a,-k)5ku + qou ae. in R"
where qo = q + 4o. Thus

4300 (WA T") = 2ay7"0udu + dnagut" "' OudT + )
+ (n10:0xt + n(n — 1)00, VAUt % + gou*t".

We now use the fact that go > 0 and that, by hypothesis, A(x) < KAi(x) and
| Vaa(x)| < KA(x) where A(x) is the largest and A(x) the smallest eigenvalue
of (ax(x)). Applying Young’s inequality we easily obtain
aundidu?t") = — K A(xut" "2

with a constant K, which may alter it’s value during the estimates. The last
inequality yields rii

A?t") = — K2
where A is the uniformly elliptic operator

A = 27 (Wan(x)30

From a theorem of Pucci [12] — Alexandroff we conclude

(3.3) = | wter |7 < K, (e 2ydx
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ie. the inequality || v|% < K [|f|"dx if Av>f, v >0, and v satisfies zero
boundary conditions. — From (3.3) we obtain
(34) | w?t" | » < K, fyu?dx

where |, denotes integration over By,(y). If we fix r, the right hand side of
(3.4) is smaller than ¢ if R > R(g) since ue [*(R"). Now it follows that
max {|u(x)| | x € Bz} <& for R > R(). From the maximum principle — cf.
the proof of lemma 3.2 — we conclude

|u(x)| <e on Bg, R =R(e),
and thus u = 0. g.ed.

Lemma 3.4. Under the hypotheses of theorem 1.4 there are no non-trivial
distribution solutions ue I*(R") of the equation Lu + Aou =0 with Ao > 4
where A is given by (1.11).

Proof: Let ue ?(R") and Lu + Aqu =0 in the sense of distributions. Set
Lo = L + Aoid, qo = q + Ao. Then

(3.5) (Lo, 9) = (Ao — 4) | @
By theorem 2.2, ue L5~ H2(R"), and hence

3, e CE(R).

(aadis, 0:0) + (qou @) = 0, @ € CF(R")
Since ue LE.n HL2(R") we obtain with an approximation argument that
(audiu, 0ut?)) + (qou, ut®) =0,

where 7 is any Lipschitz-continuous function with compact support. By a
simple calculation, using the symmetry of (ax), we obtain

(aiOku, 5i(uT2)) = (auli(ut), 0{ut)) — (aikuzaif, 0kT)
and thus — using also (3.5) —
(3.6) (Lo — A) [|ut |3 < (audi(ur), d{ur)) + (qout, ut) < (agu’dyt, 0;7)

We now choose 7 such that 7 =1 on Bg, T =0 on R" — Bp, Vr] <R
on B,g — Bg. — By hypothesis, |aix| < K + KR? on Bz — Bg. So, the right
hand side of (3.7) can be estimated by K | u || 3;4 where | . | 2;x denotes the
I?>-norm taken over B,g-Bg. Thus

(o = D) lue 3 < K Jul 3:s

and the right hand side of the last inequality tends to zero as R — oo 'since
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ue I?. The left hand side tends to (4o — 4) | u| 3 and we conclude u = 0 which
proves the lemma.

Appendix. Liouville’s theorem for elliptic equations.

The purpose of the following lines is to present simple proofs of Liouville
type theorems, cf. e.g. [13] for classical (and new) results and references con-
cerning this argument. We use some of the analytical tools and ideas of previous
sections. We present Liouville type theorems for non-linear elliptic systems
up to dimension n = 4 and for linear elliptic systems in any dimension (i.e.
bounded solutions must be constant). — For large dimensions, a recent
counterexample of Necas showing non-regularity of solutions to non-linear
elliptic systems is also a counterexample for the conjecture that a Liouville
type theorem holds in this setting. — Necas’ example is a system of Euler
equations 0;F{Vu) = 0 where u and F; have n* components. In his example
the weak solution u has the components xx, |x|~*, cf. Necas, Proc. Soviet
Conference on Partial Differential Equations, Moscow 1976. Passing to the
differentiated equation 0;0;F(Vu) = 0,j = 1, ..., n, one obtains a linear elliptic
system in n* equations with measurable coefficients and the solution v = Vu
which is bounded in all R".

For scalar non-linear elliptic equations, say

(A 1) i Z?:l 6,~F,~ (VU) =0

Liouville’s theorem follows from de Giorgi’s theorem concernin the oscillation
reduction property of solutions of (4 1)

(A2) osc {u(x) | x € Br} < 0 osc {u(x)| x € Byr}

where 0 < 6 < 1. This is usually used in the small for proving C*-regularity.
However, it can also be applied in the large to prove a Liouville theorem.
(Iterate A 2). Note that some care is required for proving de Giorgi’s theorem
for equ. (A 1) in the form (A 2) without the additional summand KR* on the
right hand side of (A 2). Apparently, there is a connection between Liouville’s
theorem and the regularity of solution to elliptic equations. It is not known
whether there holds a Liouville type theorem for the uniformly elliptic non-
-variational equation

aikaiaku == 0, ue H;%é"

with a; € [°. This seems to be connected with the problem of obtaining zero
order estimates for u (i.e. C*-estimates for u where o depends only on the
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quotient of the maximal and minimal eigenvalue of (a;), and of || u || ,, and n.)
We anticipate that a Liouville type theorem will be easier to prove than a
regularity theorem.

We do not claim originality concerning the following theorems. E.g.,
it was pointed out by R. Finn to the author, that theorem A 1 was proved

by him with a similar techinique. We hope that the general remarks above
are illustrative. ¢

(i) A two dimensional Liouville theorem for nonlinear elliptic systems.

Let F(x,n), i = 1,2, be r-vector functions on R? x R?" satisfying the following
conditions:

(A 1) Regularity. F{x,n) is measurable in x € R? and continuous in ne R¥.
(A 2) Coerciveness. L2 \Fi(x,min; = C|n|* xeR?, n,e R, n = (n,,1,) € R>".

(A 3) Growth & zero condition: | Fi(x,n)| < K|n|, xe R%, n = (4, n,) € R*
with some constant K.

Let Lu = — X}_0;F(x, Vu) in the sense of distributions.

Theorem A 1. Assume the conditions (A3) — (AS), let n =2 and let u
be an r-vector function such that ue Hj,.n L*(R") and Lu < 0 in the sense of
distribuitions. Then u is a constant vector.

Remark: If r = 1, one may replace the condition u € L* by “u is bounded
from above”.

Proof of theorem A 1: By a translation, we may assume u > 0. Let B =
={xeR"| x| < R} and 1e H"°(R") such that © =1 on Bg, 1 =0 on
Byr—Bg,7 = 0,and | V| < R™! on B,, — Bg. Since ut? > 0, and ut? € H!(R")
has compact support in R", we have {Lu,ut?) <0 and thus

i [Fi(.,Vu); (ur?)dx <0
Calculating d4{ut?) by Leibniz’s rule using A4 and A 5 we obtain
(A 6) | Vul*t?2dx < K [ |Vu||u|t|Vz|dx
with some constant K. Since u is uniformly bounded and |Vz| < R™*, we may
estimate the right hand side of (A 6) and obtain
A7) [ |Vu|* t%dx < Ko {, |Vu|*t%dx + Ko 'R 2, ldx
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Here, j' « denotes integration over B,r — Bg. We have used the fact that Vz
has its support in B,gr— Bg. Now, choosing ¢ small enough, we conclude
from (A 7) that

[|Vu|*1%dx < Ko 'R"2[, 1dx < C

uniformly for R - c and thus Vue I*(R"). Once knowing this we look at
(A 7) again, choose o large, and pass to the limit R — oo. This yields

f|Vul?dx < Ke"'R™2[,ldx < o7 !C

since [, |Vu|?dx — 0 for R — co. The theorem follows by passing to the limit
G — 0.

In the scalar case r = 1 — where one needs only the hypothesis that u
is bounded from above — one has to take the function max{u — [,0}7* as
test function and concludes in the same manner as before. One will arrive
at the statement max{u — I, 0} = const., and Liouville’s theorem follows too.

(ii) The case n =3 and n = 4.

Let F, i=1,...,n, be r-vector functions on R"™ satisfying the following
conditions

(A 8) F; is uniformly Lipschitz continuous on R™

(A 9) Zero condition: Ffo) =0,i=1,...,n.

(A 10) Monotonicity/Ellipticity: There is a constant ¢ > 0 such that
ZAFdn) — FO)V =) =cln—¢

for n =My,...,n)ERY, neR", { =((y,... {HeER™
We shall consider the equation

(A11) OiF{(Vu) =0, ueHi*(R"), u = (uy,...,u),

2 e
e = 25 mg

in the sense of distributions (summation convention!)

Theorem A 2. Let ue HL2(R")n L*(R") be a distributional solution of
equation (A 11) and assume (A 8) — (A 10).
Then u is a constant vector.

Proof. We consider only the case n = 4. The proof for the case n =3
is almost the same. — From (4 8) and (4 9) we conclude a growth condition
| F{n)| < K |n| and from (A 9) and (A 10) a coerciveness condition, namely

SFm=clnf, G=1,...,n).
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As in the preceding proof we derive the estimate (g |Vu|>dx < KR™2 [,pdx
where [ etc. denotes integration over Bg = {x e R" ||x| < R}. Since n = 4
we conclude that

)

(A12) R™?[g|Vul’dx <K as R- o

Now, we set ¢ = D;*(z2Du) where 7 is defined as in the proof of theorem
A1 and Dj"w(x) =+h™! (WMx + he;) — w(x)), e; being the j-th unit vector.
By (A 11)

(F{Vu), 0,) =0

and thus

(DJF{Vu), 0t*Dju)) = 0
Using the Lipschitz continuity fo F; we obtain

(D}F{Vu), ©20:Du) < K (|VD%u | Vz| | Dhu|dx
and from the monotonicity condition u
[ |VD%u|*t?dx < K [|VDhu||Vz|t|Dhu|dx.
By a standard argument, it follows that ue HZ? and
{|Vou|? 12dx < K [|Vou||Vt|t|0u|dx, j=1,...,n,

and — cf. the proof of th. Al — i
(A13)  [|Vou|*1%dx < o [,|Voul* t?dx + 67 *kR™2 [3x |0u|?dx

where _[,., denotes integration over B,gr — Br. By (A 12) the quantity
R™%(,r |0;u|*dx is uniformly bounded as R - ®. Choosing ¢ = 1/2 we ob-
tain that [ |Vd;u|?dx is uniformly bounded and thus Vou e I}(R"),j =1,...,n.
Once knowing this, we go back to (A 13) with another ¢. Passing to the limit
R — o we have {,|Vdu|*t?dx — 0 since Vdue I*(R"), and we obtain

[|Voultdx < lirgfgp KR 2[,r|0ul*dx <7 'K
(recall A 12). Passing to the limit ¢ — oo we arrive at the equation
I|Vaju|2dx =0\j=1,...,n
and thus u must be linear. Since u is bounded, we obtain u = const.

(i) A 'Liouville-theorem for elliptic systems with constant coefficients, n
arbitrary.
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Let ai%, i,k=1,...,n, and v,u = 1,...,r be real numbers and
a(u, v) = [alfou,dlv,dx

where u and v are r-vector-functions with components u, and v, in H'"3(R"),
and a summation convention is used, v,u =1,...,r, i,k =1,...,n.
We assume that the bilinear form a is strongly elliptic, namely

(A 14) atk Ak 6Eu > 0
for all A =(Ay,...,4)eR" & =(&y,...,5)eR, A#0, 0,

Theorem A 3 Let ue L*(R") be an r-vector-function which satisfies the
strongly elliptic equation
(A 15) a(u,v) =0

JSor all r-vector-functions v with components € C§(R") in the distribution sense.
Then u is a constant vector.

Proof : By well known regularity results, ue C*°(R"). Let a = (ay,...,a,)
be multi-indices with «;€{0,1,2,...} and " be the corresponding higher
order derivative. Then a(6%u, v) = 0 for all Lipschitz-continuous functions v,
and we may set v = t2 0°u where 1 is a Lipschitz continuous function such
that 7 =1 on Bgr ={xeR"||x| <R}, 1=0 on R"—Bg, |Vr|<R.

By a simple calculation

0 = a(0°u, 7 0*u) = a(t0"u, 10*u) + B
where
|B| < €| V(r6°u) I3 + K) || |Vr|o*ul|3

Since a is a strongly elliptic bilinear form with constant coefficients, we may
estimate

a(t0*u, 10"u) = C | V(xé*u)| 3
where ¢ is a positive constant. Thus
|V(zo*uw) |3 < K |||Vz|0*u]| 3
and from the properties of © we conclude
| Véu || 25 < KR™2 || & || 312z

where | . || ;& denotes the I?-norm taken over Bg. Since this holds for all «
of order m, we obtain

RSP —

T e m—m
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IV™*tu |3k < KR™? || V™| 2;2r
and by recursion
(A 16) [V7u]3:r < KR™*" |u 2520
where Z = 2"
Since ue L”

|u3ize < KR"

and the right hand side of (A 16) tends to zero as R — co. This yields | V'u |, =0
and u must have components which are polynomials. Since ue L by hypo-
thesis it follows that u must be a constant vector. g.e.d.

We remark that it should be possible to extend theorem A 3 to strongly
elliptic systems with variable coefficients which approach rapidly to constants
as the argument tends to infinity.

(iv) Zero-order Bernstein theorems.

The famous theorem of Bernstein states that any solution to the minimal
surface equation defined on the whole plane must be linear. It is known today
that this holds up to dimension 7. Until now, it has not been possible to prove
this in a simple manner as in (i) — (iii) of this appendix. We observe, however,
that there is a class of equations for which a “zero-order” Bernstein-theorem
can be proved in a simple way. By this we mean that any solution of the equa-
tion (not only those which are € L°(R")) must be constant. Although the
theorem below is not a deep one, we included it here because it leads to the
analogue question whether a zero order Bernstein-theorem holds in higher
dimensions. For simplicity we consider scalar elliptic equations in two varia-
bles of the type

Lu = — dfau(x, u)ou = 0, x e R?

(summation convention i,k = 1,...,n), and assume the following conditions
for the ay, i,k =1,2,

(A 17) Regularity: az(x,n) is measurable in x € R? and continuous in 7€ R'.
(A 18) Ellipticity: au(x,n)Eiéx > 0 for & = (&1,&2) #0, xe R%, ne R

(A 19) Symmetry: ay = ay, i,k =1,2

(A 20) Growth condition: There are constants K > 0 and é > 0 such that

aa(x,n) < K(1 + |’7|_1_6), xeR? ne R
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Theorem A 4. Let ue HL2(R?) N LE(R?) be a weak solution of the equation
Lu =0 in all R? and assume (A 17)—(A 20). Then u is constant.

Proof : For ve H"?(R") with compact support we have
aul ., u)0ud;vdx =0

and we set v = 7%f,(u) where 7 is defined as in (iij) and £, (§) = &[e + | £ |2]@~ V2
Note that fy(u)e H..2. With this notations we obtain

ail -, u)T?f; (W)oududx = — 2 [au( . , uytf.(u)oud;tdx.

We observe that the right hand side of the above equation remains bounded
as ¢ - 0. Since (ay) is positive definite and

PS4 31E1P e+ JE]2 P2 731 > 0
fs'(é)—’élf“’_l €—0), £ #0,

we obtain via Fatou’s lemma that
8 faul( ., uyt? |u|®~ *oududx < — 2 fay( ., uytu’ Oud;rdx
where the integral on the left hand side has to be extended only over the set
where u # 0. Using Young’s inequality for positive definite forms we obtain
(A21)  faul.,u)? |ul’" ' Oududx <
< o [yaul., u)t? |u]’ " 1Owdudx + 626" [yaul.,u) |u|?* 100k Tdx

The integrals do not run over the sets where u = 0, and {4 denotes integration
over B,g — Br. On account of the growth condition (4 20) we obtain that
|aa(.,u)||ul’** is uniformly bounded and also that the second summand
in the right hand side of (A 21) is bounded by Ko~ '. We then proceed as in (i):
Choosing first ¢ small, say ¢ = 1/2, we obtain that

(A 22) ai (., u) |ul* ' Oudue L' (R* - S)

where § = {xe R?|u(x) = 0}. Next we fix o, perform the limit as R — o,
and the first summand in (A 21) tends to zero because of the integration {a
and (A 22). Passing to the limit as ¢ — oo we obtain ay |u|*~'udu = 0 for
u # 0 and thus Vu = 0 a.e. The theorem follows.

(v) Liouville’s theorem in the discrete case.

We define the set of grid points

Ry = {x = (myh,...,m,h)| m, integers} where h > 0.

it S S e R S
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The functions u : R} — R are called “grid-functions”, and the space of uni-
formly bounded grid-functions is denoted by L*(Rj). The translation operators
E*" on grid-functions w are defined by

Ef"w(x) = w(x £ he;)
where e; is the i — th unit vector. The difference operators are defined by
Dt = + k" Y(EE" — I), T identity,
and finally the discrete Laplacean by
R =EDID =10
A grid-function u is called discrete hdrmonic if
(A 23) —Au=0 on Rj

(For the purpose of our discussion, we could have chosen h = 1, but this
notation seems to us more suggestive).

Theorem A 5. Every discrete harmonic function ue L°(R}) is constant.

Proof : Let a = (a,...,%,) be a multi — index, a; € {0,1,2,...}, and D}
be the product of the difference operators (D¥y*. Let (v, w)h = h"Z{x)W(x),
x € R, where one of the grid-functions v, w must have finite support in Rj.
Let R be a multiple of h and let Qg be the set of grid-point- x & Rp such that
| x| < R. Let 7 be the grid-function with the properties T > 0, T = 1 on
Oxr, T =0 on Ry — Qzr, |Vit| < KR™!, K being independent on R. Note
that V,7 = Oon R} — Qg +s. From (A 23) we conclude via partial summation -
that

(VhD:u’ Vh(Tmu))h we 01 Vh = (Df) siein g D’:)’
and using the discrete Leibniz Leibniz formula, namely,
Dvw) = vD'w + DIvE!w

we obtain
(ViDhu, VD), < Y (| VaDhul, | Vit| | EXDitt|)n.
i=1

We estimate

n

|ViDhu| <h™! |Dhu| +h™' Y, | E*Dlu|,
1
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use Young’s inequality to split the products | D%u| | E*D%u| and obtain (recall
wi=ilion QR) h"Zx |V,,D,"u|2 = KR—lh_lhn Zy ID2H|2, xXe QR, PE Q2R+h-

The inequality above holds for any multi-index « of order m, and con-
sequently

R E, |Vrttu|2 < KR™'h'H"Z,|Viu|? xeQr, Y€ Qor+h
By recursion, we derive
(A 24) WL |Vatiu|2 < KRT" WM X, )% x € Or, ¥.€ Quzs

with some constant M which does not depende on R.
Since ue L°(R}) we have

WL, |u|? < KR", yeQur

and the right hand side of (A 24) tends to zero as R — 0. Therofore, Vet =0
and we claim that, also in this case u = const. In fact, if V;* 'u = 0 then Vju =0
then Vju is constant and V2~ 'u linear. Since u € L°(R}), the linear grid-function
Vi~ 'y must also be bounded and thus constant. Repeating this argument,
we obtain successively Vi~ 2u = const., Vi 3u = const.,, until we arrive at
the statement that u = const. q.e.d.

With the above method one can easily derive discrete analogues of the
theorems A1 — A4 and of theorem 1.4.

To our best knowledge it is an open problem to derive a discrete ana-
logue of Bernstein’s theorem for the difference approximation of the minimal
surface equation:

D IDNL + | Val?) 2] =0, i=1. 0 n<T?
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