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A note on the law of the iterated logarithm for the empirical
distribution function

Barry R. James

1. Introduction and principal result.

Let X,,X,,... be iid. random variables, each uniformly distributed
in the interval [0, 1], and let F, be the empirical d.f at stage n, ie. forn>1
and 0 <t <1,

1 &
F"(t) = Z I[XiSt],
n =1

where Ijx,<q is the indicator function of the event [X; < t]. The purpose
of this paper is to obtain uniform upper bounds for t/F,(t), where we consider
only those values of ¢ above min (X}, ..., X,) = Z,;. In other words, we will
study the behavior of the sequence

M,= su A
z,.,slr)ﬂ F.(t)

As a first step in this direction, Kiefer proved (1972, Theorem 2) that
if Zpy < Zuz < ... < Z,y are the order statistics of X,,..., X,and k is a fixed
positive integer, then

lim sup o T ELE 1 a0,
nooo loglogn

Using the inequalities

100 su 2 NAw lor g
log log n _[zm,lz)nk] Ft)loglogn —

< an i n an
= F(Z,)loglogn loglogn’

together with Kiefer’s result, we see that

lim sup sup laganik levagzazadi evghol 1903 ¢:

nrwo | (Zar, 2o k) log log n
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This result was extended in [3] to the whole interval under consideration;
lemma 4 of [3] gives a law of the iterated logarithm (LIL) for M,:

. M
lim sup ————— =1 as.
log log n

n — o©

We note here that with regard to this LIL, the behavior of M, is determined
by the behavior of the minimum, in the sense that the extreme behavior of
M, is attained along the sequence (Z,)n>1.

Frankel (1976) published the following result extending Kiefer’s LIL to
an upper/lower class theorem: if (c,),>1 is a sequence of positive real numbers
such that
(a) the sequence is eventually (ultimately) increasing and converges to + o,

and
(b) (cu/n)s>1 is eventually decreasing to zero, then P(Z. = c./n infinitely
often) = 0 or 1 according as

© ck
Yec.~<w or =
n=1 n
Remark. Frankel’s expression (5) contains a very unfortunate typograp-

hical error (the exponent k has been omitted), and the statement above is
the corrected version.

In trying to obtain an analogous upper/lower class result for M,, we
note that the behavior of the kth order statistic now depends on k, which
changes the situation slightly. It turns out that M, no longer follows the same
behavior pattern as minimum, but rather that its extreme behavior is deter-
mined by the (values immediately below the) second order statistic. Our
mains result is that the sequence (c,),> ; belongs to the upper class (i.e. M, < c,
eventually as.) if and only if e " ¢2/n < co:

Theorem. If (cp)a=1 satisfies the monotonicity conditions (a) and (b) given
above, then P(M, = c, infinitely often) =0 or 1 according as
2

< ¢
Y e . Z<® g =®
n=1 n

2. Proof of the Theorem.

(Note: the proof follows the general lines of the proof of lemma 4 in [3].
Since that result has not appeared in print, all details will be given). By Fran-
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kel, nZ,, > c, i.0. with probability 0 or 1 according as £ e~ cZ/n < o or
= o0. So if the series diverges, then

Zn2

Ma= s2a= 2
Fn(ZnZ_)

= nZ.: = ¢, i.0.,a.s.,
which proves the lower class part.
Suppose now that the series converges, i.e. that

© 2

STyl o
o R
n=1 n

Set a, = pc,/n and b, = max(uc,, log® n)/n, where pu > 1 (its exact value to
be determined later). Setting m = [p + 1], we shall consider the supremum
in the definition of M, separately over the four intervals determined by Z,,
Z.m> an, by and 1. (Note: Frankel’s result guarantees that Z,, < a, eventually
a.s.,, so that all four intervals will eventually be non-empty. Cf. (i) below).
@ If k=1,

t Zok+y _ Nor+1 _

= Ink-

su < =

[Zoic: z,.r,)k“.] Ft) ~ FuZw) k
Now Y,; = nZ,, < c, eventually a.s., by Frankel. And if k > 1 is fixed, then
Te 2 (2c,)*!/n < o0, so that eventually as. we have nZ, x+1 < 2c, and
Y < 2ca/k < c,. It follows that whatever the value of u may be,

(1) sup <c¢, eventually as.
(Zny Znmd Full)
(ii) Since e " (uc,)"/n < c©, we have Z,, < a, eventually as. In other
words, the interval [Z,n, a,] is eventually non-empty, as., and
an Lo, N o

) sup < = = £ e
[Znm an] F'l(t) Fn(an) m m

(iii) Define m, = [¢"'*? "], and for convenience adopt the notation cm, = c(my).
We first note that m,. ;/m, — 1 as n — c0. Now, for n so large that m, ,,/m, < e
and all monotonicity conditions are fulfilled, and for i such that

log (uc(my+ 1)) — 2 < i < log(myb(m,)),
set

t

su >
eijmn <t < et my Fi (£)Ck
my<k<mp+,

pnizP(
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Since (a,).<1 and (b,), < are eventually decreasing, and since [a(m,+ 1), bm,)]
c v;[é'/m,, ¢*'/m,] we have

t

P( sup >1)= P( sup >1)<
ar<t<bx Fk (t)ck aimp+1) <t < b(my) Fk(t) Ck
mp < k < mupy my<k<mp+1

< z Dni
i
eventually, provided the set of i’s in the summation is non-empty. But for

this, note that for large n

c(mn+1) <C(m,,):c(m,.+1) L7 Mmy+1 &
My he 1 o Ma clmy) = o amy

e,

so that o(m,+1) < ec(m,) and therefore log(uc(m,+1)) — 1 < log(m, b(m,)),
i.e. there exists at least one such i.
So if we can show that ) p,; < oo, Borel-Cantelli will yied

n,i

3) sup <c, eventually as.

t, b) B (D)

Now

it 1
e P( o i m,.C(mn)>

eimp<t<ei*l/mn ka(t) R m,+1

mp < k<mn

Myt eitl ¢
=== P e my Fm ’
< m, c(my,) <m.. )
where we have used the fact that kF,(t) = number of X, ..., Xi < t. Since

M, +1/m, < e, and since binomial (n,p) — np has the same distribution as
n(1 — p) — binomial (n, 1 — p),

i i i+2 i
R Fm"e———e—s i Ly 4o
m,)] m, my,cm) m,

dope(piof pus © —(1—e—i gitco 8ot
i m, my —mn mnc(mn)

Since e2/c(m,) {0, we have

i i i—1
pnisP(an(l— : )—(1— : )ze )
m, m, m,

eventually.
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Now apply Bennett’s inequality ([2], formula (2.12), using for conve-
nience b = 1), to get

Pni < exp<— o1t h(ﬁ))’

where h(4) = (1 + 1/4) log(l + 4) — 1 > 0 for 4 > 0. Now &'/m, < b(m,) lo,
so that we may assume 0 < 1 — ¢'/m, < 1. Since €' > pc(m,+,) e for
the i’s being considered, and since h is monotone increasing (see [4], lemma
2.5), we have

_M>=r
3 -

Pni < exP(
e

uniformly in i for large n.

It follows that
Z pni < Z T'n 10g (mn b(mn))

<Y r,log(uc(m,) + Y. r.log(log® my),

where the sums are taken over n sufficiently large. Now convergence of
T e~ c2/n implies convergence of X e c,/n, and so by lemma 8 of Robbins
and Siegmund (1972),  exp(— c(m,)) < oo. This implies convergence of the
first series above if ph(1/e)e™3 > 1 (recall that c(m,) < c(mn+1)). And since
lim inf (c,/loglogn) = 1 (see the proof of lemma 8 in [6]), we have

c(my) = %log logm, = %log(log3 m,) eventually,

ie. the second series is bounded by Z 6r,c(m,), which again converges if
ph(1/e)e™3 > 1. In summary, if we choose pu satisfying pu > e3/h(1/e), (3)
holds.

(iv) By lemma 3.3 of [4], there is an a > 0 such that

AT o l/2|F(t)—tl<t”zlo 1
loglogn) 2 B

for all t (0, a], eventually a.s. Since nb, > log? n, we see that with probabi-
lity one, for n large and t € [b,,a],
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1/2
F.t) ' (log log n) T e
t nt t

1 1/2 1/2
2: 1 — .jzg_lsgilz 1()g _l_ 2: 1 b= !Eﬂs_yggilz 1()g n.
nb, b, log3n

This list expression converges to one as n — oo, and since Glivenko-Cantelli
says

t
sup as.,
ta, 11 Fa(?)
we conclude that
) su -1 as.
B ?1 F(t)

Formulas (1) through (4) now imply the theorem.

3. Some corollaries.

An immediate consequence of the theorem is the LIL for M,, since
¢n = (1 +¢€) log log n belongs to the upper (lower) class if € > 0(=0):

Corollary 1. (Lemma 4 of [3]).

lim sup as.

e loglogn %
Another easy consequence is the following corollary, which gives a
functional bound for t/F,(t) near the origin:

Corollary 2 limsup sup .

_— =1 a.s.
n—w [Zne~¢] Fn(t) log log l/t

Proof. Let d, =log®n/n and take the supremum separately over the
intervals [Z,, d,] and [d,, e ¢]. By the theorem and the fact that

inf loglog i log log n3 log log n,
[0 dn t log

we have that for y > 1,
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t
limsup sup ————— <
,,_.wp [z,,l,p,,"] F,(t)loglog 1/t
%) 5
limsup sup ————— <7y as.
'pr [zn,,‘.’m F,(t)loglogn

For the second interval, we see that formula (4) holds with b, substituted
by d, (the only property of b, which was used was b, > log® n/n = d,), i.e.

sup -1 as.

t
idn, 11 Fn(t)

Since 1 = loglog e® < loglog 1/t for t € [d,, e €], and since e ¢/F,(e” ) = 1
a.s., we have

(6) limsup sup J

_— =1 a.s.
n>w [dn, e el Fn(t) lOg IOg l/t

Expressions (5) and (6) now imply the corollary.
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