On commuting nilpotent matrices

Heinrich Kuhn

The purpose of this note is to show that for a certain class of nilpotent matrices commutativity implies similarity.

Let F be a field, n a positive integer, A a nilpotent $n \times n$ -matrix and V the vector space of n-tuples over F. A operates on V in a natural way.

Let $V = \sum_{i=1}^{k} V_i$ be a decomposition of V, where the V_i are A-invariant and A-indecomposable for i = 1, ..., k, and dim $V_i \ge \dim V_{i+1}$ for i = 1, ..., k-1.

The k-tuple of positive integers $(a_1, \ldots, a_k) := (\dim V_1, \ldots, \dim V_k)$ is called the Segre-type of A (see [3], p. 48). We will also say that the A-space V is of type (a_1, \ldots, a_k) .

Let W be an A-invariant subspace of V. A induces nilpotent linear transformations on W and V/W. It is known that we can assign to these linear transformations Segre-types (b_1, \ldots, b_k) and (c_1, \ldots, c_k) with $b_i \geq b_{i+1}$ and $c_i \geq c_{i+1}$ for $i = 1, \ldots, k-1$; the b_i and c_i are non-negative integers with the property $b_i \leq a_i$ and $c_i \leq a_i$ for all $i = 1, \ldots, k$. We will also say that the A-spaces W and V/W are of type (b_1, \ldots, b_k) and (c_1, \ldots, c_k) respectively.

The following lemma gives a criterion for W to be C(A)-invariant, where C(A) is the ring of all $n \times n$ -matrices which commute with A.

Lemma 1. Under the above hypotethis, W is C(A)-invariant if and only if $a_i = b_i + c_i$ for i = 1, ..., k.

Proof. We consider V as F[x]-module via $(\Sigma \xi_i x^i)v := v \Sigma \xi_i A^i$. The submodules of V, which are invariant under all endomorphisms of the F[x]-module V are precisely the subspaces of V which are invariant under C(A). Therefore the lemma is a consequence of a theorem of Chatelet ([2], p. 168). (Chatelet's theorem is formulated for finite abelian groups, but his result holds for finitely generated torsion modules over principal ideal domains; see [1], ex. 16, p. 144).

We recall without proof two basic facts on nilpotent matrices.

Lemma 2. a) Let W_1 , W_2 be subspaces of V such that $W_1 \ge W_2$ and $W_1A \le W_2$. If dim $W_1/W_2 = r$, then dim $E(A) \ge r$, where E(A) is the eigenspace of A (to the eigenvalue 0). b) Let A, B be nilpotent matrices such that dim $E(A^i) = 0$ dim $E(B^i)$ for $i = 1, 2, \ldots$, where $E(A^i)$ and $E(B^i)$ are the eigenspaces of $E(A^i)$ and $E(B^i)$ respectively (to the eigenvalue 0). Then A and B are similar.

Definition. Let A be a nilpotent matrix of Segre-type (a_1, \ldots, a_k) . We call A gapped if and only if $a_i - a_{i+1} \ge 2$ for $i = 1, \ldots, k-1$.

Theorem. Let A, B be gapped nilpotent matrices. If A and B commute, then A and B are similar.

Proof. Let $V = \sum_{i=1}^{k} V_i$ be a decomposition of V into A-invariant and A-indecomposable subspaces with dim $V_i \ge \dim V_{i+1}$ for i = 1, ..., k-1.

 $(a_1, ..., a_k)$: = $(\dim V_1, ..., \dim V_k)$ is the Segre-type of A.

We define a series of subspaces of V by

$$V^{j} = \sum_{i=1}^{k} V_{i} A^{j-(i-1)}$$
 for $j = 0, 1, ..., a_{1}$;

if $j-(i-1) \le 0$, put $A^{j-(i-1)} := E$, E the unit matrix.

I) We show first that B operates trivially on the series V^j , i.e. $V^jB \le V^{j+1}$ for $j = 0, 1, ..., a_1 - 1$.

The type of V/V^j as A-space is $(c_1, \ldots, c_k) = (\max\{\{\min j, a_1\}, 0\}, \max\{\{\min j - 1, a_2\}, 0\}, \ldots, \max\{\{\min j - k + 1, a_k\}, 0\})$. On the other hand we can easily check that $a_i - c_i \ge a_{i+1} - c_{i+1}$ for $i = 1, \ldots, k-1$, and subsequently the type of V^j as A-space is $(a_1 - c_1, \ldots, a_k - c_k)$. Therefore we can apply Lemma 1 and find that V^j is C(A)-invariant, in particular B-invariant.

Now define $V^{j}(i) := V_{1}A^{j} + ... + V_{i}A^{j-(i-1)+1} + ... + V_{k}A^{j-(k-1)}$ for i = 1, ..., k. Clearly it is either $V^{j}(i) = V^{j}$ or dim $V^{j}/V^{j}(i) = 1$.

If dim $V^j/V^j(i)=1$, the type of $V/V^j(i)$ as A-space is $(c_1,\ldots,c_i+1,\ldots,c_k)$; on the other hand $a_i-c_i-1\geq a_{i+1}-c_{i+1}$ since A is gapped. Therefore the type of $V^j(i)$ as A-space is $(a_1-c_1,\ldots,a_i-c_i-1,\ldots,a_k-c_k)$. Consequently, we can apply Lemma 1 and find that $V^j(i)$ is C(A)-invariant, in particular B-invariant. Since B is nilpotent, and $V^j(i)=V^j$ or dim $V^j/V^j(i)=1$, we get $V^jB\leq V^j(i)$ for $i=1,\ldots,k$. This implies $V^jB\leq V^{j+1}$, since $V^j=0$ in $V^j(i)$.

We recall without proof two basic facts on nilpotent matrice!=i

II) We show now that dim $E(A^i) \leq \dim E(B^i)$ for $i=1,2,\ldots$; it is sufficient to show dim $E(A^i) \leq \dim (B^i)$ for $i=1,\ldots,a_k$. If $(e_1,\ldots,e_{a_n}):=(k\ a_k$ -times, $k-1\ (a_{k-1}-a_k)$ -times, $\ldots,1\ (a_1-a_2)$ -times), then dim $E(A^i)=\sum_{v=1}^i e_v$. Consider V^ei^{-1}/V^ei^{+i} ; we calculate: dim $V^{e_i-1}/V^{e_i+i}=\sum_{v=1}^i e_v$. Applying I) we see that $V^{e_i-1}B^i \leq V^{e_i+i}$ Lemma 2 a) theorefore shows that dim $E(A^i) \leq \dim E(B^i)$ for $i=1,\ldots,a_1$.

III) The assumptions on A and B being symmetrical, we can interchange the roles of A and B and obtain dim $E(A^i) = \dim(B^i)$ for all i. The theorem now is proved by apolying Lemma 2 b).

This note was written during the author's stay at the Universidade de Brasilia from August to Oktober 1976. I would like to thank the GMD and CNPq for making this visit possible. I also thank Prof. S. Sidki and the Departamento de Matemática for their kind hospitality.

Reference

- [1] N. Bourbaki, Éléments de Mathématique, Algèbre, Chap. 7, 2nd ed., Hermann, Paris 1964.
- [2] A. Chatelet, Les groupes abéliens finis et les modules des points entiers, Gauthier-Villars, Paris-Lille 1924.
- [3] C. C. MacDuffee, The theory of matrices, Springer, Berlin 1933.

Math. Institut der Universitat Auf der Morgenstelle 10 D-7400 Tübingen W-Germany