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Geroch’s conjecture for a hypersurface of R+

Maria Luiza Leite

Introduction

A special case of a conjecture by Geroch [1] can be stated in the following
way.

“Let M be an oriented hypersurface of R* which is euclidean at infinity
(i.e., outside a compact set the hypersurface is isometric to 3-dimensional
euclidean space minus some compact set) and has non-negative scalar curva-
ture. Is M globally euclidean?”.

In this paper we prove that the conjecture is true when the hypersurface
is the graph of a smooth function f :R* - R.

We show that a hypersurface which is euclidean at infinity is cylindrical
outside a compact set. The arguments used are the same as of Hartman &
Nirenberg [2], with slight modifications.

We use a divergence formula for the scalar curvature presented by Reilly
in [3], to reduce the hypothesis of non-negative to that of zero scalar curvature.

Finally, we apply a theorem we proved in [4] to prove the conjecture
in the graph case.

This paper is based on my Ph.D. thesis. I wish to thank Singer and Niren-
berg for their help.

Scalar curvature

Let N:M — S3 be the Gauss normal map defined by a differentiable
choice of a unitary vector field orthogonal to M.

After identification of the parallel spaces T,M and Ty,S?, the eigenvalues
A1, A2, A3 of the symmetric operator dN,: T,M — T,M are called the prin-
cipal curvatures of M at p.

The scalar curvature S of M is given by

S = Aliz + /112.3 == /{213.
We observe that

2(/{112 Aty 2.1).3 + 1213) == (11 = /12 + 13)2 s (A% 4 Il% + /1:2;),
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thus obtaining the invariant expression

2S = [tr(dN)]* — tr[(dN)*]

On the condition at infinity

By definition, M is euclidean at infinity if there exists a compact set
K of M and an isometry ¢ :R* — B, > M — K, for some closed disk B,
of radius p.

Our goal is to show that either M — K is contained in a hyperplane of
R* or it is part of a cylinder spanned by a planar curve. To get there, we have
to introduce some definitions and a lemma from [3].

Definition 1. Let D be a connected open set of R3. A mapping p : D — R?
is a gradient mapping if dp is symmetric; r(x) denotes the rank of dp(x) and
r*(x) is the largest integer s with the property that any neighborhood of x
constains a point x* with r(x*) =s.

Definition 2. A 2-dimensional section of an open set D of R" through x
is the connected component, containing x, of the intersection of D with a
2-dimensional affine subspace of R".

Lemma 1. Let p:D — R? be a gradient mapping with rank not greater
than 1. If r*(xo) = 1, then p is constant on a 2-dimensional section f8 of D through
xo. Also, x € B implies that r*(x) =1, and r(x) =1 or 0 according to whether
rxo) =1 or 0. The section B on which p is constant is uniquely determined, even
locally.

Proof. See lemma 2 and corollaries 1 and 2 of [3].

Hartman and Nirenberg proved in [3] that an isometric imbedding of
R"*! is cylindrical. In what follows, we modify some of their arguments to
give a stronger version of that theorem, valid only for dimensions greater
than 2.

Theorem 1. Let ¢ :R*-B, —> R* be an isometric imbedding. Up to a
rotation of R®-— Ep’
“(x1, X2, X3) = X14 + x2B + C(x3),

where A and B are constant vectors and the set {A, B, C(x3)} is orthonormal.
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Proof. For each xeR3?- B, there exists a connected neighborhood
V, of x in R® - B, such that ¢(V,) can be parametrized as the graph of a smooth
function F. That is, there exists a diffeomorphism z: V, — z(V,) = R3 such that

(-grad F(z), 1)

(1 + || grad F(2) | )" °
which shows that rank dN = rank d(grad F), enabling us to extend the defi-
nitions of r and r* to the normal map N.

Assuming that M-K does not lie on a hyperplane of R*, ie., N is not
constant, let x, € R* — B, such that r*(x,) = 1. Applying lemma 1 to p = grad F,
one sees that through z(x,) there passes a uniquely determined 2-dimensional
section y of z(V,,) on which grad F is constant and r* = 1. Therefore, graph
F|, is contained in a uniquely determined 2-dimensional section t < @(V,)
on which the normal is constant. Since ¢ preserves geodesics, the pre-image
of line segments of 7, being geodesics of R®- B, are line segments. Thus
¢~ (1) is part of a uniquely determined plane a(x,) of R* through x,, on
which N is constant and r* = 1. Also @|,_ 1, is linear, as an isometry which
maps line segments into line segments.

¢ |v. = (z, F(2)),up to change of axis in R*.So, N |y, =

Let B(xo) = (R*— B,)n a(xo) and A = {x € P(xo) | N(x) = N(xo)

and r*(x) = 1}. Clearly, A is closed. Repeating the argument used for x,,
one sees that A is also open in f(x,) . f(xo) being connected implies that N
is constant and r* =1 on B(xo).

Furthermore, if r*(x;) = 1 and x, € f(x,), then the sections f(x,) and
B(x;) are parallel. Otherwise, B(xo)n P(x;) would intersect R*~B, in a
point x,, contradicting the unique determination of f(x,). Thus, there exists
a plane « through the origin in R3 such that f(x) = (x + ®)n R*-B,,.

Once the plane « is determined, repetition of previous arguments shows
that for all points x with r*(x) =0, it still holds that N is constant, ¢ is linear
and r* =0 on f(x).

Assuming that a is orthogonal to the xj;-axis, we conclude that

d(x1, X2, X3) = x1A(X3) + x2B(x3) + C(x3).

Furthermore, the orthonormality of {0¢/0x,, 0¢/0x,, 0¢/0x3} implies
that A and B are constant.

Divergence formula for the scalar curvature

Definition 3. [3] The first Newton operator Ton vector fields of a hyper-
surface M is defined by T = [(tr dN).I] — dN, where I is the identity.
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Lemma 2. [3] T satisfies the following properties:

a) tr (T °dN) =28

b) div T = 0, where div T'is the 1-form whose value at a vector field X is the
trace of the operator (V T)(X).

Proof. a) tr(T,dN) = tr [(tr dN).dN] —tr [(dN)*] =
— [tr @N)]? = ir [@N)2] = 25.
b) (VT)(X).Y = (VyT)(X) = V{(TX) — T(VyX) =
— Vy[(trdN). X — (dN). X]— (trdN) . VX +
+ dN(VyX) = [VyltrdN)] . X — [V+(dN)] . X .

Codazzi equation tells us that
[VdN)]. X =[Vx(dN)] . ¥,

hence the trace of [V(dN)]. X is the trace of Vx(dN).

The trace of the map Y — [Vy(trdN)] . X is given by its value on X,
Vx[tr (dN)], since the image is spanned by X.

Therefore,

(div T). X = Vx[tr dN)] — tr [Vx(dN)] = 0.

Remark The definition of div X as the trace of VX is equivalent to the
usual definition of div X =* (d * X), where X is the 1-form dual to X.

In what follows we extend to hypersurfaces a lemma and a theorem
proved in [3] for graphs of functions.

Lemma 3. Let A be a constant vector of R* and let A be the vector field
on M defined as the orthogonal projection of Ag onto M. Then the covariant
derivative of A is a multiple of dN, i.e., VxA = — < Ao, N > .dN(X).
Proof. A = Ay — (Ao, N) N. For every vector field Y,
(VxA,Y) = (Vx(4o — (Ao, N) N), Y) =
= <VxA0, Y> s <A0, N> <VxN, Y> = = <A0, N> <dN(X), Y>,

showing that the tangential component of Vx4 is — (Ao, N) dN(X). Conse-
quently, Vx4 = — (Ao, N) dN(X).

Theorem 2. The divergence formula for the scalar curvature of a hyper-
surface is given by

div (T.A) = — 2{A4o, N) S.
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Proof. By lemma 2-b,

0 =(div T). A = tr (Y - Vy(TA) — T(VyA)).

Therefore, div(TA) = tr (Y— T(VyA)). By lemma 3,
VY"i Eta <A05 N> . dN(Y)’
hence div (TA) = — tr (To{ Ao, N) dN) = — (Ao, N) tr (TodN) = — 2{A¢, N) S.

The Conjecture in the Graph Case

Theorem 3. Let f :R* > R be a smooth function and M = graph f. If M
is euclidean at infinity and has non-negative scalar curvature, then M is euclidean
everywhere.

Proof. By theorem 1, there exists a compact set K of M such that M — K
is a subset of an orthogonal cylinder M;. Let a subindex 1 refer to M, e.g.,
S: denotes the scalar curvature of M;, etc.

Setting Ao = (0,0,0, 1) e R*, the divergence formula for the scalar cur-
vature and Stokes’ theorem imply that

j,z[ — 28 (Ao, N) =ajK<TA, n) =0£(<T1A1,n1> =jK§—2S1 (Ao, Ny) =0,

where n stands for the outer normal to 0K ; the second equality holds because
M — K = M — K, hence their boundaries coincide as well as 4 = A, and
T = T, on JK; the fourth equality holds because the scalar curvature of a
cylinder is zero.
Recalling that N =(-grad f; 1)/(1 + |grad f|?)!/?, we have that
(Ao, Ny = (1 + | gradf|?)~'/? > 0. Therefore, [[—2S (Ao, N) =0 holds if
K

and only if S =0 everywhere.

Now we apply a theorem, proved in [4], which states that. “If a hypersur-
face M of R*, flat at infinity, has zero scalar curvature then its normal map
is surjective, unless M is flat everywhere”.

The normal vector at any point of graph f lies on the northern hemis-
phere of S3; thus, N is never surjective.

We conclude that graph fis globally flat, hence isometric to 3-dimensional
euclidean space.
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