Geroch's conjecture for a hypersurface of \mathbb{R}^4

Maria Luiza Leite

Introduction

A special case of a conjecture by Geroch [1] can be stated in the following way.

"Let M be an oriented hypersurface of \mathbb{R}^4 which is euclidean at infinity (i.e., outside a compact set the hypersurface is isometric to 3-dimensional euclidean space minus some compact set) and has non-negative scalar curvature. Is M globally euclidean?".

In this paper we prove that the conjecture is true when the hypersurface is the graph of a smooth function $f: \mathbb{R}^3 \to \mathbb{R}$.

We show that a hypersurface which is euclidean at infinity is cylindrical outside a compact set. The arguments used are the same as of Hartman & Nirenberg [2], with slight modifications.

We use a divergence formula for the scalar curvature presented by Reilly in [3], to reduce the hypothesis of non-negative to that of zero scalar curvature.

Finally, we apply a theorem we proved in [4] to prove the conjecture in the graph case.

This paper is based on my Ph.D. thesis. I wish to thank Singer and Nirenberg for their help.

Scalar curvature

Let $N: M \to S^3$ be the Gauss normal map defined by a differentiable choice of a unitary vector field orthogonal to M.

After identification of the parallel spaces T_pM and $T_{N(p)}S^3$, the eigenvalues $\lambda_1, \lambda_2, \lambda_3$ of the symmetric operator $dN_{(p)}: T_pM \to T_pM$ are called the *principal curvatures* of M at p.

The scalar curvature S of M is given by

$$S = \lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_2 \lambda_3.$$

We observe that

$$2(\lambda_1\lambda_2 + \lambda_1\lambda_3 + \lambda_2\lambda_3) = (\lambda_1 + \lambda_2 + \lambda_3)^2 - (\lambda_1^2 + \lambda_2^2 + \lambda_3^2),$$

Geroch's conjecture for a hypersurface of R⁴

123

thus obtaining the invariant expression

$$2S = [tr(dN)]^2 - tr[(dN)^2]$$

On the condition at infinity

By definition, M is euclidean at infinity if there exists a compact set K of M and an isometry $\phi: \mathbb{R}^3 - \overline{B}_\rho \to M - K$, for some closed disk B_ρ of radius ρ .

Our goal is to show that either M-K is contained in a hyperplane of \mathbb{R}^4 or it is part of a cylinder spanned by a planar curve. To get there, we have to introduce some definitions and a lemma from [3].

Definition 1. Let D be a connected open set of \mathbb{R}^3 . A mapping $p: D \to \mathbb{R}^3$ is a gradient mapping if dp is symmetric; r(x) denotes the rank of dp(x) and $r^*(x)$ is the largest integer s with the property that any neighborhood of x constains a point x^* with $r(x^*) = s$.

Definition 2. A 2-dimensional section of an open set D of \mathbb{R}^n through x is the connected component, containing x, of the intersection of D with a 2-dimensional affine subspace of \mathbb{R}^n .

Lemma 1. Let $p: D \to \mathbb{R}^3$ be a gradient mapping with rank not greater than 1. If $r^*(x_0) = 1$, then p is constant on a 2-dimensional section β of D through x_0 . Also, $x \in \beta$ implies that $r^*(x) = 1$, and r(x) = 1 or 0 according to whether $r(x_0) = 1$ or 0. The section β on which p is constant is uniquely determined, even locally.

Proof. See lemma 2 and corollaries 1 and 2 of [3].

Hartman and Nirenberg proved in [3] that an isometric imbedding of \mathbb{R}^{n+1} is cylindrical. In what follows, we modify some of their arguments to give a stronger version of that theorem, valid only for dimensions greater than 2.

Theorem 1. Let $\phi: \mathbb{R}^3 - \overline{B}_{\rho} \to \mathbb{R}^4$ be an isometric imbedding. Up to a rotation of $\mathbb{R}^3 - \overline{B}_{\rho}$,

$$\phi(x_1, x_2, x_3) = x_1 A + x_2 B + C(x_3),$$

where A and B are constant vectors and the set $\{A, B, C(x_3)\}$ is orthonormal.

Proof. For each $x \in \mathbb{R}^3 - \overline{B}_{\rho}$, there exists a connected neighborhood V_x of x in $\mathbb{R}^3 - \overline{B}_{\rho}$ such that $\phi(V_x)$ can be parametrized as the graph of a smooth function F. That is, there exists a diffeomorphism $z: V_x \to z(V_x) \subset \mathbb{R}^3$ such that

 $\phi \mid_{V_x} = (z, F(z))$, up to change of axis in \mathbb{R}^4 . So, $N \mid_{V_x} = \frac{(-\text{grad } F(z), 1)}{(1 + \| \text{grad } F(z) \|^2)^{1/2}}$, which shows that rank dN = rank d(grad F), enabling us to extend the definitions of r and r^* to the normal map N.

Assuming that M-K does not lie on a hyperplane of \mathbb{R}^4 , i.e., N is not constant, let $x_0 \in \mathbb{R}^3 - \overline{B}_\rho$ such that $r^*(x_0) = 1$. Applying lemma 1 to $p = \operatorname{grad} F$, one sees that through $z(x_0)$ there passes a uniquely determined 2-dimensional section γ of $z(V_{x_0})$ on which grad F is constant and $r^* = 1$. Therefore, graph $F|_{\gamma}$ is contained in a uniquely determined 2-dimensional section $\tau \subset \phi(V_{x_0})$ on which the normal is constant. Since ϕ preserves geodesics, the pre-image of line segments of τ , being geodesics of $\mathbb{R}^3 - \overline{B}_\rho$, are line segments. Thus $\phi^{-1}(\tau)$ is part of a uniquely determined plane $\alpha(x_0)$ of \mathbb{R}^3 through x_0 , on which N is constant and $r^* = 1$. Also $\phi|_{\phi^{-1}(\tau)}$ is linear, as an isometry which maps line segments into line segments.

Let
$$\beta(x_0) = (\mathbb{R}^3 - \overline{B}_{\varrho}) \cap \alpha(x_0)$$
 and $A = \{x \in \beta(x_0) \mid N(x) = N(x_0)\}$

and $r^*(x) = 1$. Clearly, A is closed. Repeating the argument used for x_0 , one sees that A is also open in $\beta(x_0)$. $\beta(x_0)$ being connected implies that N is constant and $r^* = 1$ on $\beta(x_0)$.

Furthermore, if $r^*(x_1) = 1$ and $x_1 \in \beta(x_0)$, then the sections $\beta(x_0)$ and $\beta(x_1)$ are parallel. Otherwise, $\beta(x_0) \cap \beta(x_1)$ would intersect $\mathbb{R}^3 - \overline{B}_\rho$ in a point x_2 , contradicting the unique determination of $\beta(x_2)$. Thus, there exists a plane α through the origin in \mathbb{R}^3 such that $\beta(x) = (x + \alpha) \cap \mathbb{R}^3 - \overline{B}_\rho$.

Once the plane α is determined, repetition of previous arguments shows that for all points x with $r^*(x) = 0$, it still holds that N is constant, ϕ is linear and $r^* = 0$ on $\beta(x)$.

Assuming that α is orthogonal to the x_3 -axis, we conclude that

$$\phi(x_1, x_2, x_3) = x_1 A(x_3) + x_2 B(x_3) + C(x_3).$$

Furthermore, the orthonormality of $\{\partial \phi/\partial x_1, \ \partial \phi/\partial x_2, \ \partial \phi/\partial x_3\}$ implies that A and B are constant.

Divergence formula for the scalar curvature

Definition 3. [3] The first Newton operator T on vector fields of a hypersurface M is defined by $T = [(tr \, dN) \, . \, I] - dN$, where I is the identity.

Geroch's conjecture for a hypersurface of R4

Lemma 2. [3] T satisfies the following properties:

- a) tr $(T \circ dN) = 2S$
- b) div T = 0, where div T is the 1-form whose value at a vector field X is the trace of the operator $(\nabla T)(X)$.

Proof. a)
$$tr(T_{o}dN) = tr[(tr dN) \cdot dN] - tr[(dN)^{2}] =$$

 $= [tr(dN)]^{2} - tr[(dN)^{2}] = 2S.$
b) $(\nabla T)(X) \cdot Y = (\nabla_{Y}T)(X) = \nabla_{Y}(TX) - T(\nabla_{Y}X) =$
 $= \nabla_{Y}[(tr dN) \cdot X - (dN) \cdot X] - (tr dN) \cdot \nabla_{Y}X +$
 $+ dN(\nabla_{Y}X) = [\nabla_{Y}(tr dN)] \cdot X - [\nabla_{Y}(dN)] \cdot X.$

Codazzi equation tells us that

$$[\nabla_{\mathbf{Y}}(dN)] \cdot X = [\nabla_{\mathbf{X}}(dN)] \cdot Y,$$

hence the trace of $[\nabla(dN)]$. X is the trace of $\nabla_X(dN)$.

The trace of the map $Y \to [\nabla_Y(tr \, dN)]$. X is given by its value on X, $\nabla_X[tr(dN)]$, since the image is spanned by X.

Therefore,

$$(\operatorname{div} T) \cdot X = \nabla_X [\operatorname{tr} (dN)] - \operatorname{tr} [\nabla_X (dN)] = 0.$$

Remark The definition of div X as the trace of ∇X is equivalent to the usual definition of div $X = *(d * \tilde{X})$, where \tilde{X} is the 1-form dual to X.

In what follows we extend to hypersurfaces a lemma and a theorem proved in [3] for graphs of functions.

Lemma 3. Let A_0 be a constant vector of \mathbb{R}^4 and let A be the vector field on M defined as the orthogonal projection of A_0 onto M. Then the covariant derivative of A is a multiple of dN, i.e., $\nabla_X A = -\langle A_0, N \rangle \cdot dN(X)$.

Proof.
$$A = A_0 - \langle A_0, N \rangle N$$
. For every vector field Y,

$$\langle \overline{\nabla}_X A, Y \rangle = \langle \overline{\nabla}_X (A_0 - \langle A_0, N \rangle N), Y \rangle =$$

$$= \langle \overline{\nabla}_X A_0, Y \rangle - \langle A_0, N \rangle \langle \overline{\nabla}_X N, Y \rangle = - \langle A_0, N \rangle \langle dN(X), Y \rangle,$$

showing that the tangential component of $\nabla_X A$ is $-\langle A_0, N \rangle dN(X)$. Consequently, $\nabla_X A = -\langle A_0, N \rangle dN(X)$.

Theorem 2. The divergence formula for the scalar curvature of a hypersurface is given by

$$div(T.A) = -2\langle A_0, N \rangle S.$$

Proof. By lemma 2-b,

$$0 = (div \ T) \cdot A = tr(Y \to \nabla_Y(TA) - T(\nabla_Y A)).$$

Therefore, $div(TA) = tr(Y \rightarrow T(\nabla_Y A))$. By lemma 3,

$$\nabla_{Y}A = -\langle A_0, N \rangle \cdot dN(Y),$$

hence div
$$(TA) = -tr(To\langle A_0, N \rangle dN) = -\langle A_0, N \rangle tr(TodN) = -2\langle A_0, N \rangle S$$
.

The Conjecture in the Graph Case

Theorem 3. Let $f : \mathbb{R}^3 \to \mathbb{R}$ be a smooth function and M = graph f. If M is euclidean at infinity and has non-negative scalar curvature, then M is euclidean everywhere.

Proof. By theorem 1, there exists a compact set K of M such that M - K is a subset of an orthogonal cylinder M_1 . Let a subindex 1 refer to M_1 , e.g., S_1 denotes the scalar curvature of M_1 , etc.

Setting $A_0 = (0, 0, 0, 1) \in \mathbb{R}^4$, the divergence formula for the scalar curvature and Stokes' theorem imply that

$$\iint_{K} -2S \langle A_{0}, N \rangle = \iint_{\partial K} \langle TA, n \rangle = \iint_{\partial K} \langle T_{1}A_{1}, n_{1} \rangle = \iint_{K} -2S_{1} \langle A_{0}, N_{1} \rangle = 0,$$

where *n* stands for the outer normal to ∂K ; the second equality holds because $M - K = M - K_1$, hence their boundaries coincide as well as $A = A_1$ and $T = T_1$ on ∂K ; the fourth equality holds because the scalar curvature of a cylinder is zero.

Recalling that $N = (\text{-grad } f, 1)/(1 + \|\text{grad } f\|^2)^{1/2}$, we have that $\langle A_0, N \rangle = (1 + \|\text{grad } f\|^2)^{-1/2} > 0$. Therefore, $\iint_K -2S \langle A_0, N \rangle = 0$ holds if and only if S = 0 everywhere.

Now we apply a theorem, proved in [4], which states that. "If a hypersurface M of \mathbb{R}^4 , flat at infinity, has zero scalar curvature then its normal map is surjective, unless M is flat everywhere".

The normal vector at any point of graph f lies on the northern hemisphere of S^3 ; thus, N is never surjective.

We conclude that graph f is globally flat, hence isometric to 3-dimensional euclidean space.

References

- [1] R. Geroch, General Relativity. Proceedings of Symposia in Pure Mathematics, Diff. Geometry, AMS, Vol. XXVII, part 2 (1975).
- Hartman and Nirenberg, On spherical image maps whose Jacobians do not change sign. Amer.
 J. Math, Vol. 81, 4 (1959), 901-920.
- [3] R. Reilly, On the hessian of a function and the curvature of its graph. Michigan Math. J., 20 (1973), 373-383.
- [4] Maria Luiza Leite, Hypersurfaces of R⁴ with zero scalar curvature. Notas e Comunicações n.º 78, Departamento de Matemática, UFPe.

Universidade Federal de Pernambuco, Centro de Ciências Exatas e da Natureza Departamento de Matemática Recife.