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Computation of Longitudinal Motions of a Viscoelastic Bar

M. A. Raupp and N. S. de Rezende

Abstract

A Gelerkin type method, based on trigonometric functions and Crank-
Nicolson discretizations of the time variable, is applied to compute solutions
of the initial boundary value problem associated with the equation

Polly = Qylixy + G2U2 Uxx + A3tee + f, x€[0,1], t > 0.

Error estimates are derived and a numerical example is presented.

1. Introduction

This paper is devoted to the problem of computation of the longitudinal
motions of a bar with uniform cross-section and length L, presenting a vis-
coelastic behavior. Denoting by x the position of a cross-section (which is
assumed to move as a vertical plane section) in the rest configuration of the
bar, by u(x, t) the displacement at time ¢ of the section from its rest position,
by (x, t) the stress on the section at time ¢, by f(x, t) the given external field
force at time t, and by p, > 0 the constant density, the equation of motion is

(1.1) Po uy(x,t) = 14(x, 1) + f(x,t), x€(O,L), t>0.

Assuming the ends of the bar to be clamped for all times and the initial
state of motion specified by given functions uo(x) and u,(x), x€ [0, L], we
have the following boundary and initial conditions associated to (1.1):

(1.2) u0,0) = u(L,t) =0, te [0, o0),
1:3) u(x, 0) = up(x), xe[0, L],
(1.4) u,(x, 0) = uy(x), xe[0, L]

The medium is characterized by a stress-strain relation of the form

(1.5) T = agu, + ‘;—z(uxf + as(uxt,,
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with a; > 0, a, > 0 and a; > 0, which describes, in the terminology of Du-
vaut-Lions?, a material with “short memory”.
We shall be concerned with approximations of the solution u(x,t) of

the mixed boundary-initial value problem represented by equations (1.1) — (1.5).

A theory of this type of equation was first developed by Greenberg,
MacCamy and Mizel®. Under a smothness hypothesis on the initial data,
precisely uoe C*(0, L), and u, € C%(0, L), and for f = 0, they show the exis-
tence of a unique ue C%((0, L) x (0, 0)), such that u,, = Ugx = Urx and u
satisfies (1.1)«(1.5). Furthermore, for this “classical” solution, there exists a
constant M which depends on

2
J =) (max |Diug(x)| + max |Diu,(x)
i=0 xe[0,L] xe[0,L]

),

and tends to zero as J goes to zero, such that

2 i ai T
(1.6) bl =% 3 max |-S420 | <, ref0,o0)
i=0 ¥=0 xefo,L]| OX' "0t
Moreover,
1.7 lim |||u||| (1) = 0.
t— oo

To prepare the ground for this work on approximations, in [4] the
first author discussed “weak™ solutions of (1.1)-(1.5) in H?((0, T) x (0, L)),
for any T > 0. They were obtained as limit of semi-discretized Galerkin
approximations.

Now, for the full numerical treatment of the problem, we use the trigo-
nometric function space

a;E R} 3

N 3
Hy = { Y «;sin J7%
- L
and a discretization in the time variable defined by

j=1

T
t,=nAt, At =—,n=0,1,..., M.
n M n

Here N and M are positive integers and T is a fixed time level. We shall con-
sider approximations only on [0, L] x [0, T], specifically, at the levels nAt.

When we have ny function S, defined at the times nAt, n =0, 1,..., M,
including those previously defined for all times, we denote by S, the function
at t = nAt, and define

Sn+<} —:%(Sn+l -+ Sn),
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S,.,g =9S,,+1 +(1 —29)S" +9S,,_1, 96[0, 1],

Sn — Sn
O ury = w15,
S,, ) 2Sn qE Sn—l
atzsn = = (At)2 )
5. Sn+1— Su-1 P OtSyt+y + 0:Su—y
i 2At 2 '

If we write ¢;(x) = sin jux/L, the approximations we shall propose to
the u(x,t,) is a sequence of functions U,(x) characterized by the following
Galerkin-like conditions:

(1.8) () U,e £y, n=0,1,..,M;
(18) (11) <U0,¢j> = <u0,¢j>, ] = 1,,N,

(18) (i) (Ui, ¢p =<{F(;A1), ¢, j=1,..,N,
(Ar)?
2po
+ ax(Dug(x))*] D*uo(x) + asD*uy(x) + f(x,0)};

(18) @) poC0F Upi$s) + ar{(Un s ($)s)
+ ZAUUNP B> + a3 (B, (B =

={Fau b, § =liaaN, 8 =152, ..M — 1
We remark that

F(x, At) = uo(x) + At us(x) + {[a; +

<f1 ’f2> = jléfl(x)fz(x) dx,

that F(x, At) is the Taylor approximation to u(x, At) with u,(x, 0) evaluated
in the differential equation (1.1), and that (iv) is a second order correct in At
scheme for the canonical weak form of (1.1).
Taking into account the orthogonality properties of the family

{sinjnx/L, cosjnx/L|j =0,1,2,...} and introducting the representation

N
(1.9) U,(x) = Ci¢j(x), n=0,1,..., M,

=

J

we derive from (1.8), by a straightforward calculation, the following equi-
valent relations:

(110) C? = %<u0’ ¢j>,
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(1.11) c;:%«Fumx@%

poL 2 asmn At = a17'C2 (At)z 5
2 4L 8L

{|: 2<a3n At alnz(At)2>]C;,—1 kY
4L 8L

aln At) amt(Ar)?
+ L — O e
e ] up !

(LA G

: §: ikl [8)i-kp, j1-g1 + Opi=kp it + Opisas, -t +
i,k l=1

+ Oji+ny, 1+ CIGCE + {fas ®0 )
where j =1,2,... N, n=1,2,...M — 1, and, for p,q =0,1,2,...,

2 if p=g=0
Spa=11 if p=g+#0
0 if p#gq

Equations (1.9)(1.12) give us an explicit algorithm to compute step by
step the approximations at the various time levels.

The object of this paper is the analysis of algorithm (1.9)«(1.12). We
shall prove a convergence result which indicates the asymptotic behavior
of the error, namely

sup | u(, t,) — Unls = OI:(At)Z 4 L:I’
0<n<M N
At — 0’ N - o0,

where we have to assume some minimum natural smoothness for u and
|. |1 is the norm of the Sobolev space H'(0, L).

The proof of this result will be presented in section 3. In section 2 we
discuss two stability lemmas and a result from the theory of approximation
of functions by trigonometric polynomials. In section 4 we present results
of numerical experiments performed with this algorithm.

2. Stability and Approximation Lemmas

The functions considered here are real valued and measurable, and C
will denote a generic constant. We adopt the usual notation

PSR

g
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gy = [6£(x) g(x) dx,
(6m = X (D DG) + (figho m> 1,
£ =<5

Hf”m T nd <f9f>m
|flo = sup |f(x)],

xe[0,L]

for functions f and g defined on [0, L].

A priori estimates for equations (1.10)-(1.12) will be derived. For the
analysis we shall need some results from the theory of Sobolev spaces which
we state now. Proofs are given in [5].

Let

= {u:[0,L] > R||lu| < 0},
H*={yeB}D'ucll,i=1,...,m},
HO it LZ,
L°(H™ = {u:[0, T] > H™ | ess sup | u(t) |m < o0}.
0<t<T

The space H™ is a Hilbert space with scalar product {(u,v),, and [°(H™)
is a Banach space with norm ess sup || u(t) |». The following two propositions

0<t<T
are true:
(i) If ue H*, there exists a constant C, independent of u, such that
2.1) ule < CJluf* | u]ts )
(ii) Let fe CKR), k > 1, with f(0) = 0. If ue L*(H*) then f(u) e L°(H"), and
(22) | fe) ]l <M |
or
(2.3) | @) e < C1 + [[u@) [E=D]| wo) |,

if k> 2, where M and C, are constants.
We are ready now to go through our basic lemmas.

Lemma 2.1. Any possible solution of (1.8) (iv) satisfies
24 Pol|9:Unsy|® + a1 ||(Uns s> + a3 Y At |[(8.U)«]*> < C,
ji=1

for n=1,2,...M — 1, where C depends only on the data.
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¥
Proof. We multiply equation (1.8) (iv) by (C?*! — C?~ 2 At and sum in = Upx(x) i () e
j from 1 to N to get ;256(3_”2 ( )}*3 AA)dx e ?2%(12 A3 Al) fo( ZO 7k Al)dx,
Po <612 Un, 5! Un> + a; <(Un,})x,(5t Un)x>+ (Un)x
a, with ) A3AA>0, Vxe[0,1]
+ ?((Un)i,(atUn)x> +as || (5t Un)x ||2 = <fna 5,U,,>. 4=0
t Because of that and Gronwall’s lemma, (2.6) becomes
Since
St | P10 Ures | + a1 |Uree P + 225 3. a6, U2
U, =
2 U1«
sy — AU <Cloolo Uyl +ar W + & aclfl+ 253 (3 2 41)ax,
alen i n+4 t n—z}, =1 3 A=0
R { which implies the estimation (2.4).
we have from the above equation
Lemma 2.2. Any possible solution of (1.8) (iv) satisfies
(2.5) —{[po\larUmII’+a1||(Un+&)xH2] [ooll0:Un-4|* + 1 [(Un-2)s 1”1} + 2.7) [(Unss] < C
= 2 d the data.
En ”(5tUn)xH2 n %((U,.)i,(é,U,,)Q = B, for n=0,1,2,...,M, where C depends only on the data
Proof : If we multiply equation (18) (iv) by — ¥ n%?3/L* (C}*' + C}7Y)
and sum in j from 1 to N, we get, in view of (1.9),
By Cauchy-Schwarz and the arithmetic-geometric inequalities,
: Juity st ; p<aU<U__+U_> >+a1<w“),(m> >+
21 AclfpdUp < > Zl Ac| fi|* + EP 6. U;[* < = ! 2 =
j= j= j=1
a; 3 (Une1 + Uns Ussi + Usiy
Yl nite Y RN R SN T
<o L ASIP+ 5 X Arfo, U2 3 2 i 2
o o iy n+1 i Un 1
Hence, multiplying (2.5) by 2At and summing from 1 to n: R - 2 :
(26)  po |0 Unss|® + a1 [|(Unspe]* = o [|8: Us||* — as [|(Ups|? + Integrating by parts in x where appropriated
n 2 n
+ 2 At||(6, Upl|]* + = At S (U)2 (6, Ujyd -
b l';l ”( i J) ” N 3 - j;l 50( J) ( ' j) x " (28) 2A <(Un+l Un—l)xxa<Un+l ; U" 1) >
g"At-2+nAt6U- ¥ | x_x
S alnl+ 3 Ao sl | Y AN CRE L
Defining the new variables -
mng __<f Un+1+Un—1 >
A= () = (U, £ 2 fae
Ak = AAj) = (Ujs1)x — (Uj-1)x, ‘ - <(Un,-})xx,<Un+l —2r U,,_1> >
the sixth term of the left hand side of (2.6) can be written as XX
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hy 0 Un+1 + Upy
(g, (P 8) ),

where G(S) = S3/3. -

The last three terms of the right hand side of (2.8) can be estimated in
the following way:

(P22 022) D] S CURE + 10?10}

Usiat Up=
a <(Un,})xx’<-‘+—1'—2'_‘—l> >
a Un+1 o+ Un—l. >
=G (el ————
o (g0 ()

=1 H(Un— l)x.n:”2 + H i G(Unx)HZ} < C{”(Un)xx HZ b ”(Un+ l)xxHZ ot H(Un— l)xx”z}’
Ox

< C{l U |* + | (U )es]* +

+ H (Un— l)xx ”2},

= C{H(Un+ l)xx”z+

by (2.1)-(2.2). Hence, collecting the above inequalities into (2.8), multiplying
the resulting expression by 4At/a; and summing from 1 to m—1, we get

(29) “ (Um)xx ”2 = ” (UO)xx ” % + “ (Ul)xx “ & +

4 Uj+1 +U;-
4po Z <al Ujeg i B Uj_%,<—!+l—2j—l> >
as ji=1 xx

+C T Alfl +Co X At (U]
=1 i=

Now the third term in the right hand side of (2.9) can be handled by
summation by parts in j, Cauchy-Schwarz estimation for the resulting boun-
dary terms and integration by parts in x for the sum. The following inequality

comes out
4 Uies, e
PO z < Uod 0, Uj_p(_%;‘) >
asz j=1 XX

<C{ sup [0, Ujsy|* +€ sup [(Upue]®*
0<j<m

0<j2m-1

(2.10)

m—1
+T A|@Upei ]2
i=

for any € < O arbitrary.
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Formulas (1.8) (ii)-(1.8) (iii) imply bounds for ||(Uo).| and ||(U,)s| in
terms of the data so that if we choose € in (2.10) conveniently, carry it over

(29) and take lemma 2.1 into consideration we obtain

)

|Umss|| < € +C 3 At](Upss |
Jj=0

where C and C’ depend on the data. This inequality, by Gronwall’s lemma,
implies (2.7).

To conclude this section, we now present a result on the error of the
best least squares approximation by elements of . For any function g € I,
let

1 4
wa(g;8) = sup [ffﬁlg(x + Ax) — g(x)lzdx}

|Ax| <6

denote the I?-modulus of continuity. We remark that w,(g; d) is a non-decrea-

sing function of &, and that lim w,(g; 8) = 0 for any g e I?. Hence the follo-
6—0
wing lemma is true.

Lemma 2.3. Assume ue C'(0, L), w(0) = w(L) = 0, and that Du is absolu-
tely continuous with D*u e I2. Then, for each positive integer N, there exists a
N

trigonometric polynomial uy € # 'y, namely ux(x) = Y, {u, ¢;) ¢{x), such that
=1

wa(D?u; 1/N)

N2-] , forall 0<j<2,

@11) D —u)| <K
where K is a constant.
Proof. We first extend u as an odd function to [ — L, L], getting the con-
ditions D/u(— L) = D’u(L), 0 <j < 1, and then apply theorem 5 from [1].
3. Convergence
In this section we shall go through the convergence analysis of our algo-
rithm, establishing an uniform bound for the errors associated with the

approximations at each time level. The following theorem summarizes the
question.
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Theorem 3.1. Suppose the exact solution u of (1.1) — (1.5) is twice conti-
nuously differentiable in x and four times in t over (0,L) x (0, T). Then there
exists a constant C, depending on the data and the derivatives &'*/u/0x' ot
i=0,1,2,j=0,2,3,4, such that,

(3.1) sup  {[| Gc[tls tueg) — Unsa]|? + | 0(s tass) — Unss |3 +

0<n<M-1
-1 3
+ {MZ At |{[8:0u(, £} = Un)Js ||"} < C[(A* + N7'].

Proof. We write the equation for the exact solution at t = ¢, in the weak
finite difference form

(32) po <u(-, tn+l) - 2uA(.t,2tn) + u(., tn—l) ’ ¢> +

1.
SF a; <%ux(-s tn+ l) o é‘ux(w tn) + Tux(-, tn—l)a ¢x> +

+ F o ] 60+

£ty <uX(‘a tn+1)2—Atux(~, tn—l) 4 ¢x> A
={f(-ta), ) + {A.(,AD), ¢>, ¢eHs, n=1,...M—1,

with the initial conditions

(3.3) u(x, to) = uo(x),
(3.4) u(x, t;) = F(x, At) + B(x, At),
where

H} = closure of C¥(0,L) in H',
and A,(x, At) = 0(Ar?), each n, B(x,At) = 0(At®), At — 0, as I*-valued

mappings.
The corresponding equations for the approximations U,(x) are, from (1.8),
(3.5) po {07 Un,¥) + a1 {(Un 1), ¥x) +
+ G AU ) + a3 (G U, ¥y
S ORIl v W 12 M S 1
(3:6) (Uo, ¥y = Cuo, ¥, ¥ e K,
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(37) <U1’ l/’> = <F(’ At), l//>9 lpe'#N-

Hence, choosing in (3.2) ¢ =y € #y < H}, and taking the difference
between (3.2) and (3.5), (3.3) and (3.6), (3.4) and (3.7), respectively, we obtain
a system of equations for the error functions

en(x) = u(x,t)) — Un(x), n =0,..., M.
Such are
B8 pyfen ¥ + arl(enshe e + T CW21) = (UMDY +
+ as(Bren, ) = (An ), Y€ H,
(3.9) Ceo, ) =0, YeHy,
(3.10) ey, ¥y = (B,Y), Ve Hy.

As a matter of fact, since ¥, € #y, integration by parts leads us to
the conditions

(39), <(e0)x’ l//x> = 0’ '// € fN,
(3.10y (1) ¥x) = (B, Y, Y€ Hy,

which are complementary to conditions (3.9) and (3.10) for the error analysis.

(e ¥) = 5 (B, Ve Ky,

so that taking
W(x) = [M ¥ U%(x)] " [(uw(x, 0) + un(x, t1)> N

5 D,
- <M;“(ﬂ)] = ey() + By (x) € H,

and applying Cauchy-Schwarz inequality, we arrive at the estimate

leslt <eles]t + C@{lB: )T + | B,

with € positive and arbitrary. Choose € = 1/2 and recall lemma 2.3: there
exists a constant C such that
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(3.11) les|: < C{A® + 1/N}.

We shall need this relation later. Now we focus attention on equation

(3.8): Taking Y =d,e,— 0, =du(., t,) — 6, Up— (d:u(., t,) — deun(., t,)) € H'n We
obtain

p
(3.12) say ocenss]” = oen-y [*} +

sp; Ulens 9 |* = lllen-9)< %} —
— po {0t en, 6By — ar{(en1)x> (O Bu)x) +
+ a3 || (e || — as<(G:en)x, (B:Bn)s)
+ F e [ 1) + (U + el 0) (U], 2 >=
= (Ay, 060 — 3:Bn,
where a = (0:en)x — (O Pn)x-
Lemma 2.2 together with formulas (2.1) and (1.6) imply the following

estimation for the non-linear term

(313) <(en)x [u ( l,,) + (Un)x 3 ux( tnt+ (Un)x] a>

< C |l (e (| G e[| + [|3cBa)s |-
Hence, multiplying (3.12) by 2At and summing from 1 tom,2<m <M -1,
we reach our basic relation for the analysis, which is

I *

Po “ atem+-}”2 + a; || (em+})x — Po ” 8,e,} — a4 H (e&)x \|2+

H 203 Z At H (5,81'),‘ HZ

=
314  <e ,2 At || Geeps])? +

+ CE) [':;l At [[(ejs s + ,2 At [ (5.B)s Hz] +

+ 200 3. (e 08 Bt + 201 3, (s e (BB +

20y 3 At((Biee GiB)> +2 Y. At AL bies — 8,55,

J=il

for any € > 0.
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The terms in the right hand side of (3.14) still remaining to be estimated
can be bounded in the following way:

(3.15) 25 ,i At (e, s OB
<€ [zo At | (ej+ )< ]* + Z At || (8.B))s ||2] :
(3.16) 2a; j‘; At {(3,€))x, (6:B))
<e z At G| + CE®) z At 6B
(3.17) i At (A}, d.e; — 8.B;)
sclat+ 5 alaenl + § o lo.12
(3.18) 1200 3, (02e;,6.6,) At| =

i=1

= |po Z (0cejsy — Orej—3,0Bivy + OBi-1)|

3

< po Z (0iej+y — Orej—3,0Bj+3) |+
1

J

<6 €j+y — atej %’a 'BI %>

+
]
o
||M§ I

J

mel 3,B;+3 — .B;
. Z<6,e,-+*,—‘h—*m—'ﬂﬁ>m+

=1

+ <5,ei,6,ﬂ%> . <agem+4},atﬁm+-§>| iy
m+1 0.B:_+— 0,B;_
+po|— X At <5:ej-g,——4'ﬂl %At L %> +

j=2

ol <6tem+4}a atﬂm+%> T <afei“’atﬁi>|

ssna,emnxuc(s)[ sup 6,4, +

1<jsM-1

+loe I +E A ey |+ 5 sl in )]

i=
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In the above inequalities € > 0 is, as always, to be chosen conveniently.
If we do this and collect (3.15)-(3.18) into (3.14) we get

” atem+§”2 + “(em+5)x”2 + .Zl At ” (Btej)x ”2 <
j=

(3.19) (Ci[ dieg]* + [[(en)<|* + sup ||8:8;)* T

1<jsM-1

m m—1
+ Y AtfaBsli+ X Acfor i) + (An*] +
i=1 Jj=1

* CZ[:ZO At(||Oejey > + [ (s ) HZ)]-

Applying to (3.19) the discrete version of Gronwall’s lemma, we can con-
clude that '

m bl
020 aemsl +lensals +| £ arler

< C{(A1)* + || dces| + || (es)s] +

M-—1 4 M-1 3
v s o)+ [ aani] + 'S s}

By lemma 2.3.

ap ol =0(-), [T acjazar| oL
lstB—l = Vo K e = e N2

M-1 B 3 1
[z At ua,ﬂ,-ul] =o(ﬁ),

as N — c0. On the other hand, from (3.11),

1
ey | o <ﬁ2+ At3>

1

leps] =0 (ﬁ 4 Ap),

as At >0, N » oo.
Hence (3.20) implies (3.1), and our theorem is proved.

4, Numerical Results

We performed numerical experiments with algorithm (1.10)(1.12), taking
several different relations between inertial, elastic and dissipation coefficients.
In general we took N =15, po =1, f =0, L=1 and Ar =40~ sec.
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The first computation was done with uy(x) = 2/5 x(1 — x), u;(x) =0,
M =480, a; = a, = a3 = 1. The result was a rapid decay to zero in T, =
= 120 At seconds. Fig. 1 shows the motion of the mid-point of the bar: it
just goes back to the rest configuration. In Figs. 2, 3 and 4 we have the same
situation with diminishing viscosity coefficients a; = 0.2, 0.1, 0.05, respecti-
vely. We can see that oscilations do appear, by virtue of the increase in the
elastic force, with a damping directly proportional to a;. The decay to zero
times are Ty = 138 At, Ty = 254 At and T, = 422 At, respectively.

o K
0

TA t

u(1/2, t

Fig. 1

u(1/2, t

0.1

g B |
TA L
Fig. 2
u(1/2, 1)
0.1
5 \ /\vf'\v,\' :
U TA t
Fig. 3
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u(1/2, 1)
0.1

0 [\A/\/\ —
LU e

TA t

Fig. 4

Figures 5 and 6 are the results of a computation with uo(x) = 0, u;(x) =
=sinntx, M =240, a; =a, =1 and a; =1, 0.5. Due to the presence of

the initial impulse, a positive displacement is generated which decays to rest
in about 120 At seconds.

u(1/2, t)

O R

TA

Fig. 5

u(1/2, 1)

0.1 |

TA

Fig. 6

At last, in Figures 7 and 8, we have the results of a computation for the
case of non-zero initial displacement and non-zero initial impulse. We took
uo(x) = 2/5 x(1 — x), uy (x) = sinnx, M = 400, a3 = 0.2 and 0.1, respectively.
Damped oscilations occur with decay to rest times T, =162 At and T, = 357 At.
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u(1/2, t
0.1
0 /\
e
9 A t
Fig. 7
u(1/2, t
0.1
0 [\ LN AN s
AR G I LT e
TA t
Fig. 8
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