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A General Theory of Algebras of Polynomials

Johann Wiesenbauer

1. Basic Properties of Polynomial Objects and PF-Objects

The purpose of this paper is to give an axiomatical description of the
theory of polynomial algebras by categorical means. For notational con-
ventions and elementary results used without further reference we refer to

5 [6] and [7]. The starting point will be the following.

Definition. Let o/, # be categories, U: o - # a functor, A€ Ob &/

and X €0b A&. (P(A, X), ¢y, ¢3), where P(4, X)e Ob &/ and ¢,: A - P(4, X)

and ¢, : X — U(P(4, X)) are morphisms of .o/ resp. #, will be called a poly-

nomial object in 4 and X iff for any B € Ob .« and any morphisms a;: 4 - B

| and a,: X — U(B) there exists a unique a: P(4, X) = B such that o; =ag,
and a, = U(a)@,, ie. the following diagrams are commutative:

(1)

@2
az

This uniquely determined morphism a will be denotee by {ay, a3). By abuse
of language and notation we shall call sometimes also P(A, X) alone a poly-
nomial object in 4 and X.
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Examples. 1) Let ./ be a variety viewed as a category by defining the
morphisms to be the homomorphisms and # the category # of sets. Further-
more let U: .o/ — & be the Forgetful Functor which assigns to each algebra 4
its underlying set U(A). As it is shown in [6] the polynomial object (P(4, X),
@1, ¢,) exists for any algebra 4 in &/ and any set X and is essentially unique
(see Prop. 1 below). P(4, X) can be obtained by factorizing the wordalgebra
W(A U X) over AU X by the congruence 6 which is, roughly spoken, gene-
rated by the laws of the variety o/ and the identities in 4, while ¢; and @,
are the restrictions of the natural mapping v: W(Au X) > WA U X)/6
to A and X, respectively. It is easy to see that ¢, and ¢, are always injective,
except the trivial case that |4]| =1 and no algebra in the variety </ with
more than one element contains a one-element subalgebra.

2) Let # be the category of all partial algebras of some fixed type and
</ a full subcategory consisting only of full algebras with inclusion functor
U: .o —» #. We shall give conditions for the existence of polynomial objects
later on. Note that the example above can be regarded as a special case of
this by taking for X the partial algebra with operations defined nowhere.

3) Let .o/ be the variety of commutative rings with identity, 2 the variety
of commutative and U: o — # the Forgetful Functor which “forgets” the
additive structure of a ring. Then (P(4, X), 91, @) exists for any A and X,
and P(A4, X) is just the monoidring A[X] which consists of the formal sums
Y aixi, ai€ A, x;€ X, 1 finite, with operations defined in the usual way. Fur-

iel
thermore, ¢;: A - A[X] and ¢,: X — A[X] are defined by ¢,(a) = ae for
all ae 4 and @,(x) = 1x for all x € X, where e and 1 are the identity elements

of X and A, respectively.

4) In case that o = & and U = Id, the Identityfunctor of ¢/, it is easy
to see that P(A4, X) exists for A, X € Ob o iff the coproduct ALL X exists
and both are equal. ¢, and ¢, will be then the canonical injections of A and
X into the coproduct.

Proposition 1. Let (P(A, X), 91, ¢2) be a polynomial object in A and X.
Then (Q, Y1, ) will be also a polynomial object in A and X iff there is an iso-
morphism a: P(A, X) - Q with ap, =¥y, U@) @2 = ¥,.

Proof. Suppose (Q, Y1, ¥;) is also a polynomial object in 4 and X. By
way of definition there exist morphisms a: P(4, X) — Q and f: Q — P(4, X)
such that ap, = ¥, U@ ¢, = ¥, and BY; = ¢, U(B)Y, = ¢, which im-
plies fap;, = @1, U(Bo)p, = ¢, and apy; = ¢, U(@p)y2 = ¥,. By the uni-

S
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queness part of the definition of a polynomial object we conclude that
Po = lp4,x) and af = 1y, ie. a: P(A, X) > Q is an isomorphism with
apy =Y, and U(@)o,; = ¥,.

Conversely, assume this to be true. Then for any Be Ob ./ and any
morphisms y;: A—B and y,: X — U(B) there exists a morphism y: P(4, X)—B
with y¢, =y, and U(y)¢, =7y, which implies ya~ 'y, =y, and U(ya™?)
Y, = 7,. If there is another morphism é: Q —» B with oy; = y, and U(6)y, =y,

then we have dagp; = y; and U(éa)p, = y, which implies dx = y and the-
1

refore 6 = ya~1.
Theorem 2.Let o/ be a category with finite coproducts. Then (P(A4, X),
@1, ®,) exists for all AcOb .o/ and X €Ob # iff U has a left adjoint.

Proof. Suppose (P(A, X), @, ¢,) exists for all A€ Ob o and X € Ob 4.
Since «/ is a category with finite coproducts, it has an initial object I. If we
substitute 4 by I in the diagramm (1) defining the universal property of a
polynomial object then the upper triangle will be commutative for each
choice of a. Thus for any Be Ob ./ and any morphism a,: X — U(B) there
is a unique morphism a: P(I, X) - B such that the following diagramm
is commutative

) UPELX) ———— == ——— ~U(B)

®2
a2
X

But this means that (P(I, X), ¢,) is a universal pair for U which implies the
existence of a left adjoint of U.

Conversely assume the existence of a left adjoint of U which will be
denoted by F. Then there is a functorial morphism ¢ = (@x)xcop# :1 82— UF
(the front of the adjunction) such that for any Be Ob o/ and any a: X — U(B)
there is a unique morphism p: F(X) - B with U(p) ox = a. For arbitrary
AeOb o let ALl F(X) be the coproduct of A and F(X) with injections 1,
and 1,. We assert that (4 LI F(X), 1;, U(i;) ¢x) is a polynomial object in A
and X. To prove this let BEOb o/, a;: A — B and a;: X — U(B) be arbi-
trary. If we choose p to be the unique morphism with U(p) opx = a, and «
to be the unique morphism with az; = a; and a1, = p then one easily checks
that « is the unique morphism with au; = a; and U(a) U(i;) ox = o, i.e.
(ALl F(X),11, UG,) @x) has the universal property of a polynomial object
in A and X.
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Examples. 1) Let.o/ be a variety, # the category of sets and U: .o/ —» %
the corresponding Forgetful Functor. It is wellknown that U has a left adjoint,
namely the Free Object Functor F, and accordingly P(A4, X) = ALl F(X)
for any algebra A in ./ and any set X holds.

2) Let ¢, # and U: .o/ — # be defined as in Example 2) above. Then
U has a left adjoint if .o is closed with respect to isomorphic images, subalge-
bras and direct products (cf. [3], p. 87) and in this case (P(4, X), ®1. ¢,) will
exist for any A and X.

3) Let o, # and U: .o/ — & be defined as in Example 3) above. Then
U has a left adjoint, namely the functor F: # — o/ which assigns to each
monoid H the monoidring Z[ H] and to each morphism a: H — H' its unique
extension a: Z[H] — Z[H'] to a unitary ring-homomorphism. We conclude
from Theorem 2 that A[X] =~ ALl Z[X].

4) Let o = # and U the Identity Functor on /. Clearly U has a left
adjoint, namely U itself, and Theorem 2 yields the trivial result P(4, X) =
=l i

Definition. Let (P(4, X), @1, @,), (P(B, Y), /1, ¥) be polynomial objects
and the morphisms a;: A - B and a,: X — Y arbitrary. Then the unique
morphism a: P(A, X) —» P(B, Y) with ap,; = y,0, and U(@) ¢, = Yoo, will
be denoted by [a;,a,].

For purely technical reasons we state the following.
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PrOPOSition 3:yLet (P(As X)’ P11, (pZ) (P(B’ Y)’ lpl, l/IZ)’ (P(C9 Z)’ X1 XZ) be
polynomial objects and the morphisms ay, o2, B1, B2, V1,72, 0 in the diagram
(4) below arbitrary. Then the following equalities hold

(1) [B1, B2) [21, 22] = [Bia1, B222]
2 i,y [B1, B2] = {11B1, 72B2)
(3) 6<¥1,72) = <071, UB) y2)

4

oy

(]

141
®1 2 X1

Qs> = By i

P(A, X) [alyaz] ‘*P(B, Y) [ﬁl; ﬂ2] ‘P(C, Z)

vipa, x)) L2, yps, vy YLl yipc, 2y Y120 gyp) YO Ly

P2 12 X2
Y2

a2 B2 Wi

Proof. Straightforward.

Pl'OpOSitiOll 4. Let (P(A’ X)’ P1, (PZ)a (P(B’ X), l/Ila l//2) be pOIynomial
objects and a: A — B an arbitrary morphism. Then the diagram (5) below is
a pushout

©) P(4, X) [ 1] P(B, X)
@1 ¥
A L B

Proof. It is clear by definition of [«, 1x] that (5) is commutative. Suppose
there is a CeOb.o/ and morphisms B = (B, ;) : P(4,X)— C and y:
B — C such that fo; = ya.
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(6)

P(4, X)

P1

A

As a consequence of Prop. 3(2) and the defining properties of a poly-
nomial object the equalities (8,, 3,) [a, 1x] = (B, B2) and (8;,d2) Yy =7
hold for é = {8, 8,) : P(B,X)— C iff §, =y and 8, = B,, hence the given
rectangle is a pushout.

Definition. Let (P(4, X), ¢,,®,) be a polynomial object in A and X
and I = Mora(X, U(A)). (Pf(A, X),0%), where Pf(A4,X)eOb o/ and o¥:
P(A, X) = Pf(A, X) is an epimorphism, will be called a PF-object in A and
X iff (Pf(A4, X),0%) is a counion of the family ((4, {14, %)) of quotient
objects of P(A, X). In particular, for any Be Ob .o/, any f : B — P(A, X), any
epimorphism { : B —» B and any family (Bu).r With Bl = (14,a)p for all
a eI there exists a (necessarily unique) f : B — Pf(A4, X) with B{ = o4p (see
diagram (7)). By abuse of language we shall call sometimes also Pf(4, X) a

PF-object. ¥
™ (P(4, X)= B
o4 ¢
<1A,a>
iy douofton L 3 |
E
4 B

Example. Let o/ be a variety, # the category of sets, U: o — # the
corresponding Forgetful Functor and X a set of k elements. Then Pf(A4, X)
is just the algebra Py(A) of k-ary polynomial functions as defined in [6].
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Proposition 5. Let U: of — # be an epifunctor, X € Ob # projective and
(P(A, X), @1, ®2) a polynomial object in A and X. Then for any Be Ob < and
any a = {ay, %) : P(A, X) > B, where o, is an epimorphism, there exists a
unique epimorphism o': Pf(A, X) > B such that o % = a.

Proof. Since U(a,) is an epimorphism and X is projective, there exists
an &, : X — U(A) such that a, = U(x;)a,. Using Prop. 3(3) and the defining

* property of a PF-object we get a = {(a;,a,) = a; {14, a,) = a,0z0% for

some @, : Pf(A4, X) » A. Thus o = a, @, satisfies the condition claimed above
and is clearly unique. Since «; is an epimorphism, « = {a;, ;) and subse-
quently o' are apimosphisms, too.

Proposition 6. Let U: .o/ — A be an epifunctor, X € Ob # projective and
(P(A, X), @1, ¢3), (P(B,Y), ¥y,V¥,;) polynomial objects. Then for any
o = [ay, a2]: P(A, X)— P(B,Y), where a, is an epimorphism, there exists a
unique %: Pf(A, X)— Pf(B,Y) such that the following diagram is commu-
tative

®) P(4, X) 4% 0] P(B,Y)
a4 af
PI(A,X)————=F—— = — (B, V)

Proof. By Prop. (3.2) and Prop. 5 {lg, ) [a;, fa,] can be factored
through o% for all Be Morg(Y, U(B)). Since (Pf(B,Y), of) is a counion of
the family ((B, {1p, B))pemora(¥. u(B)), there must exist an a: Pf(A4, X) — Pf(B, Y)
which makes the diagram above commutative and & is clearly unique.

Remark. Prop. 6 can be regarded as a generalization of Prop. 3.31 in [6].

2. Some Functors related with Polynomial Objects

Since a polynomial object has been defined via a universal property,
a pair of adjoint functors arises from it in a natural way. These are the func-
tors P: of x B — o and Q: o — o/ x &, where P assigns to each pair
(4, X)e Ob .o/ x A the polynomial object P(4, X) and to each pair (a,, ;)€
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€ Mor (A, B) x Morg(X, Y) the morphism a = [ay,a,]: P(4, X) » P(B, Y)
and Q is defined by Q(A4) = (4, U(A)) for all A€ Ob .o/ and Qo) = (2, U(a))
for all morphisms o in .&7.

Of course, we are mainly interested in the functor P and its properties.
Since it is a bifunctor, we get two related functors P(A,.) and P(, X) by fixing
the first resp. second variable. If there is a need to stress the dependence of P
on two variables we shall write P(.,.) for P.

Proposition 7. If «/ and # are additive categories and U: o — B is
and additive functor, then P(.,.) is also an additive functor.

Proof . Straightforward.

Theorem 8. P(.,.) preserves colimits. In particular, P preserves copro-
ducts, pushouts, coequalizers, cokernels and epimorphisms.

Proof. This is an immediate consequence of the fact that P has a right
adjoint, namely Q (cf. [7], p. 67).

Corollary 9. Let o/ and # be categories in which coproducts and poly-
nomial objects P(A, X) exist for all AcOb .o/ and X € Ob A. Then there is
an isomorphism H P(A;, X;) = P(]__[ A, ]_[ X ;) which is natural in all variables.

iel iel iel

Proof. This is a simple consequence of Theorem 8 by the observation
that U(A;,Xi) exists in .o/ x Z iff ]_I A;, and ]__[ X; exists in o/ and %,

ile iel iel

respectively.

Corollary 10 P(A,) and P(., X) preserve pushouts, coequalizers and epi-
morphisms for any A€ Ob.«/ and X € Ob A.

Proof. Let 1,: B — o/ x # be the functor defined by I 4X) =4, X)
for all X € Ob# and I () = (14,) for all morphisms a in #. It is easy to
see that I, preserves pushouts, coequalizers and epimorphisms. Hence,
applying Theorem 8, P(4,) = P(.,.) 14 also does. The proof for P(,X) is
similar.

Proposition 11. Let (P(4, X), 1, ¢2), (P(B, X), V1, ¥2) be polynomial
objects and a: A — B a monomorphism. Then P(a, X) = [a, 1x]: P(A, X) —
— P(B, X) is a monomorphism iff’ there is a C€Ob <, a monomorphism
B: P(A,X)— C and ay: B— C such that B, = yo.

Proof. As a consequence of Prop. 4 there must be a 6: P(B, X ) = C which
makes the diagram (9) commutative.
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©)

P(4, X)

(31

A 2 B

Since B = d[ayx] is a monomorphism, [a, 1,] must be a monomorphism,
too.

Theorem 12. If o/ is an abelian category, then P(., X) is a monofunctor
for all X eOb A.

Proof. This is a consequence of the socalled Pushout theorem for abelian
categories (cf. [3], p. 53).

Proposition 13. If U is an epifunctor, then P(.,.): of x B — of preser-
ves projectives objects. In particular, P(A,.) and P(., X), where A< Ob o and
X e€Ob# are projective, preserve projective objects.

Proof. Let AcOb.«/ and X € Ob # be projective, f: B— C and epi-
morphism and a = {a;,a;): P(4, X) = C an arbitrary morphism. Since A
and X are projective and U(p) is an epimorphism, there exist morphisms
71: A — B and y,: X — U(B) such that fy; = a; and U(f) y, = a,. An appli-
cation of Prop. 2(3) yields f{y;,y.) = {a;,a;) (see diagram (10)).

P(A, X)
(10) -

B —aC

Proposition 14. Suppose P(P(A, X), Y) and P(A, X L1 Y) both exists. Then
there is an isomorphism ¢ = ¢4 x.v: P(P(4, X), Y) = P(A, XLI Y) which is
natural in all variables.

Proof Let (P(A’ XLI Y)’ ?1, (pZ)’ (P(P(Av X)’ Y), '//1, l//2)’ (P(As X)’ X1, XZ)
be the corresponding polynomial objects and XLI Y the coproduct of X
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and Ywith injections 1; and 15, respectively. Furthermore, let ¢ = {{@1, @2, 11).
@2,12) and 0 = (Y, y1,4), where 4: X1 Y— U(P(P(4, X), Y)) is the unique
morphism with & ; = U(Y1)x, and v ; = ;.

X1
(11) A P(A, X)
@1 ll/l <¢'1v ®, ‘l>
L 2] ¢
P4, XL v) P(P(A, X), Y) P4, X v)
U(P(4, X1 1)) v U(P(P(4, X), Y) U(@) U(P(4, XL 1))
i 1
@2 A U(y)
/2 @2
x[ey U(P(4, X))
11/
X2 12 12
X Y >xI1y

From diagram (11) we conclude that $p0¢; = ¢Y1x1 = (@1, @2, 11)x1 =
= @1, U(@0) 1112 = U(p) U(O) 1a1y = U(@) A1y = U(¢) UW) x2 = U(PpY1)
x2 = UK@1, @1211)) X2 = @111 and U(0) @112 = U(¢) U(0) @121 = U() A1z
= U(¢) Y2 = @11,. By the uniqueness part of the definitions of a polynomial
object and of a coproduct we get $0 = 1p, x v). In a similar way one proves
0¢ = 1pppa, x),v) using diagram (12).

P(4, X) A 1 P(4, X)

(12)

(@1, 02,11)

W 1 (1 'l’ 1
¢ 0
P(P(A. X), Y) P4, x11y) P(P(4, X), Y)
ueP, X, 1) —Y9 v xy) —YO Ly, x), v)
l”z @2

Y £ e xlly
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Furthermore, one easily checks that for any a: 4 — A, B: X > X and
y: Y —> Y the diagrams (13), (14) and (15) are commutative which proves the
naturality of ¢, x vy in all three variables.

(13)
P(P(4, X), Y) $ax.x P4, x11Y)
[[ar 14\’]’ IY] [a, lx Hy]
P(P(A X), Y) Paxt P(A X1 v)
(14)
P(P(4, X), Y) $axy P4, X1 v)
[[14, 8] 1¥] [14,8L01y]
P(P(4, %), Y) $afr  _ p4 X1 Y)
(15)
P(P(4, X), Y) $ax.x P4, x11Y)
[Lpwu,x,7] [14, 1510 7]
P(P(4, X), ) $ax¥ pa x1IV)

Let o/ be the subcategory of ./, where Ob &/ = Ob of and the morphisms
of o are the epimorphisms of .«¢. If U is an epifunctor and X € Ob # projec-
tive, then Prop. 6 can be used to define a functor Pf(, X): o — &, which
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assigns to each 4 € Ob of the PF-object Pf(A, X) and to each a: A — B the
unique morphism a: Pf(4, X) » Pf(B, X) with ao% = of[a, 1x].

For the sake of reference we state.

Proposition 15. Let U be an epifunctor, X € Ob # be projective and
P(, X): o/ — o be the functor obtained from P(, X) by restriction. Then
0 = (0 acobar: P, X) = Pf(, X) is a functorial epimorphism.

Proof. Follows from diagram (8).

3. On Direct Products of Polynomial Objects and PF-Objects

As a general assumption we have that all products, polynomial objects
and Pf-objects occurring in this section exist. A product of a family of objects
(A)icr will be denoted by ([ ] Ai, (£:)ic1), where the &; are the projections of

iel
the product. By abuse of language we shall call sometimes also [ | 4; alone
a product of the family (A;)ic;. iel’

Proposition 16. Let T = (A4;);c; be an object of the product-category f'

and X € Ob . Then there is a unique morphism t, = 14(T, X): P(]] Ai, X) —
= iel
n P(A;, X) with n;t; = [&;, 1x] for all i€ I, where m; and &; are the projections
iel
of || P(Ai, X) and [] A, respectively. Furthermore, t, is natural in T' and
iel iel

X, i.e. the following diagrams are commutative for each choice of T = (Aic1,
a = (2;)ic;’ T =T and B: X > X (for notational convenience we have set

A =[] A and 4 =[] 4).

iel iel

(16)
P4, X) AL R § 7
iel
[HI a;, 1x] HI (o, 1x]
P(A, X) $H04 [1 P4, X)

iel
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17)
P4, X) 2L [1 P4, X)
(14, 8] n, [14:, 8]
2 ;
P(Z X) o [1 P(4:, X)

iel

Proof. Existence and uniqueness of 7; follows from the universal pro-
perty of the product ([] P(4i, X), (T)ic1)-

iel
To prove the commutativity of the diagram (16), we consider the follo-
wing diagram

(18) pax) — 28X | 11pa,x 2 P(4;, X)
iel
[HI Qs 1x] I_I’ [“-‘, lx] [ai’ lx]
A b v
A X D R il P(A,, X)

iel

where 7i; are the projections of [] P(4;, X). Since the right rectangle and
iel
the outer rectangle are commutative by definition, using the universal pro-
perty of (|| P(4:, X), (%)ic1), we get that the given rectangle is also com-
iel
mutative.
In a similar way one checks the commutativity of diagram (17).

Proposition 17. Let T' = (A;)ic be an object of o', X € Ob B projective
and U an epifunctor. Then there is a unique morphismt, = t,(I, X): Pf (IT 4:, X)

iel
— [1 Pf(Ai, X) with mit, = Pf(&:, X) for all i€ I, where n; and ¢; are defined
iel
as in Prop. 16. Furthermore, 1, is natural in I' and X.
Proof. The proof is essentially the same as the proof of Prop. 16 since

only functorial properties of P(, X) had been used. Note that I" has to be
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regarded as an object of .&/', that is the naturality w.r.t. ' holds only for
families of epimorphisms.

Example. We list some consequences of Prop. 16 and Prop. 17 for the
classical case, where o is a variety, # the category of sets and U: of — &
the corresponding Forgetful Functor. For an application of Prop. 17, U
must be an epifunctor, which is valid iff the epimorphisms of the variety
&/ are just the surjective homomorphisms.

Suppose 1, : P(H A, X) - n P(A;, X) is an epimorphism. Then using

iel iel
the naturality of ; with respect to X, we get that 7, remains an epimorphism,
when X is replaced by a subset X (since there is an epimorphism f: X —» X

and [][14;,, B] is an epimorphism). If t; is a monomorphism and P(., X)
iel

preserves monomorphisms, then we conclude from Proposition 16 that t,

reamins a monomorphism, when A; is replaced by a subalgebra A; for all

i€ I. For 7, the first assertion is also valid, whereas the second becomes trivial

by the fact that 7, is always a monomorphism (cf. [6], ch. 3, Prop. 3.53).

Proposition 18. Let .o/ be a complete abelian category, (P(4, X), @1, ¢3)
a polynomial object in A and X and J = Morg(X, U(A)). Then the PF-object
(Pf(A, X), 0%) exists and the family (,)zcs (see diagram (7)) has the following
property: If for any morphisms y,0 in o/ the equalities €,y = €,0 hold for all
aeJ, then y = 6.

Proof. Let p: P(A, X) » A’ be the unique morphism with n,? = (1,,a)
for all a € J, where the n, are the projections of A’, and p = 16 the factori-
zation of p by its image. Then it is easy to see that (Im p, o) is a PF-object
in A and X (see diagram (19)).

(19) P(4, X)
o
laya)
Imp
b '
A L Al
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Since ¢, = n2 for all aeJ and 1 is a monomorphism, the stated pro-
perty of (,).cs iS an easy consequence of the corresponding property of
(na)ae.l e

Proposition 19. Let &/ be a complete abelian category, U: of —> & an

epifunctor and X € Ob # projective. Then for any family (A;)ic1 of objects in
o vy Pf([] Ai, X) - [] Pf(4i, X) is a monomorphism.
iel iel

Proof. Let (A, (£;);c1) denote the product of the family (4;);c;. We assert
the commutativity of the following diagram (20)

20

(20) P(4, X) L, o " 'y

iel
o% [1o4i
iel
T v

Pf(4, X) 2 > [1 Pf(Ai, x)

iel
€, I1 EUE

iel

A

The proof of this assertion is done by a simple diagram chasing using the
universal property of (A4, (¢;)ic;) and the fact that ¢% is an epimorphism.

Suppose now 7,y = 7,0 for some morphisms y and é. This implies
g,y = &0 for all a e Morg(X, U(A)) by the commutativity of diagram (20)
and subsequently y =6 by Prop. 18.

Remark. Clearly, the hypotheses of Prop. 19 can be weakened in may
ways, but it seems to be rather difficult to find necessary and sufficient con-
ditions for 7, to be a monomorphism.
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