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Functional diferential inequalities

H. Cassago Jr.*

1. Introduction.

Viswanathan [1] showed that certain integral inequalities for ordinary
differential equations are generalisations of Gronwall’s Lemma. The object
of this paper is to prove a theorem on functional differential inequalities
that contain in particular the results given in [1].

2. Preliminaries.

Let >0 be a real number, and C([a, b], R) the Banach space of conti-
nuous functions mapping the interval [a, b] into R with the topology of
uniform convergence. When [a,b]=[—-1,0], we let C=C(—r1,0],R),
and denote the norme of ¢ in C by |¢|,= sup | @6)]. If x is a func-

tion belonging to C([a — 7, b], R) for any a < b then for each fixed
te[a, b], the symbol x, will denote an element of the space C defined by
x@)=xt+6), —t<6 s 0. For each element peC we define the euclidean
norma of ¢ as follows: | |(0)=|@@6)|, —t1<6<0. Let p>0 be a given
constant, and let C, = {peC, :|¢|, < p}, where C, = C([—1,0],R,). We
consider the scalar functional differential equations

(1) x =wt, x,)
where weC(J x C, R).

Definition 1. Let weC(J x C, R). We say that w(t, ¢) is nondecreasing
in ¢ for each fixed t, teJ, if given ¢,, ¢,€C with | @, | < |¢@,| we have:
w(t, @,) < w(t, 9,).

Definition 2. Let r(t, ¢,, ,) be a solution of (1) on [t,,t,+a). Then
r(t, ty, @,) is said to be a maximal solution of (1) if, for every solution
x(t, ty, @,) of (1) existing on [t,,t, + a), the inequality
Xt to, @o) <Mt 1o, @), tE[ty,ty+a)

holds. A minimal solution may be defined similarly by reversing the above
inequality.
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3. Main results.
Theorem 1. Let me C([t,—1,t,+ al, R,) satisfying the inequality

t
m(t) < @,(0) + f w(s, m)ds, te St <L, +a
t

o

where we C([t, —1, t,+a] x C,, R,). Suppose that w(t,y) nondecreasing
in y for each fixed t, te[to,t + a], and that r(t, to, @), with ¢, € C,, is the
maximal solution of (1) existing fo/v Late

Then, there exists an a>0 such that m, < ¢, implies that m(t) <
<r(t ty, @o) for to<t<t,+a. ‘

Proof. Define ye C([t, —1,t,+ a], R) as follows:

o) = §Polt —tob t,—T<t<t,
d ‘{%(0), ty<t<ty+a

Then w(t,y,) is a continuous function of t on [t,,t,+a] and hence
|w(t, )| <M,. We will show that there exists a constant be(0, p — ¢,(0))
such that

| wit, ) —wit, y) | <1

whenever te[t,,t,+a], y€C, and | —y,|, <b. Suppose that this is not
true. Then for each k=1,2, ..., there exist t,€[t,,t,+ «] and wkecp such

1
that |y, — y, | < 4 and

| Wt ) = Wity 3, )| = 1

Now, choose a subsequence {tkp} such that Jer% b, 5 exists, and
this leads to a contradiction concerning the continuity of w at (tl,yt)
Then it follows thdt |w(t,y)| <M =M, +1 whenever te[t,,t, + a], weC
and |¢ yzlo

Let M = sup |w(t,m)]|.

to<t<to+a
Let M = max {M, M}.

Choose a = min {a, b/3} .
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Let B denote the space of continuous functions from [t, — 1, t, + «]
into R, with the sup-norm and, then, B is a Banach space. Let S = B be
defined as follows:

@) x() =04t —1t,), t,—1<t<t,
S={xeB: (i) |x(t)—xt,)| <M[t, —t,|, t,,t,€[tpt,+a]
(i) x(t) > m(z), telty t,+o]
Now, we will show that S # ¢.

Polt —1g),  ty—T<t<t,
Let x(t) = :
() {¢O(O)+Jw(s,ms)ds, G St i
t

0

D) xO =@t —ty), t,—t<t< ts

) [x(t,) —x(t,)| = | f (ot i f -
< J ¥

Under the above conditions it follows that

j w(s, m)ds
ty

wis,m)lds < M|t, —t,], t;, €[t 15 +].

(iii) x(t) = @,(0) + fr w(s, m)ds > m(t), te(t,, t, + «].

o]

Therefore S # ¢.

Let us show that S is convex.
Let f, geS. We will show that

ht)=2f(t)+ (1 —Ag(t)eS, 0<Ai<1 and tel[t,—1,t,+a]

(@) h(e)=Af @)+ (1 = Dg(t) = Loyt —to) + (1 — Dt — o) =
=@t —t,), Lo =T — TN,

(11) ’h(tl)_ h(tz)l = |’1f(t1) +(1 i A)g(%) T Af(tz) —(1 . j-)g(t2)| =5
<M|t,—t,|, t,, t,e[te t, +a]

<
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(iii) h(e) =21 (®) + (1 — A)g(t) = im(t) + (1 — AYym(t) = m(t), t€ [ty 1, + o]

Thus, h(t)eS and, hence S is convex.

S is closed. In fact, if x, €S and the sequence {x,} converges uniformly
for x on B. Then, x,(t) converges for each t. To see that x€ S, it is enough
to prove condition (ii) because conditions (i) and (iii) are trivially satisfyed.
As x, is pointwise convergent, to x, we have that x,(t,) = x(t,) and x(t, — x(t,),
for all t,, t, e[ty t,+ o], and thus

|xn(t1) . xn(tZ)! < M! L — 1 '

By taking the limit, as n— oo, it follows that |x(t,) — x(t,) | < M|t, —t,]|.
Hence S is closed.

Functions of S are equicontinuous. In order to show this we must
show that for each ¢>0 and for each te[t,—1,t,+a], there exists a
0=0(e,1,)>0 such that |t —t, | <6 =|x(t)— x(t,)| <e, for all xeS. For
t,e[ty—1.t,] we have that for each &> 0, there exists & =0(e t,) such
that |t—1, | <d=|x(t)—x(t;)| <e for all xeS, since |x(t)— x(t,)|=
= | @yt —t,) — @o(t, — t,)| and @, is continuous. For t, €[ty t, + o] we
always have that: |x(1)— x(¢,)| < M|t—t,| Then, it is enough to take
0 = &y

Functions of S are uniformly bounded. In fact. For all xe S, we have:

if to—1<t<t,=x(t) =@t —t,) < p, because ¢,€C,;
if ty<t<ty+a=|x(0)] —|@y0)| <|x(t) — @o(0) | = | x(t) — x(t,) | <

<SM|t—ty)|<M|ty+a—ty|=Ma<M = = b;

then
| x(0)| b+ 04(0) < p — 94(0) + 9,(0) = p

Therefore, from Ascoli’s Theorem, S is compact.
Define a mapping T on S as follows: for an element xeS, let

(i) (Tx)(f)=(l’o(t—to)= by — TEL =4

(i) (Tx) (1) = @,(0) + f ws, x)ds, to<t<t,+a

to

Functional diferential inequalities )
For every xeS and te[t,, t, +a], we have

| x(t) = x(to) | = | X(t) — @o(0)| < M |t —t,| < Mo <b.
Consequently
|x,— ] <b and x,eC,, because

|x, =y lo= sup |x(t+6)—yt+0)].

-1<0<0

When t + 60 <t, we have that
X(t+0)=yt+0)=|x(t+ 60— yt+06)| =0.

Then we are interested only in case t + 6 > Lon Ji8oy Ty =t <0 =<0

Hence |x,~y,|,= 'sup fx(t+0)fy(t+0)| =

hb—1<0<0

sup | x(t+6)—yt+0)<

Qy<St+0<t
< sup ]x(t+0)—y(t+0)[=

thSt+0<t,+a

and, by taking t+ 0 =s,
= sup [x(s)= W)= sup |x(s)—y(0)| <b.

ySs<t,+a tyS<s<t,+a

Let us show that x,eC,. We have that |x(t)| < p. Then |x,|, =
= sup |x(t+0)| Ift,—t<t,+6<t, we have x(t+0) =@yt +0—1t,)

—< 00
and, since (poeCp, we have that x, eCp. If ty<ty+0<t,+a we have
that | x(t + 6) | < p, hence x.£ Q.

Therefore w(s, x,) is a continuous function of s and | w(s, x,)| < M for
ty<s<t,+a Then the mapping T is well-defined on S.

We will show that T is continuous.
For t—t<t <, (I¥) ()= ot —t,) and, hence T is continuous.
t

For t,<t<t,+a, (Tx) (1) = 9,(0) +j w(s, x)ds and it is still conti-

to
nuous. In fact. Consider the sequence {x"(s)},2, of functions of S which
is uniformly convergent for x(s)eS, on [ty — 1.ty +a]. Then. the sequence

o0

{x}} | converges for x_ on C,, uniformly in se[t,,t, + «]. Indeed. let the
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set V={xeC,, neN, se[tyt,+a]}. From the definition of ¥, we have
that Vis uniformly bounded. Now, we are going to show that V'is equicon-
tinuous.

| x"0,) — x*0,)| = | x"(s +0,)—x"(s+0,)| <M|0, —0,]

if s+86,, s+8,e[t, t, Fa]$hen ior cicli™e =0, ‘there 'exists 6, = 0,()
such that [0, — 0,| <&, =|x"0,) — x"(0,)| < &; so that is enough to take
0, = &f3;

if s+0,, s+0,e[t,—1,t,], we have that

‘ xy(0,) — x%(0,) | i | @ols + 0, — 1)) — @gls + 6, — ty) ’

and since ¢, is -continuous on [ —t,0] and hence is uniformly continuous,
we have that, for each ¢> 0, there exists 6, =J,(¢) such that |0, —0,]| <
<d,=|x%0,) —x%6,)| <e.

Taking 6 =min{d,,d,}, we have that, for each &>0, there exists
d = d(¢) such that |0, — 0, | < & =|x"(0,) — x"(0,)| < &, for all x" e V. There-
fore V is equicontinuous.

Then, by Ascoli’s Theorem, V is compact.
As x" - x,, uniformly on [t,,t,+«], we have that x e V.

Then w(s, ) is uniformly continuous on [t ¢, + o] x V and, hence,
given Y, Y, eV and se[t,,t, + o], we have that, for each & > 0, there exists
0 =d(e) such that [y, — ¢, |, <0 =|wis, ¢, —wis,¢,)| <e

As x" — x, uniformly in s, se[t,, t, + o], we have that, for each 6 >0,
there exists N = N(d) such that n> N = |x" — x_| ; <. Consequently, for
each &> 0, there exists N = N(¢) such that n > N = | w(s, x") — w(s, X} =<

< ———, ie., w(s, x") converges to w(s, x,) uniformly in se[t,,t, + a].
(bgt=0) =t 5 g

Thus,

[ (Tx") (£) — (Tx) (1) | < |L|w(s, x") — w(s, x.) | ds < J:O mds<8
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and, hence, (Tx")(t) converges uniformly to (Tx)(t), then, T is continuous.
We claim that TS < S. Indeed, let xe S such that

(]) (TX) (t) = (Po(t il to), to = T<I< tO

() [(T%)(t,) — (T (t,)] = |r w(s, x)ds | <

t ——
$|J2|w(s,x5)’ds|5M|t1—t2|, Lty €[ 1g, tg+ 0]
ty

t t

(i) (Tx)(¢) = 9,0) + f w(s, x.)ds > ¢ (0) + j w(s, m)ds > m(t),

to to-

teltg, ty+al

t t

w(s, x.)ds = ¢,(0) + j w(s,mds holds, be-

to

The inequality ¢,(0) + J

to
cause x(s) = m(s), s€[t,, t, + o]. In fact. As x(0) = x(s +0), if s + 6 <t,, and,
from hypoteses, m, < ¢, it follows that x(s + 6) = (s + 0 — 1) > m, (s + 0).
If s+6=>t, it follows x(s + 0) >m(s + 0) =m(0). Thus, T maps S into S.

As the hypoteses of the Schauder fixed point theorem hold, thus there
is a function x €S such that:

(i) (Tx)(t) =x(t) = @yt — 1), to—T<t<t,

(i) (Tx) (1) = x(t) = @,(0) + Jl w(s, x)ds, t, <t <t,+a.

to

Since x €S, the integrand in the foregoing equation is a continuous
function of s. Thus, for t, <t <t,+a, we can differentiate to obtain

xX(t)=wt, x), ty<t<t,+o.
As r(t,t,, @,) is the maximal solution of the above equation, we have
x(t) <r(t), ty<t<t,+o.
As x(t) >m(t), t, <t <t,+a, we have that

m(t) < r(ta Lo ¢0), [ <t< lo+o

This completes the proof of the theorem.
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Corollary 1. Let me C([t, — 1, ), R,) satisfying the inequality

t

m(t) < ¢,(0) + J w(s,m)ds, t>t,

to

where we C([t, —1,0) x C,,R,). Suppose that w(t, Y) is nondecreasing in
Y for each fixed t, t € [t,, o), and that r(t, to, @), With € C > IS the maximal
solution of (1) existing for t > t,,. '

Then, m, < ¢, implies that

m(t) <r(t, ty, @y) for t>t,.
Proof. Suppose that the set

Z={t=ty; m(t)>r(t,ty, 9,)}

is not empty. Let ¢, =infZ. Then m(t,) = r(t,, t,, o). Therefore t, ¢ Z.
For t<t,, we have that m(t) <r(t,t, ¢,) and so m, <r, (te,®,). As r is
increasing and taking ¢, =r,(ty ®,) we have

m(t) < ¢,(0) + f w(s, m)ds <r(t,, to, ) + ft w(s, m)ds =

to 0

=¢,0) + J w(s, m)ds.

to

By using Theorem 1 in ¢,, we have that there exists an a, such that for
tet,, t, +al, m) <r(, ty» @) This leads to a contradiction. Then Z = ¢,
and m(t) <r(t,t,, @), for t >,

Corollary 2. Let meC([ty—1,ty+al],R,) satisfying the inequality

m(t) < @, (0) + B(t) + f t w(s,m)ds, t,<t<t,+a

to

where we C([t,—1,t,+a] x C,,R,), B(t)>0 and continuous. Suppose
that w(t, ) is nondecreasing in \ for each fixed t,t€[t,,t,+al, and that
r(t, to, @o), with o eC p IS the maximal solution of ¥ =w(t,r,+ B,) existing
for t>t,

Then, there exists an o> 0 such that m, < @, + B,, implies that m(t) <
S B@) +r(t, ty, @) for to<t<t,+a.
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Proof. Defining p(t) = m(t) — p(¢), it follows m(t) = p(t) + B(t) which
implies m, = p, + B,. So, the inequality becomes

T

p(t) < 9,(0) + J w(s, p, + B, ds,

to
where P, =m, — ﬂto <@y + ﬁ:o — ﬁ:o =@,

By applying Theorem 1, we obtain that there exists an a >0 such that
PO <L b @y) for t, st 5t + 0
Therefore, there exists an a > 0 such that

m(t) < B(t) + r(t, to, @) for ty<t<t,+a

Corollary 3. Let me C([t, —t, ), R,) satisfying the inequality

t

m(t) < @,(0) + B(t) + j w(s,m)ds, t>t,

to

where weC([t, —1t,©)x C,,R,), B(t)>0 and continuous. Suppose that

w(t, ) is nondecreasing in Y for each fixed t,te[t, — 1, 00) and that r(t, t,, @),

with @,€C,, is the maximal solution of ¥ =w(t,r,+ p,) existing for t>t,.
Then m, < @, + B, implies that

m(t) < B(t) + r(t, ty, @) for t >t
Proof. Suppose that the set
Z={t=ty; mt)>p(t) +r(t,ty, @)}

is not empty. Let t, =infZ. Then m(t,)=f(t,) + r(t,, t,, ®,). Therefore
t,¢Z. For t<t,, we have that m(t) < B(t) +r(t, to, ¢,) and so m, <f, +
+ 7, (te 9o) = B, + @,, where @, =r, (t,, @,). As r is increasing, we have

t

m(t) < @,(0) + B(t) + f w(s,m)ds <

t0

t

L1y, te Po) + B(1) + f w(s, m)ds =

to

t

=¢,(0) + B(r) + J w(s, m)ds.

to
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By using Theorem 1 in ¢, we have that there exists an «, >0 such
that for te[t,,t, +a,], m(t) < B(z) + (¢, t, @,). This leads to a contradiction.
Then Z = ¢, and m(t) < B(t) + r(t, to, @), for ¢ > 1,

Theorem 2. Let meC([t, — 1,t, + a],R,) satistying the inequanty

t

m(t) = ¢,(0) + f w(s,m)ds, t,<t<t,+a

to

Yvhere weC([t, - to+a] x C,,R,). Suppose that w(t,V) is nondecreasing
zn.\p Jor each fixed t, te[t,, t, + a], and that r(t, Lo, Po)s With @ e€C | is the
minimal solution of (1) existing for t > I §

Then, there exists an o> 0 such that m, > @, implies that
m(t) > r(t, to, @) for ty<t<t,+a

The proof is similar to the one given in Theorem 1.

Corollary 1. Let me C([t, — 1, ), R ) satisfying the inequality

m(t) > ¢,(0) + f t w(s, m)ds, t>t,

to

where weC('[toz—r, ) x C_,R,). Suppose that w(t,V) is nondecreasing in
V] for. each fixed t,te[ty, ), and that r(t,t,, @), with ©o€C,, is the minimal
solution of (1) existing for t >t,.

Then m, > ¢, implies that

m(t) > r(t, t,, @,) for t > to

The proof is similar to the one given in Corollary 1 of Theorem 1.

Corollary 2. Let weC([t, —1,t,+a],R,) satisfying the inequality

m(t) > ¢,(0) + B(t) + f w(s,m)ds, t, <t <t,+a

to

where we C([t, — 7ty + a] x C,,R,), B(t) >0 and continuous. Suppose
that w(t, ) is nondecreasing in W for each fixed t, telt,—1,ty+a], and
that r(t, ty, @,), with 9,€C,, is the minimal solution of = w(t, r,+ B,)
and that r(t, t,, @), with ©,€C,, is the minimal solution of ¥ = w(t,r, + B)
existing for t > t,. t
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Then, there exists an a >0 such that m, > @, + B, implies that
m(t) = p(t) + r(t, ty, @) for to <t <t,+ o
The proof is similar to the one given in Corollary 2 of Theorem 1.

Corollary 3. Let meC([t, — 1, ©), R,) satisfying the inequality

t

m(t) = @,(0) + B(t) + J w(s, m)ds, t >t

to

where weC([t,—1, ) x C,,R,), P(t)>0 and continuous. Suppose that

w(t, ) is nondecreasing in  for each fixed t, te[t, — 1, o) and that r(t, t,, @),

with ¢,€C,, is the minimal solution of F=w(tr,+ p,) existing for t>t,.
Then m, > @, + B, implies that

m(t) = p(t) + r(t, ty, @) for t=t,.

The proof is similar to the one given in Corollary 3 of Theorem 1.
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