Functional diferential inequalities

H. Cassago Jr.*

1. Introduction.

Viswanathan [1] showed that certain integral inequalities for ordinary differential equations are generalisations of Gronwall's Lemma. The object of this paper is to prove a theorem on functional differential inequalities that contain in particular the results given in [1].

2. Preliminaries.

Let $\tau>0$ be a real number, and C([a,b],R) the Banach space of continuous functions mapping the interval [a,b] into R with the topology of uniform convergence. When $[a,b]=[-\tau,0]$, we let $C=C([-\tau,0],R)$, and denote the norme of φ in C by $|\varphi|_0=\sup_{-\tau<\theta<0}|\varphi(\theta)|$. If x is a function belonging to $C([a-\tau,b],R)$ for any $a\leq b$, then for each fixed $t\in [a,b]$, the symbol x_t will denote an element of the space C defined by $x_t(\theta)=x(t+\theta), \ -\tau\leq\theta\leq 0$. For each element $\varphi\in C$ we define the euclidean norma of φ as follows: $|\varphi|(\theta)=|\varphi(\theta)|, \ -\tau<\theta<0$. Let $\rho>0$ be a given constant, and let $C_\rho=\{\varphi\in C_+: |\varphi|_0<\rho\}$, where $C_+=C([-\tau,0],R_+)$. We consider the scalar functional differential equations

$$\dot{x} = w(t, x_t)$$

where $w \in C(J \times C, R)$.

Definition 1. Let $w \in C(J \times C, R)$. We say that $w(t, \varphi)$ is nondecreasing in φ for each fixed t, $t \in J$, if given φ_1 , $\varphi_2 \in C$ with $|\varphi_1| < |\varphi_2|$ we have: $w(t, \varphi_1) < w(t, \varphi_2)$.

Definition 2. Let $r(t, t_0, \varphi_0)$ be a solution of (1) on $[t_0, t_0 + a)$. Then $r(t, t_0, \varphi_0)$ is said to be a maximal solution of (1) if, for every solution $x(t, t_0, \varphi_0)$ of (1) existing on $[t_0, t_0 + a)$, the inequality

$$x(t, t_0, \varphi_0) \le r(t, t_0, \varphi_0), \qquad t \in [t_0, t_0 + a)$$

holds. A minimal solution may be defined similarly by reversing the above inequality.

Recebido em agosto de 1977

^{*}This research was completed under the suport of FINEP, FAPESP, CNPq and CAPES

3. Main results.

Theorem 1. Let $m \in C([t_0 - \tau, t_0 + a], R_+)$ satisfying the inequality

$$m(t) < \varphi_0(0) + \int_{t_0}^t w(s, m_s) ds, \qquad t_0 \le t \le t_0 + a$$

where $w \in C([t_0 - \tau, t_0 + a] \times C_+, R_+)$. Suppose that $w(t, \psi)$ nondecreasing in ψ for each fixed t, $t \in [t_0, t_0 + a]$, and that $r(t, t_0, \varphi_0)$, with $\varphi_0 \in C_\rho$, is the maximal solution of (1) existing for $t \ge t_0$.

Then, there exists an $\alpha>0$ such that $m_{t_0}\leq \varphi_0$ implies that $m(t)\leq \leq r(t,t_0,\varphi_0)$ for $t_0\leq t\leq t_0+\alpha$.

Proof. Define $y \in C([t_0 - \tau, t_0 + a], R)$ as follows:

$$y(t) = \begin{cases} \varphi_0(t - t_0), & t_0 - \tau \le t \le t_0 \\ \varphi_0(0), & t_0 \le t \le t_0 + a \end{cases}$$

Then $w(t, y_t)$ is a continuous function of t on $[t_0, t_0 + a]$ and hence $|w(t, y_t)| < M_1$. We will show that there exists a constant $b \in (0, \rho - \varphi_0(0))$ such that

$$|w(t,\psi)-w(t,y_t)|<1$$

whenever $t \in [t_0, t_0 + a]$, $\psi \in C_\rho$ and $|\psi - y_t|_0 \le b$. Suppose that this is not true. Then for each $k = 1, 2, \ldots$, there exist $t_k \in [t_0, t_0 + a]$ and $\psi_k \in C_\rho$ such that $|\psi_k - y_{t_k}| < \frac{1}{k}$ and

$$\left| w(t_k, \psi_k) - w(t_k, y_{t_k}) \right| \ge 1$$

Now, choose a subsequence $\{t_{k_p}\}$ such that $\lim_{p\to\infty} t_{k_p} = t_1$ exists, and this leads to a contradiction concerning the continuity of w at (t_1,y_{t_1}) . Then it follows that $|w(t,\psi)| \leq M = M_1 + 1$ whenever $t \in [t_0,t_0+a], \ \psi \in C_\rho$ and $|\psi-y_t|_0 \leq b$.

Let
$$\widetilde{M} = \sup_{t_0 \le t \le t_0 + a} |w(t, m_t)|$$
.

Let $\overline{M} = \max\{M, \widetilde{M}\}.$

Choose $\alpha = \min \{a, b/\overline{M}\}$.

Let B denote the space of continuous functions from $[t_0 - \tau, t_0 + \alpha]$ into R_+ , with the sup-norm and, then, B is a Banach space. Let $S \subset B$ be defined as follows:

$$S = \begin{cases} (i) \ x(t) = \varphi_0(t - t_0), & t_0 - \tau \le t \le t_0 \\ x \in B: \ (ii) \ \big| \ x(t_1) - x(t_2) \big| \le \overline{M} \ \big| \ t_1 - t_2 \big|, & t_1, t_2 \in \big[t_0, t_0 + \alpha\big] \end{cases}$$

Now, we will show that $S \neq \phi$.

Let
$$x(t) = \begin{cases} \varphi_0(t - t_0), & t_0 - \tau \le t \le t_0 \\ \varphi_0(0) + \int_{t_0}^t w(s, m_s) ds, & t_0 \le t \le t_0 + \alpha \end{cases}$$

(i)
$$x(t) = \varphi_0(t - t_0), \ t_0 - \tau \le t \le t_0$$

(ii)
$$|x(t_1) - x(t_2)| = \left| \int_{t_0}^{t_1} w(s, m_s) ds - \int_{t_0}^{t_2} w(s, m_s) ds \right| = \left| \int_{t_1}^{t_2} w(s, m_s) ds \right| \le$$

$$\le \int_{t_1}^{t_2} |w(s, m_s)| ds \le \overline{M} |t_1 - t_2|, t_1, t_2 \in [t_0, t_0 + \alpha].$$

Under the above conditions it follows that

(iii)
$$x(t) = \varphi_0(0) + \int_{t_0}^t w(s, m_s) ds \ge m(t), \ t \in [t_0, \ t_0 + \alpha].$$

Therefore $S \neq \phi$.

Let us show that S is convex.

Let $f, g \in S$. We will show that

$$h(t) = \lambda f(t) + (1 - \lambda)g(t) \in S, \quad 0 \le \lambda \le 1$$
 and $t \in [t_0 - \tau, t_0 + \alpha]$

(i)
$$h(t) = \lambda f(t) + (1 - \lambda)g(t) = \lambda \varphi_0(t - t_0) + (1 - \lambda)\varphi_0(t - t_0) = \varphi_0(t - t_0), \ t_0 - \tau_0 - \tau \le t \le t_0$$

$$\begin{aligned} & \text{(ii)} \quad \left| \, h(t_1) - h(t_2) \, \right| = \left| \, \lambda \, f(t_1) + (1 - \lambda) g(t_1) - \lambda \, f(t_2) - (1 - \lambda) g(t_2) \, \right| \leq \\ & \leq \overline{M} \, \left| \, t_1 - t_2 \, \right|, \ t_1, \ t_2 \in \left[\, t_0, \, t_0 + \alpha \, \right] \end{aligned}$$

(iii)
$$h(t) = \lambda f(t) + (1 - \lambda)g(t) \ge \lambda m(t) + (1 - \lambda)m(t) = m(t), \ t \in [t_0, t_0 + \alpha]$$

Thus, $h(t) \in S$ and, hence S is convex.

S is closed. In fact, if $x_n \in S$ and the sequence $\{x_n\}$ converges uniformly for x on B. Then, $x_n(t)$ converges for each t. To see that $x \in S$, it is enough to prove condition (ii) because conditions (i) and (iii) are trivially satisfyed. As x_n is pointwise convergent, to x, we have that $x_n(t_1) \to x(t_1)$ and $x(t_2 \to x(t_2))$, for all t_1 , $t_2 \in [t_0, t_0 + \alpha]$, and thus

$$|x_n(t_1) - x_n(t_2)| \le \overline{M} |t_1 - t_2|$$

By taking the limit, as $n \to \infty$, it follows that $|x(t_1) - x(t_2)| \le \overline{M} |t_1 - t_2|$. Hence S is closed.

Functions of S are equicontinuous. In order to show this we must show that for each $\varepsilon>0$ and for each $t\in[t_0-\tau,t_0+\alpha]$, there exists a $\delta=\delta(\varepsilon,t_1)>0$ such that $|t-t_1|<\delta\Rightarrow |x(t)-x(t_1)|<\varepsilon$, for all $x\in S$. For $t_1\in[t_0-\tau,t_0]$ we have that for each $\varepsilon>0$, there exists $\delta=\delta(\varepsilon,t_1)$ such that $|t-t_1|<\delta\Rightarrow |x(t)-x(t_1)|<\varepsilon$, for all $x\in S$, since $|x(t)-x(t_1)|==|\varphi_0(t-t_0)-\varphi_0(t_1-t_0)|$ and φ_0 is continuous. For $t_1\in[t_0,t_0+\alpha]$ we always have that: $|x(t)-x(t_1)|\leq M|t-t_1|$ Then, it is enough to take $\delta=\varepsilon/M$.

Functions of S are uniformly bounded. In fact. For all $x \in S$, we have:

if
$$t_0 - \tau \le t \le t_0 \Rightarrow x(t) = \varphi_0(t - t_0) \le \rho$$
, because $\varphi_0 \in C_\rho$;

if
$$t_0 \le t \le t_0 + \alpha \Rightarrow |x(t)| - |\varphi_0(0)| \le |x(t) - \varphi_0(0)| = |x(t) - x(t_0)| \le |\varphi_0(0)| = |x(t) - x(t_0)| \le |\varphi_0(0)| = |\varphi_0(0)| =$$

$$\leq \overline{M} \left| t - t_0 \right| \leq \overline{M} \left| t_0 + \alpha - t_0 \right| = \overline{M} \alpha \leq \overline{M} \frac{b}{\overline{M}} = b;$$

then

$$|x(t)| \le b + \varphi_0(0) < \rho - \varphi_0(0) + \varphi_0(0) = \rho$$

Therefore, from Ascoli's Theorem, S is compact. Define a mapping T on S as follows: for an element $x \in S$, let

(i)
$$(Tx)(t) = \varphi_0(t - t_0), t_0 - \tau \le t \le t_0$$

(ii)
$$(Tx)(t) = \varphi_0(0) + \int_{t_0}^t w(s, x_s) ds, \quad t_0 \le t \le t_0 + \alpha$$

For every $x \in S$ and $t \in [t_0, t_0 + \alpha]$, we have

$$\left| x(t) - x(t_0) \right| = \left| x(t) - \varphi_0(0) \right| \le \overline{M} \left| t - t_0 \right| \le \overline{M} \alpha \le b.$$

Consequently

$$|x_t - y_t|_0 \le b$$
 and $x_t \in C_\rho$, because $|x_t - y_t|_0 = \sup_{t \le \theta \le 0} |x(t+\theta) - y(t+\theta)|.$

When $t + \theta \le t_0$ we have that

$$x(t+\theta) = y(t+\theta) \Rightarrow |x(t+\theta) - y(t+\theta)| = 0.$$

Then we are interested only in case $t + \theta \ge t_0$, i.e., $t_0 - t \le \theta \le 0$.

Hence
$$|x_t - y_t|_0 = \sup_{\substack{t_0 - t \le \theta \le 0 \\ t_0 \le t + \theta \le t}} |x(t+\theta) - y(t+\theta)| =$$

$$= \sup_{\substack{t_0 \le t + \theta \le t \\ t_0 \le t + \theta \le t}} |x(t+\theta) - y(t+\theta)| \le$$

and, by taking $t + \theta = s$,

$$= \sup_{t_0 \le s \le t_0 + \alpha} |x(s) - y(s)| = \sup_{t_0 \le s \le t_0 + \alpha} |x(s) - \varphi_0(0)| \le b.$$

Let us show that $x_t \in C_\rho$. We have that $|x(t)| \le \rho$. Then $|x_t|_0 = \sup_{-\tau \le \theta \le 0} |x(t+\theta)|$. If $t_0 - \tau \le t_0 + \theta \le t_0$, we have $x(t+\theta) = \varphi_0(t+\theta-t_0)$ and, since $\varphi_0 \in C_\rho$, we have that $x_1 \in C_\rho$. If $t_0 \le t_0 + \theta \le t_0 + \alpha$, we have that $|x(t+\theta)| < \rho$, hence $x_t \in C_\rho$.

Therefore $w(s, x_s)$ is a continuous function of s and $|w(s, x_s)| \le M$ for $t_0 \le s \le t_0 + a$. Then the mapping T is well-defined on S.

We will show that T is continuous.

For $t_0 - \tau \le t \le t_0$, $(Tx)(t) = \varphi_0(t - t_0)$ and, hence T is continuous.

For
$$t_0 \le t \le t_0 + \alpha$$
, $(Tx)(t) = \varphi_0(0) + \int_{t_0}^t w(s, x_s) ds$ and it is still conti-

nuous. In fact. Consider the sequence $\{x^n(s)\}_{n=1}^{\infty}$ of functions of S which is uniformly convergent for $x(s) \in S$, on $[t_0 - \tau, t_0 + \alpha]$. Then, the sequence $\{x_s^n\}_{n=1}^{\infty}$ converges for x_s on C_{ρ} , uniformly in $s \in [t_0, t_0 + \alpha]$. Indeed, let the

set $V = \{x_s^n \in C_\rho, n \in \mathbb{N}, s \in [t_0, t_0 + \alpha]\}$. From the definition of V, we have that V is uniformly bounded. Now, we are going to show that V is equicontinuous.

$$\left| \left| x_s^n(\theta_1) - x_s^n(\theta_2) \right| = \left| \left| x^n(s + \theta_1) - x^n(s + \theta_1) \right| \le \overline{M} \left| \theta_1 - \theta_2 \right|$$

if $s+\theta_1$, $s+\theta_2\in [t_0,t_0+\alpha]$, then for each $\varepsilon>0$, there exists $\delta_1=\delta_1(\varepsilon)$ such that $|\theta_1-\theta_2|<\delta_1\Rightarrow |x_s^n(\theta_1)-x_s^n(\theta_2)|<\varepsilon$; so that is enough to take $\delta_1=\varepsilon/\overline{M}$;

if $s + \theta_1$, $s + \theta_2 \in [t_0 - \tau, t_0]$, we have that

$$|x_s^n(\theta_1) - x_s^n(\theta_2)| = |\varphi_0(s + \theta_1 - t_0) - \varphi_0(s + \theta_2 - t_0)|$$

and since φ_0 is continuous on $[-\tau,0]$ and hence is uniformly continuous, we have that, for each $\varepsilon>0$, there exists $\delta_2=\delta_2(\varepsilon)$ such that $|\theta_1-\theta_2|<<\delta_2\Rightarrow |x_s^n(\theta_1)-x_s^n(\theta_2)|<\varepsilon$.

Taking $\delta = \min\{\delta_1, \delta_2\}$, we have that, for each $\varepsilon > 0$, there exists $\delta = \delta(\varepsilon)$ such that $|\theta_1 - \theta_2| < \delta \Rightarrow |x_s^n(\theta_1) - x_s^n(\theta_2)| < \varepsilon$, for all $x_s^n \in V$. Therefore V is equicontinuous.

Then, by Ascoli's Theorem, \overline{V} is compact.

As $x_s^n \to x_s$, uniformly on $[t_0, t_0 + \alpha]$, we have that $x_s \in \overline{V}$.

Then $w(s, \psi)$ is uniformly continuous on $[t_0, t_0 + \alpha] \times V$ and, hence, given $\psi_1, \ \psi_2 \in \overline{V}$ and $s \in [t_0, t_0 + \alpha]$, we have that, for each $\varepsilon > 0$, there exists $\delta = \delta(\varepsilon)$ such that $|\psi_1 - \psi_2|_0 < \delta \Rightarrow |w(s, \psi_1) - w(s, \psi_2)| < \varepsilon$.

As $x_s^n \to x_s$, uniformly in s, $s \in [t_0, t_0 + \alpha]$, we have that, for each $\delta > 0$, there exists $N = N(\delta)$ such that $n \ge N \Rightarrow |x_s^n - x_s|_0 < \delta$. Consequently, for each $\varepsilon > 0$, there exists $N = N(\varepsilon)$ such that $n \ge N \Rightarrow |w(s, x_s^n) - w(s, x_s)| < \frac{\varepsilon}{(t_0 + \alpha) - t_0}$, i.e., $w(s, x_s^n)$ converges to $w(s, x_s)$ uniformly in $s \in [t_0, t_0 + \alpha]$.

Thus,

$$\left|\left(Tx^{n}\right)\left(t\right)-\left(Tx\right)\left(t\right)\right|\leq\left|\int_{t_{0}}^{t}\left|w(s,x_{s}^{n})-w(s,x_{s})\right|ds\right|<\int_{t_{0}}^{t}\frac{\varepsilon}{\left(t_{0}+\alpha\right)-t_{0}}ds<\varepsilon$$

and, hence, $(Tx^n)(t)$ converges uniformly to (Tx)(t), then, T is continuous. We claim that $TS \subset S$. Indeed, let $x \in S$ such that

(i)
$$(Tx)(t) = \varphi_0(t - t_0), \ t_0 - \tau \le t \le t_0$$

(ii)
$$|(Tx)(t_1) - (Tx)(t_2)| = |\int_{t_1}^{t_2} w(s, x_s) ds| \le$$

 $\le |\int_{t_1}^{t_2} |w(s, x_s)| ds| \le \overline{M} |t_1 - t_2|, t_1, t_2 \in [t_0, t_0 + \alpha]$

(iii)
$$(Tx)(t) = \varphi_0(0) + \int_{t_0}^t w(s, x_s) ds \ge \varphi_0(0) + \int_{t_0}^t w(s, m_s) ds \ge m(t),$$

$$t \in |t_0, t_0 + \alpha|$$

The inequality $\varphi_0(0) + \int_{t_0}^t w(s, x_s) ds \ge \varphi_0(0) + \int_{t_0}^t w(s, m_s) ds$ holds, because $x(s) \ge m(s)$, $s \in [t_0, t_0 + \alpha]$. In fact. As $x_s(\theta) = x(s+\theta)$, if $s+\theta \le t_0$, and, from hypoteses, $m_{t_0} \le \varphi_0$, it follows that $x(s+\theta) = \varphi_0(s+\theta-t_0) \ge m_{t_0}(s+\theta)$. If $s+\theta \ge t_0$ it follows $x(s+\theta) \ge m(s+\theta) = m_s(\theta)$. Thus, T maps S into S.

As the hypoteses of the Schauder fixed point theorem hold, thus there is a function $x \in S$ such that:

(i)
$$(Tx)(t) = x(t) = \varphi_0(t - t_0), \ t_0 - \tau \le t \le t_0$$

(ii)
$$(Tx)(t) = x(t) = \varphi_0(0) + \int_{t_0}^t w(s, x_s) ds, \ t_0 \le t \le t_0 + \alpha.$$

Since $x \in S$, the integrand in the foregoing equation is a continuous function of s. Thus, for $t_0 \le t < t_0 + \alpha$, we can differentiate to obtain

$$\dot{x}(t) = w(t, x_t), \ t_0 \le t < t_0 + \alpha.$$

As $r(t, t_0, \varphi_0)$ is the maximal solution of the above equation, we have $x(t) \le r(t)$, $t_0 \le t < t_0 + \alpha$.

As $x(t) \ge m(t)$, $t_0 \le t \le t_0 + \alpha$, we have that

$$m(t) \le r(t, t_0, \varphi_0), \ t_0 \le t < t_0 + \alpha$$

This completes the proof of the theorem.

Corollary 1. Let $m \in C([t_0 - \tau, \infty), R_+)$ satisfying the inequality

$$m(t) \le \varphi_0(0) + \int_{t_0}^t w(s, m_s) ds, \ t \ge t_0$$

where $w \in C([t_0 - \tau, \infty) \times C_+, R_+)$. Suppose that $w(t, \psi)$ is nondecreasing in ψ for each fixed t, $t \in [t_0, \infty)$, and that $r(t, t_0, \varphi_0)$, with $\varphi_0 \in C_\rho$, is the maximal solution of (1) existing for $t \ge t_0$.

Then, $m_{t_0} \leq \varphi_0$ implies that

$$m(t) \le r(t, t_0, \varphi_0)$$
 for $t \ge t_0$.

Proof. Suppose that the set

$$Z = \{t \ge t_0; \ m(t) > r(t, t_0, \varphi_0)\}$$

is not empty. Let $t_1 = \inf Z$. Then $m(t_1) = r(t_1, t_0, \varphi_0)$. Therefore $t_1 \notin Z$. For $t \le t_1$, we have that $m(t) \le r(t, t_0, \varphi_0)$ and so $m_{t_1} \le r_{t_1}(t_0, \varphi_0)$. As r is increasing and taking $\varphi_1 = r_{t_1}(t_0, \varphi_0)$ we have

$$m(t) \le \varphi_0(0) + \int_{t_0}^t w(s, m_s) ds \le r(t_1, t_0, \varphi_0) + \int_{t_0}^t w(s, m_s) ds =$$

$$= \varphi_1(0) + \int_{t_0}^t w(s, m_s) ds.$$

By using Theorem 1 in t_1 , we have that there exists an α_1 such that for $t \in [t_1, t_1 + \alpha]$, $m(t) \le r(t, t_0, \varphi_0)$. This leads to a contradiction. Then $Z = \varphi$, and $m(t) \le r(t, t_0, \varphi_0)$, for $t \ge t_0$.

Corollary 2. Let $m \in C([t_0 - \tau, t_0 + a], R_+)$ satisfying the inequality

$$m(t) \le \varphi_0(0) + \beta(t) + \int_{t_0}^t w(s, m_s) ds, \ t_0 \le t \le t_0 + a$$

where $w \in C([t_0 - \tau, t_0 + a] \times C_+, R_+)$, $\beta(t) > 0$ and continuous. Suppose that $w(t, \psi)$ is nondecreasing in ψ for each fixed $t, t \in [t_0, t_0 + a]$, and that $r(t, t_0, \varphi_0)$, with $\varphi_0 \in C_\rho$, is the maximal solution of $\dot{r} = \dot{w}(t, \dot{r}_t + \beta_t)$ existing for $t \ge t_0$.

Then, there exists an $\alpha > 0$ such that $m_{t_0} \le \varphi_0 + \beta_{t_0}$ implies that $m(t) \le \beta(t) + r(t, t_0, \varphi_0)$ for $t_0 \le t \le t_0 + \alpha$.

Proof. Defining $p(t) = m(t) - \beta(t)$, it follows $m(t) = p(t) + \beta(t)$ which implies $m_t = p_t + \beta_t$. So, the inequality becomes

$$p(t) \le \varphi_0(0) + \int_{t_0}^t w(s, p_s + \beta_s) ds,$$

where $p_{t_0} = m_{t_0} - \beta_{t_0} \le \varphi_0 + \beta_{t_0} - \beta_{t_0} = \varphi_0$

By applying Theorem 1, we obtain that there exists an $\alpha > 0$ such that $p(t) \le r(t, t_0, \varphi_0)$ for $t_0 \le t \le t_0 + \alpha$.

Therefore, there exists an $\alpha > 0$ such that

$$m(t) \le \beta(t) + r(t, t_0, \varphi_0) \text{ for } t_0 \le t \le t_0 + \alpha.$$

Corollary 3. Let $m \in C([t_0 - \tau, \infty), R_+)$ satisfying the inequality

$$m(t) \le \varphi_0(0) + \beta(t) + \int_{t_0}^t w(s, m_s) ds, \ t \ge t_0$$

where $w \in C([t_0 - \tau, \infty) \times C_+, R_+)$, $\beta(t) > 0$ and continuous. Suppose that $w(t, \psi)$ is nondecreasing in ψ for each fixed $t, t \in [t_0 - \tau, \infty)$ and that $r(t, t_0, \varphi_0)$, with $\varphi_0 \in C_\rho$, is the maximal solution of $r = w(t, r_t + \beta_t)$ existing for $t \ge t_0$.

Then
$$m_{t_0} \le \varphi_0 + \beta_{t_0}$$
 implies that

$$m(t) \le \beta(t) + r(t, t_0, \varphi_0)$$
 for $t \ge t_0$

Proof. Suppose that the set

$$Z = \{t \ge t_0; \ m(t) > \beta(t) + r(t, t_0, \varphi_0)\}$$

is not empty. Let $t_1 = \inf Z$. Then $m(t_1) = \beta(t_1) + r(t_1, t_0, \varphi_0)$. Therefore $t_1 \notin Z$. For $t \le t_1$, we have that $m(t) \le \beta(t) + r(t, t_0, \varphi_0)$ and so $m_{t_1} \le \beta_{t_1} + r_{t_1}(t_0, \varphi_0) = \beta_{t_1} + \varphi_1$, where $\varphi_1 = r_{t_1}(t_0, \varphi_0)$. As r is increasing, we have

$$m(t) \le \varphi_0(0) + \beta(t) + \int_{t_0}^t w(s, m_s) ds \le$$

$$\le r(t_1, t_0, \varphi_0) + \beta(t) + \int_{t_0}^t w(s, m_s) ds =$$

$$= \varphi_1(0) + \beta(t) + \int_{t_0}^t w(s, m_s) ds.$$

By using Theorem 1 in t_1 , we have that there exists an $\alpha_1 > 0$ such that for $t \in [t_1, t_1 + \alpha_1]$, $m(t) \le \beta(t) + r(t, t_0, \varphi_0)$. This leads to a contradiction. Then $Z = \phi$, and $m(t) \le \beta(t) + r(t, t_0, \varphi_0)$, for $t \ge t_0$.

Theorem 2. Let $m \in C([t_0 - \tau, t_0 + a], R_+)$ satisfying the inequality

$$m(t) \ge \varphi_0(0) + \int_{t_0}^t w(s, m_s) ds, \ t_0 \le t \le t_0 + a$$

where $w \in C([t_0 - \tau, t_0 + a] \times C_+, R_+)$. Suppose that $w(t, \psi)$ is nondecreasing in ψ for each fixed t, $t \in [t_0, t_0 + a]$, and that $r(t, t_0, \varphi_0)$, with $\varphi_0 \in C_q$, is the minimal solution of (1) existing for $t \ge t_0$.

Then, there exists an $\alpha > 0$ such that $m_{t_0} \ge \varphi_0$ implies that

$$m(t) \ge r(t, t_0, \varphi_0)$$
 for $t_0 \le t \le t_0 + \alpha$.

The proof is similar to the one given in Theorem 1.

Corollary 1. Let $m \in C([t_0 - \tau, \infty), R_+)$ satisfying the inequality

$$m(t) \ge \varphi_0(0) + \int_{t_0}^t w(s, m_s) ds, \ t \ge t_0$$

where $w \in C([t_0 - \tau, \infty) \times C_+, R_+)$. Suppose that $w(t, \psi)$ is nondecreasing in ψ for each fixed $t, t \in [t_0, \infty)$, and that $r(t, t_0, \varphi_0)$, with $\varphi_0 \in C_0$, is the minimal solution of (1) existing for $t \ge t_0$.

Then $m_{t_0} \ge \varphi_0$ implies that

$$m(t) \ge r(t, t_0, \varphi_0)$$
 for $t \ge t_0$

The proof is similar to the one given in Corollary 1 of Theorem 1.

Corollary 2. Let $w \in C([t_0 - \tau, t_0 + a], R_+)$ satisfying the inequality

$$m(t) \ge \varphi_0(0) + \beta(t) + \int_{t_0}^t w(s, m_s) ds, t_0 \le t \le t_0 + a$$

where $w \in C([t_0 - \tau, t_0 + a] \times C_+, R_+)$, $\beta(t) > 0$ and continuous. Suppose that $\omega(t, \psi)$ is nondecreasing in ψ for each fixed t, $t \in [t_0 - \tau, t_0 + a]$, and that $r(t, t_0, \varphi_0)$, with $\varphi_0 \in C_\rho$, is the minimal solution of $\dot{r} = w(t, r_t + \beta_t)$ and that $r(t, t_0, \varphi_0)$, with $\varphi_0 \in C_0$, is the minimal solution of $r = w(t, r_t + \beta_t)$ existing for $t \geq t_0$.

Then, there exists an $\alpha > 0$ such that $m_{t_0} \ge \varphi_0 + \beta_{t_0}$ implies that

$$m(t) \ge \beta(t) + r(t, t_0, \varphi_0)$$
 for $t_0 \le t \le t_0 + \alpha$.

The proof is similar to the one given in Corollary 2 of Theorem 1.

11

Corollary 3. Let $m \in C([t_0 - \tau, \infty), R_+)$ satisfying the inequality

$$m(t) \ge \varphi_0(0) + \beta(t) + \int_{t_0}^t w(s, m_s) ds, \ t \ge t_0$$

where $w \in C([t_0 - \tau, \infty) \times C_+, R_+)$, $\beta(t) > 0$ and continuous. Suppose that $w(t, \psi)$ is nondecreasing in ψ for each fixed $t, t \in [t_0 - \tau, \infty)$ and that $r(t, t_0, \varphi_0)$, with $\varphi_0 \in C_o$, is the minimal solution of $\dot{r} = w(t, r_t + \beta_t)$ existing for $t \ge t_0$.

Then $m_{t_0} \ge \varphi_0 + \beta_{t_0}$ implies that

$$m(t) \ge \beta(t) + r(t, t_0, \varphi_0)$$
 for $t \ge t_0$.

The proof is similar to the one given in Corollary 3 of Theorem 1.

References

- Viswanathan, B., A generalisation of Bellman's Lemma. Proc. Amer. Math. Soc. 14(1): 15-18 (1963).
- Lakshimikanthan, V. and Leela, S., Differential and integral inequalities theory and aplications. New York. Academic Press. 1969, vols. I
- Coppel, W. A., Stability and Asymptotic behavior of differential equations. Boston, Heath, 1965.
- [4] Pachpatte, B. C., Stability and Asymptotic behavior of perturbed nonlinear systems. To appear.

ACKNOWLEDGMENT

The autor is indebted to Prof. Antonio Fernandes Izé and Prof. Hildebrando Munhoz Rodrigues, for their valious and indispensable suggestions.

> Instituto de Ciências Matemáticas de São Carlos - Universidade de São Paulo