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Extremal eigenvalue problems

Shmuel Friedland

0. Introduction,

This paper is an expanded version of the lectures given by the author
at IMPA and the Univeristy of Rio Grande do Sul at Porto Alegre, Brazil.
The purpose of ‘this paper is to survey several basic techniques for various
classes of extremal eigenvalue problems. A number of important results,
to which these methods apply, are listed. Most of the proofs are omitted
and references are given to the interested reader.

1. The fundamental variational formula.

Let T :B — B be a compact operator in a given Banach space B. Let
{4n)7 be the set of all eigenvalues of T each repeated according to its
multiplicity. If T has a finite number of nonzero eigenvalues, let’'us say m,
then we assume that 4, =0, i=m+1,...,. Since these eigenvalues are in
general complex valued we shall arrange them in certain order, depending
on the nature of T In the most cases the eigenvalues of T are arranged as
follows

(1.1) |2 =] 2,] =

o

Usually, T varies in a given class C of compact operators. We are
looking for an operator T, in C which extremizes specified functional
F(A(T), ..., 4(T)) in C. For example. find T*eC such that | A(T;)| = A (T)
for any TeC. The existence of such a T, would follow if we can introduce
a topology on C such that F is continuous and C is compact with respect
to this topology. Assume that an extremal operator T, exists. As in the
ordinary calculus, T, can be characterized by imbedding T, in one para-
meter family T(e) such that T(0) = T; and reducing the original problem
on C to some extremal problem for a small complex valued parameter ¢
near the origin. In most of the cases it sufficies to assume that T(e) is an
analytic operator valued function of a complex parameter ¢ in some disc
|e| <p. That is, we have a power expansion

(1.2) TE=% T |e|=<p
k=0
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We also assume that each T, is compact, i. e. T(e) is compact. Let
/o # 0 be an eigenvalue of T,. In order to study the function F(4,(T(e), ...,
/,(T(¢)) we have to know the variation of A, in terms of & This is well
known by now (e. g [3, p. 587-588]). Let E(0) be the projection operator
associated with the eigenvalue Z, of the operator T(0) = T,. That is"

(1.3) I = J (zI — T)) dz
lz— Aol =r

where r is a small positive enough number. Suppose that A, is of a multi-
plicity m. That is, the dimension of E(0)B is m. Let E(¢) be the corresponding
analytic projection for small |e|. That is

(1.4) E(e) = j (zI — T(e) "' dz.
lz—2ol=r

Then it is known that E(¢)B has also a finite m-dimensional range.
Moreover if {x,,...,x,} is a basis for E(0)B then {E(e)x,, ..., E(e)x,} is a
basis for E(¢)B. Thus in the neighborhood of 4,. T(¢) has m eigenvalues
24(8), ..., 4,(¢) (not necessarily distinct) and each 4,(e) is given by fractional
power series

(1.5) e =y + 3 a e

p=1

To explain the formula (1.5) let us consider the case where B is finite
dimensional. That is we can assume that T(e) is a matrix (; (8)) where
each t,(¢) is analytic function of &. Then the eigenvalues 4,(e), ..., 4,(¢) are
the roots of the equation

(1.6) d(2, &) = det (26, — t, ()7 =

Thus each /,(¢) is in fact an “algebraic” function and therefore at the
branch points 4,(¢) may have an expansion in terms of ¢'”. -In case of the
compact operator valued function T'(e), 4,(¢), ..., 4,,(¢) are given by the equa-
tion (1.6) where ¢;,(¢) are defined by

(1.7) XF(T(e) i (ex,), k=1,.

Here {x¥, ..., x*} is a basis for E*(0)B*. In order to characterize the extremal
operator T it is sufficient to know «,,, the first nontrivial coefficient in the
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expansion (1.5). The equations (1.6) and (1.7) show that the actual com-
putation of «,, is complicated. Moreover it may happen that «,, depends
not only on T, but also on other T, . If we assume that 4, is a pole of order
1 of the resolvent (A — T,)™' then the first variation of 1, has a relatively
simple form.

Theorem L1.1. Let T(¢) be given by the series (1.2) converging in the
uniform topology. Assume that each T, k=0,1,... is compact. Let J,#0
be an eigenvalue of T(0) of a multiplicity m. Assume that A, is a pole of order
1 of the resolvent (A1 —T,)~"'. That is

M=

E@Q)x =

i

xF(x)x;,

L

1
(1.8)

=9 Fiodk o, 7, ok * " =
Tyx, = Ayx;, TFxF =Asxk, xF(x;) =96, ,j=1,....n

Then the eigenvalues A(e) are given by fractional power series

(1.9) hE=rdo+oe+ Y o,
p=n+1
of the principal value of &' in the neighborhood of the origin. The numbers

Wy, ..., 0, are the eigenvalues of the matrix (x}(T, x;))T.

The proof of this theorem is available in [6].

The assumptions of the theorem hold if T, is a symmetric operator in
the Hilbert space. Furthermore, if in addition each T, is symmetric then
it is known that each A,(¢) is analytic in ¢ (see[15]). Theorem 1.1 implies
that the first variation of /4, is linear in ¢, i.e.

(1.10) (&) =4y + we+ €0 (), k=1,....,m.

Furthermore , depends only on T,. On the other hand Theorem 1.1
explains the difficulties in charactenzmg the extremal operator T, as the
first variation of 4, is not, in general, linear in the first variation — T Only
if m=1, i.e. 4, is simple (in the algebraic sense), then, indeed, the first
variation of 4, is linear in the first variation of T;.

Corollary 1.1. Let the assumptions of Theorem 1.1 hold. Assume

furthermore that m = 1. Then in the neighborhood of i, A\ T(¢) has a simple

cigenvalue A(e) which is analytic in ¢
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(1.11) Me) =24y + we + Z o,e?

p=2

where

(1.12) o = x*¥(T, x), Tyx = Ay, T = Ayx*, x2(x) =1

2. Some compactness results for the eigenvalues.

The first step in studying extremal eigenvalue problems i1s to show
the existence of the extremal solutions. The following theorem is basic in
this area [3, p. 1091].

Theorem 2.1. Let {T}? be a sequence of compact operators in B.
Assume that converges to T, A\ T in the uniform topology. Then there exists an

enumeration 4,(T), m=1,2,... of the eigenvalues of T which satisfies the
condition (1.1) such that

.1) im A(T)=A(T), m=12....

n—oo

However this result is hard to apply. Indeed let C be a bounded set
of compact operators T: B— B. Suppose we consider a maximum problem

2.2) sup F(A,(T), ..., A(T)) = M.

TeC

Let {T}? be the maximizing sequence, i.e.

23) M = lim F(A(T), ..., (T).

n—o

If we can find a convergent subsequence of {T} in the strong topology
then from Theorem 2.1 we deduce

(2.4) sup F(4,(T), ..., 4,(T)) = F(A(T,), ..., A(Tp), T,eC.

TeC

In order to have always a convergent subsequence we need to assume that
C is compact set in the strong topology. However, in most interesting
applications C is compact in some weaker topology. In case of B=#
(## a Hilbert space) we have the following result

Theorem 2.2. Let # be a Hilbert space with an inner product (x, y).
Assume that K : # — # is a compact symmetric positive definite operator.
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Let Q,: # — A be a sequence of linear operators which converge
weakly to Q. That is

(2.5) Q%)= (Qx,y), n—>©

for any x,ye A .
Then there exists an enumeration A (KQ,), m=1.2,... such that

(2.6) lim /. (KQ)=/(KQ). m=12, ...

n— oo

The proof of this result can be found in [8]. The proof follows from
Theorem 2.1 by noting that the spectrum of KQ and K2 QK'/* are identical
and using the lemma.

Lemma 2.1. Let # be a Hilbetr space with an inner product (x,y).
Assume that S,T: # — A are compact linear operators. Let Q, : H — H
be a sequence of linear operators which converge weakly to Q. Then SQ,T
converges to SQT uniformly.

The results of Theorem 2.2 hold if we replace the assumption that K
is positive definite by assumption that K belongs to some C, class (see
for the definition [3, p. 1089]). The proof is given in [6]. Let us give a
general setting for which Theorem 2.2 applies. Denote by L (do), 1 <p <o,
the set of all measurable p-integrable functions with respect to a sigma
finite measure ¢ on I < R". Assume that K : L,(do) — L,(do) is a compact
integral operator

(2.7) K(f) = JK(x, »f(y)do.

Let ¢ be a bounded function in the class L_(da). Then ¢ can be
regarded as an operator ¢: L,(de)— L,(do)

(2.8) o(f)=of.

Recall that ¢, — ¢, in w* topology as n— oo if
(2.9 J o ydo — J oy do, n— oo
1 I

for any yeL,(do). This convergence is equivalent to the weak convergence
of the operators ¢,: L,(dc)— L,(do) to the operator ¢. It is a standard
fact that a unit ball in L,(de) is w* compact. In what follows we shall
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consider the following bounded set C in L_(do) which is defined by the
conditions

(2.10) 0<m) <o) <M, mMeL,(do),
(2.11) f¢pida=ci, 11 =101 -
-

It is easy to show that C is compact in w* topology. Thus if K is
positive definite or KeC, then for any continuous function F(x,, ...,x,)
we have
(2.12) max 4,(Ko), ..., 4,(K@)) = F(A,(Ky), ..., 1 (Ky)).

C

For our applications we shall assume that K is positive definite. Since
the spectrum of K¢ is equivalent to the spectrum of K2 K'? we have
thal all nontrivial eigenvalues 2 of K¢ are positive and 4 is a pole of order
1 for the resolvent of K¢. We arrange these eigenvalues in a decreasing
order

(2.13) 1 (K@) = A, (Kp)> ...

Suppose that y is an eigenfunction of K¢

(2.14) ﬁ K(x, y)o((nX(y)da(y) = Ax(x).
Since the conjugate operator of K¢ is given by

(2.15) (Ko)* = oK

we immediatly have that

(2.16) (K@)*(ox) = Loy

Now let X, be an eigenfunction corresponding to 4= A(Ko)

(2.17) L K(x, y)ox(y)de(y) = AX(x), B= 1, s
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We normalize y, by the condition (1.8)

(2.18) J;(PX,-deU:C’,-j-
Now we can apply Theorem 1.1 in that particular case.

Theorem 2.3. Let ¢ #0 be a nonnegative function in L (do). Assume
that the operator K: L,(do)— L,(do) defined by (2.7) is a compact symmetric
positive definite operator. Let 1> 0 be an eigenvalue of K¢ of multiplicity m

(2.19) A(Kp)>A=1, ,(Ko)=...=4,, (Ko)> 4, .. ,(Ke)
Let
(2.20) oE)=0+¢eo,, @,eL_(do).

Then for a small positive ¢ we have the equality

(2:21) Apr(K@(e) = A(1 + w,e) + €0 (¢), r=1..,m
where w,, ..., o, are the eigenvalues of the symmetric matrix A= (a;;)}"
(2.22) aij:f(plxpﬂxpﬂda, Lj=1,...,m.

1

This result will be applied to characterize the extremal functions .
We conclude this section with another compactness result for the eigenvalues.
Consider a set C(I) composed of all continuous functions on 1. Let K(x, y)
be a continuous function on I x I and consider K : C(1) — C(1) where K_ is
defined by (2.7) and ¢ is a measure in C*(I). It is known that such a K,
is compact. It is a standard fact that the unit ball of C*(I) is compact in
o* topology. For this topology we have the following compactness result

(6].

Theorem 2.4. Let K(x,y) be a continuous bounded function on I x I.
Let o, and o belong to C*(I). Assume that o,—c in w* topology. Then

(2.23) lim A(K,)=4,K), m=1,..,.

m (2
n— oo

This result could be applied in establishing the existence of optimal solution
for the minimal critical mass of nuclear reactor [19]. In the original paper
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this was proved by a different argument. The proof of the theorem follows
by considering the Fredholm determinants corresponding to Ka,;

3. The Krein results and its extensions.

Consider a vibrating string. That is we have an eigenvalue problem
for a second order differential operator

(3.1) u” + pep(x)u =0,
(3.2) u(0) =u(r) =0.

Here /u are the frequencies of the harmonic oscillation of the string under
unit tension and fixed at its end point. Then function @(x) >0 represents
the density of the string at the point x. M. Krein in his classical work [16]
investigated the maximum and the minimum of the eigenvalues

(3.3) 0 <py(o) <py(e) < ...
of (3.1) in a set C defined by the conditions

(3.4) O<m<p<M< o,

0

(3.5) J%mmw:w<

He assumed that m and M are constants. An equivalent formulation is
achieved by writing (3.1) in integral form (2.14) where K(x, y) is the Green’s
2

function of — % coupled with the boundary conditions (3.2) and
X

(3.6) do=dx, I=[0,24] and A=pu"!

From the results of the previous section we deduce the existence of the
extremal functions ¢* and ¢** such that

(3.7) min (@) = p (¢*), max p (@)= pu,(@**).

@peC peC
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Let ¢ and y be two arbitrary functions in C. Since C is convex we
have that

(3-8) Pe) = + ey — 9)

belongs to C for any 0 <e<1. Let u, be an eigenfunction corresponding
to the p-th eigenvalue K,(@). As all the eigenvalues of (3.1) are simple from
(2.22) we get a simple variation formula for B (@(e)) (recall that pu=A1"1)

2
3.9) 1, (@(€) = p (@) (1 - sf () uﬁdX> +¢0(), O<e.
0

Taking ¢ to be equal @* and ¢** from the extremality of ¢* and Q**
and the formula (3.9) we get.

Theorem 3.1. Let ¢o* and @** solve the extremum problems (3.7).
Suppose that

(3.10) U+ 1 (@NP*0, =0, W)+ (@) p** w, =0,

Then for any yeC we have the inequalities

o 14
f Y vldx sj @* vidx,
0
(3.11) °

2 2
f wwf,dxzj o** wldx
(0] 0

The inequalities (3.11) show that ¢* and @** olve also certain extremal
linear problems on C. The classical lemma of Neyman and Pearson charac-
terizes the extremal solutions of the linear problems on C (see for example
[12]). We state this lemma in a quite general setting which will be needed
later. Let v be a nonnegative measure on a closed set / in R*. Denote by
C the following subset in L_(dv)

(3.12) 0<p<1

(3.13) f odv==k
I
Let @ >0 belong to L, (dv). Define

(G.14) X(,0) = {& | w(é) > o}, Y(w,0) = {& | o) <o}, Z(w, @) = {¢ | (&) = a}.
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Let V=1 be a v-measurable set. By mes (V) we denote the v-measure of V

|4

(3.15) mes (V) = J dv.

Lemma 3.1. (Neyman-Pearson). Let C be the set of functions defined
by (3.12) and (3.13). Consider a maximum problem

(3.16) max J pwdv

@eC
where weL (dv). Let a* be a real number defined by the conditions
(3.17) mes, (X(w, a*)) <k, mes(X(w, a*)U Z(w, a*)) > k.

Then a function Y in C satisfies the condition

peC

(3.18) max Jqowdv — wadv
7 1

if and only if Y is of the form
(3.19) Y =1 (eX(@a*), Y&)=0, <CeY(wa*)

almost every where with respect to the measure v.

Note that if mes(X(w,a*)) =k, <k then the solution to the problem
(3.18) is not unique. In fact on the set Z(w,a*)=Z the values of y are

arbitrary except for the condition J Ydv=k—k, See [6] for a proof of

4 . ., .
the lemma. In order to apply the lemma of Neyman-Pearson to inequalities
(3.11) we just have to observe that any ¢ satisfying (3.4) and (3.5) can be
written in the form

(3.20) p=m+0M—m), 0<6<1

0

(3.21) j“edx=(W—mz)/M—m.

Thus we are lead to the problem of finding the number of solutions
to the equation.

(3.22) u?=a, ¢
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where u is a solution of (3.1) and ¢ >0. It is easy to show that if
(3.23) u(@=u'(n)=0

and the interval £ <x <n (or 1 <x <¢) does not contain zeros of u or u’
then u?(x) is strictly monotonic in this interval. As u(x) (the n-th eigen-
function of (3.1)) has exactly n+1 zeros in [0,2] and u has exactly w
zeros in [0, 2] the equation (3.22) for a positive « has at most 2n solutions.
So ¢@* and ¢** satisfy the equation

(3.24) (M —=y)(p—m)=0

except at 2n points at most. So ¢* =M and ¢** =m on at most on n
intervals. In case of the equation (3.1) the problems (3.7) can be reduced
to the appropriate problems involving just the first eigenvalue. Indeed let
mi{; p (@) = a(M, m, W, 1),
@e
(3.25)
max u,(¢) = B(M, m, W, %)
Qe

where M, m, w, & are the parameters entering in (3.3) and (3.4). Then Krein
proved

I‘“I)lelé’l ,Up((p) = (M, m, W/P’ IZ'/p)’
(3.26)

max u (@) = B(M, m, W/p, 2/p).

@eC

The reason for these equalitites is due to the fact that the p-th eigenvalue
of (3.1) can be characterized by the first eigenvalue of the equation (3.1)
with appropriate b.c.

Theorem 3.2. Let ¢ be a nonnegative bounded function. Denote by
u(xg, x,) (xq < x,) the first eigenvalue of the equation (3.1) coupled with b.c.
u(xy) =u(x,)=0." Then for any n+ 1 points

(3.27) Xo=0<X < ..o <X, =4
we have the inequalities

(3.28) max u(x;_,,x;) =@, = min ux,_,,Xx,)

i
1<i<n 1<i<n

where p is the n-th eigenvalue of (3.1).
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The theorem above can be deduced from the min-max and max-min
characterization of 4. The Krein’s result (3.26) tells in particular that
@* =M and ¢** =m exactly on n disjoint intervals. In order to determime
oM, m, W,2) and B(M,m, W,2) we have to solve some transcendental equa-
tion. If one assumes that m =0 then it is possible to have a closed solution
(Krein)

7t2

o aM (W

where x(t) (0 <t <1) is defined as the smallest positive root of the equation

(3.31) JrweJx =t/1-t

It is possible to extend Krein's results to higher order differential operator
L of a special class. Let L be of the form

1
(3.32) L= » (x) D, D,_,...D,, w,,,>0
and
d 1 n+1—k
(3.33) D, = o 70)”:; (x), w,(x) >0, w,eC (0, 2).
Assume furthermore that
(3.34) n=2m, 0y, =0 k=1,...,m

Then L is a self adjoint differential operator.
If one considers conjugate boundary conditions, e.g.

(3.35) 0 =1%) =0, i=0,..,m-1

then the corresponding Green’s function G(x,y) to (— 1)" L coupled with
(3.35) is a symmetric oscillating kernel (see [13] for the spectral properties
of the oscillating kernels).

In particular all the eigenvalues of the equation

(3.36) (= 1)™Lu = uou, u®(0) = u9(2) = 0, i=0. m—1
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are positive and distinct, i.e. (3.3) holds. Furthermore the corresponding
p-th eigenfunction u, of (3.36) vanishes exactly p-1 times in (0,2). Of
course, we assume that ¢ > 0. Let C be a nonempty set in L_(dx) of the form

(3.37) 0<m(x) < o(x) < M(x), m(x)<M(x), 0<x<uy,

(3.38) fk o(x)w*(x)dx = W.

0

According to the previous section we have extremal solutions to the
problems (3.7). Representing any ¢ which satisfy (3.37) in the form (3.20)
we obtain that 6 satisfies the conditions

0

(3.39) 0<0<1, j!& Odv =W, dv=(M(x)— m(x)) w3(x)dx.

Let v, and w, be the corresponding eigenfunctions for p (¢*) and p (¢**)
respectively. Using the variational formula (3.9) one obtains

L 2
j 0w} /w})dv sf 0*(vy/e})dv,
0

0

(3.40)
2 2
J O(w?/w?)dv > J 0**(w2/w?)dv,
0 0
where
(3.41) P*=m+ M —m), @**=m-+0**M—m).

Thus, to apply the lemma of Neyman-Pearson one has to consider the
equation u?=a’w}, ie u,= t+aw, Using the fact that u, has exactly

p—1 zeros in (0,2) from the Rolle theorem we obtain.

Theorem 3.3. Consider an eigenvalue problem (3.36) where L is defined
by (3.32)-(3.34). Let C be a set of functions given by (3.37)-(3.38). Let ¢*
and @** be extremal solutions to the problems (3.7). Then @* and @** satisfy
(3.24) except at 22m+ p — 1) points in [0,8]. That is @*(x)=M(x) and
@*(x) = m(x) on at most 2m + p — 1 disjoint intervals in [0, £].

The detailed proof of this theorem is given in [6].
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4. The convoy principle and its applications.

As we saw in the previous sections, a possible characterization of an
extremal solutions to eigenvalue problems by use of the variational formula
(Theorem 1.1) is only possible when the eigenvalues involved are simples.
Then (1.12) shows that a first variation of the eigenvalue is linear in the
first variation of the operator. In general case, for example for partial
differential equations, the eigenvalues may have a multiplicity of a high
order. Moreover, in some examples (e.g. [5]) the maximal eigenvalue has
the maximal multiplicity. All these facts point out that these problems
should be attacked by another methods. This can be done in case of com-
pact symmetric operators using a max-min characterization of the eigen-
values of symmetric operators.

Let A, K : # — # be linear symmetric operators in a Hilbert space
S with an inner product (x, y). We assume that K is positive definite. In
many applications we have to study the spectrum of the operator KA. For
example if one studies the frequencies of a vibrating string (3.1), then one
rewrites (3.1) in an integral form (2.14) which is of the form KA. Here K
corresponds to the Green’s function of the appropriated differential equation
and Af'is a multiplication of by a density ¢(x). Assume that KA is compact.
This assumption holds if K or A4 are compact. Since AK =(KA)* AK is
also compact and has the same spectrum as KA. If we introduce a new
inner product <x,y)> in #

(4.1) <%, p> = (Kx, y)

then the operator 4K is symmetric with respect to {x, y). Thus the spectrum
of KA is real and all the nonzero poles of the resolvent of KA are of order
I. We arrange the nonnegative eigenvalues of KA in a decreasing order

(4.2) i(KA) 2 7y(KA) > .. >/ (KA)> ...

If KA has only n(>0) positive eigenvaiues then assume that 4(KA)=0
for j>n. If # is finite dimensional (n-dimensional) then just assume (4.2).
Assume for simplicity of exposition that 4,(KA)>0,i = 1,2, .... Then, there
exists a sequence of eigenvectors %; such that

(4.3) AKy; = A(KA)y,, Ky x;) =96 L.J =152, {i

ij?

We now state a max-mim principle due to Polya and Schiffer [20].

Theorem 4.1. (The convoy principle). Let S be an n-dimensional
subspace of H#. Assume thatr S — [ o . X, ] where
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(4.4) (Kx;, xj) = 5”’ Lj = Ay suestls

Let A and K be symmetric operators, such that K is positive definite and KA
is compact. Denote by A(x,...,x,) the following symmetric matrix

4.5) A(xy, ..., x,) =(KAKx, x;)i-

Let (A, S),i=1,...,n be the eigenvalues of the matrix A(x,, ..., x,) arranged

in a decreasing order. Then

(4.6) I(KA)>I(A,S), i=1..,n

If S =[xy 1,] then the equality sign holds for i =1, ..., n. Furthermore if
(4.7 L (KA)=1(4, )

for some i then S contains an eigenvector of AK which corresponds to the
eigenvalue /(K A).

A detailed proof Theorem 4.1 can be found in [5].

In fact the convoy principle states that /(KA) has the following max-
min characterization

(KAKX, x)

(4.8) /(KA) = max min ek

S xeS

where S ranges over all possible n dimensional subspaces in #. There is
also a min-max characterization of 1 (KA) (e.g. [2])

(KAKx,i)

4.9) A(KA) = m;n rilEaTx K9

where T ranges over all subspaces in # of co-dimension n— 1. For our
purposes the convoy principle is indispensable. Because of the two following
reasons.

First, when we consider a maximal problem

(4.10) max F(1,(KA), ..., 7.(K A))

AeC

on some set C of symmetric operators, then we can interchange the maximum
over set C with the maximum over the n-dimensional subspaces S entering
in the characterization of 1 (KA) (4.8).
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Secondly, the minimum problem appearing in (4.8) over the set S is a
finite dimensional problem. This to compare with the characterization
(4.9) in which the minimum and the maximum are infinite dimensional
problems.

Let C be a convex set of linear bounded symmetric nonnegative definite
operators. Assume furthermore that we can introduce a locally convex
linear topology in C such that C is compact with respect to this topology.
(This is always true if 5 is finite dimensional and C is bounded). Denote
by ¢ the set of extremal points of C. By the Krein-Milman theorem we have
C =cl co(¢). Define

k
A|A=) wA, Aee
i=1

@11)  Hye) =
k
w20, I=1 580 N =i
=1

The main result in [5] can be stated as follows.

Theorem 4.2. Let K be a compact positive definite operator. Consider
the maximum problem (4.10) where A is restricted by the conditions f(A) = a,
i=1,...,q where each f, is a linear bounded functional on C. Assume that
F: R"> R, F continuous and F(x,,...,x,) is an increasing function of its
arguments. Then this maximum is achieved for A* such that A* belongs to
H, s 1)2+4). In case that F(x,,...,x,)=x, and A* satisfies the inequality
Ay 1(KA*) > 1, (KA*) then A* belongs H,, (e).

In case of dim # < oo we just may assume that C is bounded set of
symmetric operators. For g =0 the bounds n(n+ 1)/2 and n are sharp.
Since Theorem 4.2 is stated in a different form then in [5] we outline a proof
of the theorem for a general F. From the compactness assumptions we have

n=1

4.12) max F(,(KA), ..., 4(KA)) = F(A,(KB), ..., . (KB))

AeC, fA=wo, i=1..,q
So

(4.13) BKy, = A(KB)y,, (Ky;, y;) = 6, i s
Consider a following subset C’ of C

(A =a, k=1,

(K4 Kygv ,Vj) = A;(KB)é

(4.14)
Lj=1 ... .0 14582

ij>
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In view of (4.13) C’ is not empty. Thus C" = cl co(¢’) where ¢ is a set of the
extreme points of C’. Clearly

(4.15) ¢ c H

nn+1)/2+q"

Let A* solve the maximal problem

(4.16) max (KAKy,,y,) = (KA*Ky,, y,)

AeCr

and A*ee < H,,, 1) +4()
Let S=[y,,...,y,]. Then from (4.14) and (4.16) A*(y,, ..., y,) is diago-
nal and

(4.17) I(A* S)> 1,(KB), i=1,...,n.

Thus from the convoy principle we deduce

(4.18) A(KA*)=A(KB), i=1,...,n
As F(x,,...,x,) increases we have
(4.19) F(A,(KA%),..., A (KA*) > F(4,(KB), ..., 4,(KB)).

Now (4.12) implies the equality sign in (4.19) and this establishes Theorem 4.2
for a general F. In case that F = x,_ the proof is more delicate. In case that
K = (k;;)7 is an oscillating matrix; C is a set of nonnegative definite diagonal
matrices having a trace of magnitude 1; F=x,; g =0; Theorem 4.2 was
proved first by P. Nowosad [17]. It is worth to remark that in this case his
result is more general then Theorem 4.2 since K is allowed to be nonsymme-
tric. See Karlin [14] for a refinement of Nowosad results. Consider the
maximum problem (2.12) where K is a compact symmetric positive definite
operator of the form (2.7) and C is given by (2.10) and (2.11). In section 2
we already demonstrated that the extremal solution exists. Assume that
o is nonatomic. That is if o(X)>0 then there exists two sets in X,
X UX,=X, X,NX,=¢ such that ¢(X,)>0 for i=1,2. Then we can
improve Theorem 4.2 in this case.

Theorem 4.3. Let o be a nonnegative nonatomic measure on 1. Let
C be a nonempty set defined by the condition (2.10) and (2.11). Assume that
the operator K defined by (2.7) is compact symmetric and positive definite.

Consider the extremal problem max F(A, (K@), ..., A (K@) where F is a con-
C
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tinuous function on R",. If F is an increasing function of each of its arguments
then this maximum is achieved for some function ®* satisfying (3.24) and (2.11).

The proof of the theorem follows from the arguments given for the
proof of Theorem 4.2 and the following lemma.

Lemma 4.1. Let ¢ be a nonnegative nonatomic measure on 1. Consider
a set C given by the conditions (2.10) and (2.11). Assume furthermore that this
set is not empty. Then the set of its extreme points is exactly the set of
all functions satisfying the equation (3.24) almost everywhere with respect to
o, together with the conditions (2.11).

See [8] for the proof of these results. The assumption of Theorem 4.3
that ¢ is nonatomic can not be removed. Indeed if we allow to be atomic,
then we are in the situation described by Theorem 4.2. As we pointed out
we have extremal solutions which are not extreme point. Thus Theorem 4.3
generalizes the results of section 3 for the problem min p (@) (recall 1= p~1).
However as Theorem 4.3 is very general more results are needed to charac-
terizé @* completely. Even in the simplest cases to characterize ¢* com-
pletely is a hard variational problem. Let us apply Theorem 4.3 to vibrating
membranes. That is, we have an eigenvalue problem

(4.20) Au + pou =0,

in a bounded connected domain I = R* with a smooth boundary dl. Here
: .

. . L7 ..
A is the Laplacian Z =R Assume the Dirichlet boundary conditions
i=1 i

4.21) u(@l) = 0.

The function @(¢) is the density of the membrane at the point ¢ The
condition (2.10) means that the density ¢ is bounded from below and from
above. Choose de to be the ordinary Lebesgue measure and let po=1
Then the first condition of (2.11) means that the membrane has a fixed mass
C,. The other constraints (2.11) can be interpreted also in physical terms
(e.g. [16]). From Theorem 4.3 we deduce

Theorem 4.4. Consider the membrane (4.20) on a bounded connected
domain I < R" with a smooth boundary 1. Assume that the membrane has
a fixed total mass c, (p, = 1) and the density ¢ satisfies the conditions (2.10)
and (2.11). Let F be a continuous function on R". increasing with respect to
its arguments. Consider the extremal problem min F(u, (@), ..., u (@) in this
class of membranes. Then the minimum is achieved for some density @* in
the specified class such that @* satisfies the equation (3.24).
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In case that / is a ball in R" using the Schwarz symmetrization and the
classical fact that this symmetrization decreases the integral f| Vu | ? dx

([21]) one can solve the problem min u,(p), peC.
Theorem 4.5. Let I be a ball in R
(4.22) B(R) = {x|x=(x,...,x,)eR", r*= Y x2<R?.
i=1

Let M, m and o be function of r. Assume furthermore that M(r) and m(r)
are nonnegative and decreasing and «(r) is positive and increasing for 0 <r <R.
Let C be a nonempty set of functions defined by (2.10) and

(4.23) J P(Q)w(&)dE =W > 0.
I

Then mi(p By (@) = py(@*) where @* depends only on r, ¢*(r) is a decreasing

Sunction and @* satisfies (3.24) and (4.23),

For n=2, M(r)=M, m(r)=m, w(r)=1 this theorem was announced
by Krein [16], without proof.

The case n=2 and w(r)=1 was proved by Nowosad [18].

See [6] for a general case.

We conclude this section with the following result. As we saw in Section
2 when the eigenvalues are not simple the variational formula becomes
nonlinear and it is virtually impossible to use the variational method in
characterizing the extremal solutions with multiple eigenvalues. However,
for a very special functions F(x,, ... ,X,) one can have an analogous result
which was obtained in Section 3 by using the first variation for simple eigen-
values.

Let FeC" (R)). We say that VF preserves order in R’ if for any

oF OF

OF
Xy 2Xx,2>...2x,20 we have —>_—> ... >

G5 0% = 0x z 0.

n

Theorem 4.6. Let K: L, (do) » L, (do) be a compact positive definite
operator of the form (2.7). Assume that FeC"(R") and VF preserves order
in R%,. Let  solve the problem (2.12). Let y, i=1,...,n be the eigenfunctions
os Ky satisfying the condition (2.17) and (2.18). Then  solves also the linear
problem
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¥ SF (44(KY), ... 2,(K¥) flqoxﬁ-das
ji=1
(4.24)
<2 (TF A (K) f U o2 de
for any @eC.

This follows from the following useful lemma which extends the
Ky-Fan result [4].

Theorem 4.7. Let the assumptions of Theorem 4.1 holds. Let

W, >2w,>...>2w,=0. Then

Then

(4.25) 3" oK ARvhsadeania e EA);

i=1 i=1

If the equality sign holds in (4.25) then [x,, ..., x] =[x, ..., x] if ©,> @,
for i=1,...,n—1.

See [7] for a proof of this theorem.

5. Eigenvalue probléms for measures.

In this section we consider special eigenvalue problems defined on a
class of non-negative measures. We characterize the extremal solution in
terms of a generalized splines which solves an interesting interpolation
problem at its knots. Furthermore we give a fairly explicit way to compute
the maximum in question. Proofs of the results appearing in this section
are given in [6]. Let K(x,y) be a continuous kernel on I x I, where
I =[a,b]. Denote by C the set of all non-negative finite measures in C*(I)
normalized by the condition

(5.1 j pi(x)do =1,

where p(x)>0 is a continuous function on I. Assume that K(x,y) is a
symmetric and positive definite kernel. Let K, be an operator defined by
(2.7). For any non-negative meassure we have that the spectrum of K is
non-negative

(5.2) A(0) = A,(0) = ... =0.

re——

Extremal eigenvalue problems 33

According to Theorem 2.4 each 4 (o) is a continuous functional on C in w*
topology. Clearly, C is a compact set with respect to this topology. The
set of the extreme points of C are the measures d(x — {)/p*(¢) where d(x — ()
is the Dirac measure. According to Theorem 4.2 (see for details [5]) we have

(5.3) max A A0) =4 (cr*),
where
k
(5.4) o* = Y ato(x—{%), a<lt<(%.. <{t<bh,

k
ok >0i=1,....k Y o*pX(*=1, k<p(p+1)2

Il
jo

k
With any measure ¢ = ) o, d(x — {,)e C*(I) we associate a general spline
i=1

(5.5) =Y aKxl) a<l <l <..<{<b

The points {; are called the knots of the spline f(x). Let K be a strictly
sign consistent kernel of order n(SSC,).

That is

det(K(x, y,))' =0, a<™ "7 %
(K(x; )} =0, it g £

(5.6)
det(KCx, y )1 >0, <X, py <X55 Y3 < o <X, ¥, < b.

It is known [13] that the Green’s function of the differential operator
(= 1)"L given by the equalities (3.32)-(3.35) is a SSC, kernel for n=1,2. ... ,.
If K is the Green’s function corresponding to a differential operator M then
we can easily obtain from the spline (5.5) the corresponding measure « by
the equality

(5.7) Mf = Z ®,0(x —()=o0.

Using the classical Jentzsch theorem for n-th compound kernel we deduce
that

(5.8) Af0)> 72, . (o)
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for a non-negative ¢ such that 4 (¢) > 0. From Theorem 4.2 we deduce that
k =p in the equality (5.4) if K is a symmetric postive definite and SSC,_,
kernel. Let v, be the p-th eigenfunction of K, . From (2.7) we obtain that

v, is a spline of the form.
> p
(59) ZOEW )

Using the analogous to the variation (3.8) we deduce the first inequality
in (3.11) where Yy dx =dae C and ¢*dx = do*. With the help of the lemma
of Neyman-Pearson we characterize the properties of the spline v, Alto-
gether we obtained.

Theorem S5.1. Let K(x,y) be a continuous symmetric and positive
definite kernel on I x I. Let C be a set of non-negative measures in C*(l)
normalized by the condition (5.1), where p is a positive continuous function
on I. If K is a strictly sign consistent kernel of order p — 1 then there exists
a measure a* of the form (5.4) with k = p such that c* solves the problem (5.3).
Let v, be the p-th eigenfunction of the operator K. Then v, has the following
properties.

(5.10) v,/ =(=1"" i=1,..,p
{vp(x)/p(x)| <1, a<x<hbh

It is possible to characterize /lp(cr*) and the points (¥, i=1,...,p, in a more
explicit way. Let a<¢ < .. < G =b.. Denow by, (5,(&; wes ¢,) the
inverse matrix of (K(¢;,¢))f.

Theorem 5.2. Let the assumptions of Theorem 5.1 hold. Then

p

LJ

A (0% = ( [ B & 2 PSS p(é}‘))f

1

(5.11) | 4
= max (Z |tl.j(§1,...,fﬁ’p(éﬂp(f,—)) :

as&i<- <gpsh \Lj=1

For a special type kernel which is the Green’s function of second order
differential operator it is possible to compute explicitly the maximum (5.3).

Theorem 5.3. Let ¢(x) and y(x) be positive continuous functions on 1.
Assume furthermore that @(x)/(x) strictly increases on I. Let K(x,y) be a
kernel of the form
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eX)Y(y), for a<x<y<hb,
K =
(x, ) { o(YY(x), for a<y<x<bh.
Then
2p—-1) B
(3-13) max /Ip(a) =) p+ ;
[tp(b) v e
Y(b) @(a)

where p*(x) = @(x)Y(x). For p>2 the r ximum is obtain for a measure c*
of the form (5.4) k=p. The points (¥, i=1,...,p, are the unique solutions
of the equations

[o(b) ¥ (@)
| v 0@

with (¥ =a and C;f:b. For p=1 (¥ is an arbitrary in 1.
Note that the kernel K(x, y) which satisfy the assumptions of Theorem
5.3 is symmetric positive definite and SSC, kernel for any n (e.g. [13]).

1/p—1
(5.14) P(CHNW(CF) = ] O D), i=2,...,p—1

6. Compact Riemannian manifolds.

Let .# be a compact smooth (C*) n dimensional real Riemannian
manifold (n>2). We refer to [1] for the definitions and properties of
Riemannian manifolds needed in this section. Denote the points of .# by
x=(x',...,x"). Let dx stand for the Grassmannian product |dx! A ... A gt |,
The metric is given by the matrix G(x)= (g, /(x))]. Denote by g the deter-
minant of G. The volume element dV is given is given by /g dx. Let

L*(#) be the set of measurable square integrable functions f such that

J f2dVo<ie0,
M

Thus L,(.#) is the usual Hilbert space with the inner product (f, g) =
= Jfg dV. Denote by C*(.#) the set of smooth functions defined on ..
M

Let A be the Laplacian corresponding to the metric G. Consider the eigen-
value problem

(6.1) Au+puu=0
on /. It is known

(6.2) Aug+ pmu, =0,  k=0,1,...
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(6.3) //z;iujdV:(Sij, =001
(6.4) O=pg<py <Uy < ...
The function u,, ... are smooth and {u,}7 is an orthonormal basis in

L,(#). Clearly u, = const. The eigenvalues y, can be characterized by the
Rayleigh ratio

"o .. 0u Ou 2 v
i _ -dV u .
(6.5) J‘/i[ i’jz=1 g’ oxt Ox) d /j\ﬂ

Here G™' = (g")". Consider a new metric on .# which is given by the
matrix G=(QU);‘. Assume that this metric is conformal to the old metric
G. S,

(66) éij(x) = <P2(x) gij(X).

Here ¢(x) is a nonnegative bounded function, ie. @€ Lw(,.//l). Suppgse
first that ¢ is smooth and positive. Denote by A the corresponding Laplacian

to the metric G. Consider the eigenvalue problem
(6.7) Au+ pu=0.

Denote by {u,(¢)}2 the corresponding eigenvalues of A. The eigen-
values y,(p) are given by the Rayleigh ratio

& . Ou Ou 2
n—-2 i e usdV.
&8 L/p 2,9 o o dV/L//p !

i,j=1

As in Section 4 p () can be characterized by the Convoy Principle.

Theorem 6.1. (The Convoy Principle). Let f, ..., f, be smooth func-
tions. Assume that

(6.9) Lﬂfiqu)"dV= 8, Lj=01..,p.

Let A(@.fy, ---.f,) be the matrix with the entries

\ of o,
Ly n—~ ap ; J
(6.10) i L% " z<a£1 o M,) av,
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i,j =0,...,p. Denote by p(o, f,, o Jo) S dail Ko (@5 fo -os f,) the eigen-
values of A(@(fy, ..., 1) arranged in the increasing order. Then

(6.11) BO) = min pfo.fo ..., f).

Jos s fp

The minimum is achieved for the eigenfunctions Ug, ..., U, of (6.7).

Since the Rayleigh ratio is defined for any nonnegative bounded mea-
surable function ¢( 0) let K,(®) be given by (6.11) (it may be needed to
replace min by inf). Let 0 <m < M be functions in L_(A). Denote by C
the set of functions ¢ satisfying the inequality m < ¢ <M and normalized
by the condition

6.12) fwwzw
M

This set of functions has the fdllowing geometric meaning. Assume
that M and m are positive and constant. Then the condition m<o<M
means that the metrics G and G are equivalent. That is

6.13) md(x, y) < d(x, y) < Md(x, y)

where d(x, y) and d(x, y) are the distances between the points x and y accor-
ding to the metrics G and G respectively. The condition (6.12) means that
the new manifold .# has a fixed volume W. Let F (ST fp) be a continuous
function on R”. Consider a minimal problem

(6.14) min F(u,(@)....., Ky (@)

We conjecture

Conjecture 1. There exists an extremal Sfunction @* in C such that
the minimum (6.14) is attained at @*.

In [9] we prove

Theorem 6.2. Let .# be a compact smooth Riemannian manifold of
dimension n>2. Let C be a nonempty set of functions defined by (3.4) and

(6.12). Let F(¢,, ..., &,) be a continuous increasing function of its arguments
in RP. Then
(6.15) inf Fu,(@), ..., u, (@) = inf F(u,(¥), ..., ()

C Cx

where C* is the set of functions satisfying (3.24) and (6.12).
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Let us consider a special case in which we can solve at least one
nontrivial problem of the form (6.15). Consider a two dimensional compact
Riemannian manifold, i.e. n=2. As in the Rayleigh ratio ¢" > =1 we have
that p (@) are the eigenvalues of the equation

(6.16) Au + pp*u=0
where A is the original Laplacian.
Let .# be the unit sphere S*

3
(6.17) 5% =ou | =Gl ey x5 Dy G =111
i=1

Assume that 0 <m <M are constants. Consider the problem min u (@),
@eC. As in the case of the circular membrane to characterize the minimal
@* we have use the symmetrization principle (e.g. [10]).

Theorem 6.3. Let S? be the unit sphere of the form (6.17). Let M > m >0
be constants. Denote by C a nonempty set of measurable functz:ons on §?
satisfying the conditions (3.4) and (6.12). Consider the problem min p,(¢) on
C, where p, (@) is the first nontrivial eigenvalue of (6.16). Then this minimum
is achieved for a function @* = @*(x;) of the form

@*(x;)=M for —1<x,<h;,-h,<x;<1,
(6.18)
@*(xz)=m for h, <x; <h,.

The eigenvalue p,(¢*) is the first nontrivial eigenvalue of the problem

d

(6.19) = [(1 —1?) fi—ﬂ + up*(tPu=0

(6.20) wW(—1)=u1)=0
The difference h, —h, is determined by the equation (6.12)
(6.21) 2n{m*(h, — h,) + M*[2 — (h, — h,)]} = W.

Furthermore, the corresponding solution u of (6.19) has to satisfy either the
condition

(6.22) u(h,) = — u(h,)

Extremal eigenvalue problems 39
if
(6.23) —1<h <h,<1

or the condition

(6.24) 0<u(—1)< —u(hy,)
if
(6.25) hy=—1.

(Note that ¢*(— x;) is also extremal thus if (6.23) does not hold we may
assume (6.25)).

Unfortunately, Theorem 6.3 does not characterize @*(t) completely,
and we have to determine explicitly the value of h,. We conjecture.

Conjecture 2. Let the assumptions of Theorem 6.3 hold. Then the
extremal function @* given by (6.18) is an even function of x,, ie. h,= —h,.

Note that if ¢* is even then the corresponding eigenfunction u is odd
and the condition (6.22) trivially holds. It can be shown that this conjecture
holds for m = 0. See for details [9]. In conclusion, let us recall the result
due to Hersch [11]

(6.26) max pu, (@) = pu,(¢**) = 8n/W.

peC

Here C is the set considered in Theorem 6.3 and @** is a constant function
equal to (W/4m)'/?. Thus @** is not an extreme point in C, contrary to the
Krein result for the vibrating string.
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