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On global solutions of a nonlinear dispersive equation
of Sobolev type

L. A. Medeiros and G. Perla Menzala

1. Introduction.

In this note we shall study the so-called generalized Benjamin-Bona-
Mahony equation

(L) u+u —u. ., +(fW), =gt
u(x, 0) = o(x)

In —00 < x < oo,t>0. Here the subscripts denote partial derivatives;
suitable condition on f, g and ¢ will be given later. Our main purpose will
be to show the existence and uniqueness of global classical solutions of (=1
Furthermore, we will prove the continuous dependence on initial data.
Also, in the last section, we shall study the linear part of (1.1), that is

u+u —u, =0

by using the stationary phase method, in order to obtain its asymptotic
behavior at t— oo, which eventually “could” preclude the asymptotic
behavior of (1.1) (with g =0).

The equation (1.1) was suggested by T. B. Benjamin in [2]. This note
is a more complete version of an invited lecture presented by the authors
at the Second Brazilian Seminar in Analysis held at the University of Sdo
Paulo (USP) in 1975. In our opinion the problem (1.1) is still of interest,
because of its close relationship with the generalized Korteweg-de Vries equa-
tion, i.e.

ut + uxxx + (f(u))x == 0

which has been extensively studied in recent years. The final word concer-
ning the properties of solutions of (1.1) is, in our opinion, far from being
satisfactory.

Related work which has been done in recent years besides Benjamin-
Bona-Mahony’s paper, [1], <where they treated the particular case f(s) =

2

S

= T)’ were concerned mainly with periodic solutions (in x), see [4], [5],

[6], [7] among others.

Recebido em agosto de 1977.
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One last word about the title: it has been customary to call the
equation (1.1) a Sobolev type equation (see [8]) because S. Sobolev studied
and introduced similar equations for fluid flow problems. We are very
grateful to Prof. J. Cooper for his interesting comments about this work.

2. Existence and uniqueness of regular solutions.

Let T >0 and let us consider the space C°(R x [0, T]) of all real-valued
continuous functions ¢: R x [0, T]->R. We denote by L°(R x [0, T]) the
space of all real-valued measurable essentially bounded functions on
Rx[0,T]. Let X(T)=C%Rx[0,T]) nL*(R x [0, T]) with the norm
I lx given by ll@lly = sup |o(x,1)|, peX(T). We also con-

(x.0)eRR x [0, 7]
sider the space Y(T) of all real-valued functions h: R x [0, T]-R such that
h(-,)e*(R) (i.e. the space of square integrable functions) for each te[0, T]
and such that the map ¢ — h(-, 1) is continuons in [0, T]. The norm in Y(T)
is given naturally by

IBllyry = sup [IA(:, &)ipg *

te[0.7]

Obviously, X(T) and Y(T) are Banach spaces. Observe that whenever
geY(T) then F(g)e X(T), where

(2.1) F(g)(x,t) = %j Jw g1l g(y, s)dyds.
0 —
1

Let us denote by G(x — y) = T sign(x — y)e~ "', where

. 1 if s>0
Sign(s) =1 _ | it <0

and let f be a real-valued function which satisfies the following condition:
there exists a continuous function M(t), non-negative, such that for
u,ve X(T) we have

|fulx, 8) — f(o(x, 1) | < M(t) |u(x, ) — v(x,1)].
We consider now the map S: X(T)— X(T) given by

(2.2) (Su) (x, t) = ug(x) + Au(x, t) + F(g) (x, t)
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where u, is a (fixed), uniformly bounded, continuous function on R and
t 00
Au(x, t) = J f G(x —y) [w(y, ) + f(u(y, r))] dvdr.
0 —00, i

Theorem 1.2. Let p > 0, then there exists a small T, >0 such that,
whenever g€ Y(T,) and a uniformly continuous function u, on IR are given,
with HF(g)HX(TO) and sup [uo(x)| small enough, the map S (given by (2.2)) has

velR

a unique fixed point on X(T,).

Proof. Let us denote by 6 = sup [uo(x)[ and let us take T, >0 small
xelR

enough such that 6 + T, (1 + M(T,))p < p. This is possible because M(t) is
continuous. Thus, if we take ge Y(T}) such that

HF(g)HX(TO) =p- g To(l + M(To))p
then we claim that S (in (2.2)) is a contraction map which takes {0 e X(T)),
9llxr,) < p} into itself. In fact, a straightforward calculation shows that

if ,,9,eX(T,), then

(23) HS((PI) - S(%)H X(To) — HA(pl & A(Pz HX(TO; < To(l + M(To))qu] - (Pz HX(T()j

because

fl |Glx —y) | dy = 1.

— o0

Furthermore, if we take ¢, =0 and @, such that o, llxeryy < p in (2.3), it
follows that

IS(@ ) Ixrey <0 + 1F(9) I g1y + Ty(1 + M(T)))l @, xrg < P
which completes the proof, because T,(1 + M(T,)) < 1.
Remarks.

1) The unique fixed point ueX(T,) of S in the above theorem is (by
the standard theorem on contraction maps) the limit of the sequence

,m=1,2,...} where uyx,1)=uyx),

u,(x,t)=Au, _ (x,1)+ F(g)(x, 1).
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2) Theorem 1.2 shows that there exists a unique (local) solution ue X(T;)
of the integral equation

(2.4) u(x, t) = uy(x) + jt Jw G(x — y) [u +f(w)]dydr +
0 —i 60
£t Lf r e™ ™M g(y, r)dydr
2 0 — 0

3) The procedure above could be generalized in order to consider the
case in which f=f(u,u_1).

Theorem 2.2. Let uy(x) and g remain the same as in Theorem 1.2
Let us suppose also that g(x,) is a continuous function on.[O, T,). Then
the (unique) fixed point of S obtained in Theorem 12 satisfies

Lim |u(x,t)| =0 if Lim |uyx)|=0.

x| = 1x| = 0

t

Proof. Observe that F(g)(x,t) = | (R#g)(x,r)dr where R(x) = —jl-e“""

0 . . .
and * denotes spatial convolution. Thus, F(g) is the inverse Fourier trans-
1

form of (1 +CZ)“J g(&, r)dr (where § denotes the Fourier transform in

% £ Li

& of g). Since | §(& r)dr belongs to L'(R), then (1 + &%)~ | (& r)dr be-
0

longs to L'(R), foor each 0 <t < T, Thus, the Riemann-Lebesgue thgorem

implies that. Lim | F(g)(x, )| = 0 for each 0 <t < T;. Because of this fact

|x] = o0 I
and remark 1 above, in order to prove the theorem it is enough to show
that Lim | Au, (x, t)l =0, m=0,1,..., for each 1,0 <t < T,. Also, because
1x] = o

of the definition of the operator A, it will be enough to show by induction
that

(2.5) Lim

lx| = o0

r G(x — y)u,(y, S)dy) =0

—

and

(2.6) Lim

1x) = o

j " Gl — ), s»dyl =k

- Q0
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Let m=0. We fix z,€IR, then by dividing the integral (2.5) into two
parts’(one from —oo to z, and the other from z, to + o) and taking
X >z, we obtain

U_ G(x —y)uu(y)dyt 3 5; f_o e |u,(y)|dy + sup |uy(y)].

v=2Z,

Let ¢ >0, by choosing z, sufficiently large the term sup | ug(»)] can

>z
be made less than ¢/2. After this, we take x large enouglyl so that

e ™ z0
3 j e luyy)|dy <e/2.

— o0

This shows (2.5) for m=0. Similar discussion shows (2.6) when m=0.
(Because we can assume f(0) =0 without loss of generality.) Now, the rest
of the proof is standard and can be complete by induction by repeated use
of the Lebesgue convergence dominated theorem.

Theorem 3.2. Let uy(x) be a twice continuously differentiable function
which is also uniformly bounded in R. Suppose that f is a continuously
differentiable function and ge Y(T,), g(x,-) is a continuous function on
[0, T,] (where Ty >0 is obtained as in Theorem 1.2) then the solution u of
(24) in Rx[0,T,] is a pointwise solution of the Cauchy problem (1.1)
with u(x, 0) = uy(x).

Proof. By dividing the range of integration of (2.4) at y=x and
because the right side (of (2.4)) has a partial derivative (in x), it follows that

w(x,0) = ?dx—uo(x) + j' (u + f(u)dr +%J~'Jm e (u + f (w)dydr +
0 0 =

# f f G(x — y)g(y, r)dydr.
0 o~
Now, by noticing that

Lim e ™™ [u(y, r) + f(u(y, )] = 0

1yl = 0

for each xeR, 0 <r < T, because of Theorem 2.2 and the Lipschitz condi-
tion satisfied by f (there is no loss of generality to assume that f(0) = 0).
Thus, by a similar procedure as above we obtain
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t

W (565iE) = —zuo(x) + Jr %(u +f(w)dr + u(x, t) — uy(x) — J g(x,r)dr
g 0

therefore

U = U+ (f (W), +u,—g(x, 1)
which proves the theorem.

Now we shall obtain a priori estimatives which will allow us to repeat
our argument as many times as we wish. By multiplying equation (1.1) by
u and integrating (in space) we get

(2.8) Jx u(f(u) dx = — ‘rc (h(u(x, 1)) dx =0

— 0 e

o0

because JW u(f(u) dx = — J u_f(u)dx. Thus, from (2.7), (2.8) and the

— 00

Schwarz inequality we get

(2.7) 1 a’J“ [u* + ul]dx + fl u( f(u) dx = J ug(x,t)dx.

g — o0
Since uy(x) vanish as \x‘ — oo and it is twice continuously differentiable,
then by Theorem 2.2 and integration by parts wc obtain

00 [c.e] 1 d o ¢]
i J uu_ dx = j u u, dx = 5 WJ u?(x, t)dx.

—w - ©

r

Also, if we denote by h(r) = J‘ f(y)dy, then it follows that

—

ou

éﬁ :1—{_[ @+ ud)dx < Il glvirg < j (u® + ul)dx + |lgll3 iz,
t ], : .

So, by using Gronwall’s inequality, we obtain

(2.9) J] (0 1 Vdx =00

5
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forall0 <t < T,. The positive constant C depends only on ¢, u, and Ty
Then (2.9), together with the standard imbedding theorem H'(R) = C(IR) n
N L*(R) [where H'(R) is the Sobolev space of functions fe L*(IR) ‘whose
first derivatives, in the sense of distributions, also belongs to LZ(IR)], shows
that our argument can be repeated as many times as we wish.

Let T>0. The uniqueness of the solution (on R x [0, T]) obtained
above, may be shown as follows: suppose that u and v are solutions of
(1.1) with the same initial data at r=0. Thus, we consider w(x,t)=
=u(x, 1) = v(x, 1), therefore, w satisfies the equation

(2.10) wotw o —w o Fw(f(u)— f(),=0

with w(x,0)=0. Multiplying (2.10) by w and integrating we obtain

(2.11) % %f@ (w? + wi)dx = va w( f(u) — f(v))dx

- i

because j (w?).dx =0. Integration by parts of (2.11) gives us

— 00

e o

w (f(u) — fv)dx < M(t)J (w? + w?)dx.

— ©

1 od ™ 2. 2 _
2 700(\4 —wa)dx_—Jv

— o0

Therefore, by Gronwall’s inequality we get w=0 on IR x [0. T], because
w(x, 0) = 0.

3. On the continuous dependence on the initial data.

Let T >0, fixed but otherwise arbitrary. Let u = u(x, t) and u, = u,(x, 1)
be the C* — solutions of (1.1) with initial data u(x, 0) = @,(x) and u,(x,0) =
= ¢,(x) respectively, where ¢,, ¢, (x) belong to C*(RR) A L*(R) and they
vanish as |x| — o0, Let w,(x,t) =u(x,t) — u,(x,t). Thus w, satisfies the
equation

0 0 0° ¢ . _
(3.1) Wt T T e e T ox VW)= f(u,)=0

with w, (x,0) = @ (x) — ¢ (x). If we multiply (3.1) by w, and integrate, we
find according to the same reason used in the end of the last section. that
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;— % j_x |:wi + ((f\c \t;,l>—J(/x = jw(;x W,,) [f(u) — f(v)]dx <

So,

RENCRIS

o ! oX
e Kl 2 7 t

- o o o] o (L)
- X 0

Therefore, if ¢, (x) converges to @.(x) as n — oo, in the norm of H(IR), it
follows that u, will converge to u as n — oo in the same norm, for 0 <t < T.

4. Asymptotic behavior of the linear part of (1.1).

In this section we analyse the linear part of (1.1) that is, we consider the
problem

v,tv,—v =0

(4.1)
v(x, 0) = (x)

in —oo <x< oo, t>0. Here the initial condition ¢(x) is assumed to belong
to the Schwartz space of rapidly decreasing functions on IR. By taking the
Fourier transform (in x) of v(x,t) in (4.1) we see that

(&, 1) = exp (i€l + &)™) ¢(&).
So, we may write
4.2) v(x,t) = R(x,t)* o(x)
where * denotes spatial convolution and the source function R(x,t) is given

by

2n

—100

(4.3) R(x —y,t) = - fl exp (i(x — y) + i&t(1 + &%) ~1)d¢

Thus, if we call h(&)=&1 + E*)~", then we may rewrite (4.2) as
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44 o, 1) = r exp (ih(O)) B(E)L.

— ©

Therefore, (4.4) may suggest to us that in order to obtain some information
about the asymptotic behavior of the solution v (of (4.1)) we could use the
method of stationary phase. This method tell us, in particular, that the major
contribution of the value of the integral (4.4) arises from a neighborhood of
the points 4+ o and from a neighborhood of those points ¢ such that the
derivative of h vanishes, i.e. h'(£)=0. In our case, those &s are &= + 1.
We divide the integral (4.4) into two parts, being the first integral (for a
fixed large r>1)

f " exp (ih(E)) $(&)dé

=

which behaves for large ¢ like

2 152 . ) )
4.5) (Thfj(%;)‘o o(&,) exp [zth(fo) + i Z]

where £, = + 1, therefore

1 i gg=1
h%0={—1iféz—r

that is, in absolute value, (4.5) behaves like

Constant
' t l 1/2

for large t. Here the constant depends on ¢ (and r). For the second integral,
ie. J exp (ih(&)t) @(E)dé we could approximate &(1+ E2)~' by &' for
1g1>r

¢ large, thus

Lwexp(ité”)@(é)dé - - llzﬁ, [% exp(it{'_l)Jizé(é)dé
40 = | exp(e) @ g@nde+0([e] Y
. il qz (& ee)de | :
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From the above discussion we find that the solution v(x,t) behaves,
for large t like

Constari Constant
TEEE

Another observation about the solutions of (4.1) with smooth initial
data vanishing at infinity, is the following: if we consider the bilinear
form B(u,v) given by

4.7 B(u, v) (1) = fw [uv +u v ]dx

G 0]

where u and v are C*-solutions of (4.1) with initial data at t = 0, u(x, 0)
and v(x, 0) (€C*(R)) vanishing at infinity, then B(u, v)(f) is independent of
t, that is, leaves invariant the “free” solutions of (4.1). In fact, by using the
equation (4.1) and integrating by parts (4.7) we get

— B(u,v)(t) = f (v, Y up+u v +uv )dx=

— 00

[w(—v, +v. )+ o(—u, +u_)]dx+

xxt

Il
| 2
3 8

+ f (u v, +uv )dx =

= — J %(uv)dx + J’ (wo ., +ovu,  )dx +

— ©
+ f (g, v, +uov )dx=0.

This completes the proof that B(u,v)(t) is independent of . Furthermore,
it can easily be checked that B is continuous if we introduce the norm
[ ull]> = -, )17 + lu (L 0)11F
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