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A nonlinear problem in dynamic visco-elasticity with friction

M. A. Raupp, R. A. Feijéo and C. A. de Moura

Abstract

This paper presents a study of the dynamics of a pile driven into the
ground under the action of a pile hammer. Due to the effects of friction
one is led to a model consisting of a variational inequality. Results about
existence, uniqueness and stability of solutions of an initial value problem
for this variational inequality are obtained.

1. Introduction.

The objective of this paper is to present some results obtained in
the study of a problem in dynamic visco-elasticity with friction which
appears in Foundation Engineering. Such results refer only to the mathe-
matical analys's of the adopted model. In a future paper we shall consider
the numerical analysis and present results of some specific experiments.

The problem consists in analyzing the motion of a pile penetrating
into the soil under the action of the characteristic force of the pile driver,
the resistance force of the soil and the friction on the contact surrace. We
shall assume the pile to be a one dimensional bar, which is a reasonable
model for some types of metallic piles. In consequence, the friction must
be simulated through a body force instead of a surface one, and the soil
resistance through a force acting on the penetrating tip of the pile.

Our aim is: first, to formulate the problem in terms of a variational
inequality derived from Coulomb’s dynamic law for friction and the prin-
ciple of the virtual powers; second, to prove some results about the exis-
tence, uniqueness and stability of its solutions.

The justification of the model will be done in section 2 and the
mathematical analysis in section 3.

2. Formulation of the model.

We can visualize the situation we have at hand through the diagram
showed in Figure 1. There, two states of motion are represented, the initial
(t =0) and at some instant t > 0. The two estates are related by the motion

mapping
m, : [0, L] — [u(0, t), L+ u(L, 1)],
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62 M. A. Raupp, R. A. Feijoo and C. A. Moura

that carries a “particle” x from the initial configuration of the pile to
x + u(x, t), which is its position at time t, u(x, t) being the displacement field.
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Fig. 1

The parameters involved are L= length of the pile, k, = soil elastic
resistence coefficient and k, = soil viscous resistence coefficient.

The forces acting on the pile are:

F(t) = force transmitted to the system through the hammer of the
pile driver; its action is exerted only on the “particle” x = 0;
f(x,t) = body force; 1t is due to an external field;

—k,u(L,t) = reaction force due to the elastic properties of the soil; its
action is only exerted on the penetrating tip of the pile, that
is, on the “particle” x =L;

—k, (L, t) = reaction force due to the viscosity of the soil; its action is
only exerted on the “particle” x = L;

g(x,t) = friction force which starts acting on a “particle” x just when
it penetrates into the ground, that is, when x + u(x,t)> L;
this implies from the very beginning a representation in the
form g(x,t)= H(x +u— L) j(x,t), where H is the Heaviside
function and § would be the actual value of the friction.

Nonlinear problem in visco-elasticity 63

The force due to friction is in general a surface contact force. but in
this one-dimensional model of the pile it will be a body force with a proper
dimensional coefficient. This is a natural idea for such a specific situation.
Its behavior will be given by Coulomb’s law, which says (see Duvaut-Lions
[1]): “at a time ¢ and at any point of the contact region,

@.1) () if gl < F|F,| then i =0,
(i) if |g| = F|Fy| then there exists a 4>0 such
that &= — 1g,

where F is the friction coefficient, F is the force normal to the structure,

and 1 = %—LII is the velocity field”. In our case F, is the pressure exerted

by the soil onto the - pile, so that
(2.2) |Fyl = Kyo-(x+u—L),

where K is the Rankine coefficient (0-4 < K <3), y is the specific weight
of the soil, and 2 is the perimeter of the cross section of the pile at x.

Coulomb’s law (2.1) (i) — (2.1) (ii) implies the following relation, satis-
fied at any time ¢ and for all contact points:

2.3) (go—w)+FlFyl(Jo] =]d]) =0,

where 0 is the actual velocity of the system and v would be a “virtual
velocity field”.

Indeed, if |g| < F|Fy|, relation (2.3) would be go+ F|F, | |v] =0,
which is obviously true. If |g| = F|F,|, relation (2.3) reduces to gv+
+ F|Fy| |v| =0, which also holds.

At this point we invoke the “principle of virtual powers”, since for the
study of friction problems it is necessary to postulate “global” equilibrium
conditions. Following P. Germain [2], “in a Galilean frame, and for an
absolute chronology, the virtual power associated to the inertial forces in
a system s is equal to the power generated by all the forces applied to the
system, internal as well as external, and for any considered virtualj motion
of system s”. In our case,

(2.4) J.L Apii(v —d)dx = — fL Ao(v, — 10 )dx +

0 0
+ [—k,u(L,t)—k,a(L, )] [o(L) — &L, t)] +
+ F(t)[v(0) — (0, 1)] + J‘L Af(v—u)dx +

0
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L
5 J H(x +u—L)jv—)dx,
0
where @ = stress tensor, p = density of the pile, 4 = area of the cross-
: . ou . .

section of the pile, v — & = virtual velocity field, and u, = ox is the li-
nearized strain tensor.

Assuming a linear visco-elastic behavior law for the pile in the form
(2.5) c=au_+ bi,
we imply its classification in the domain of the “visco- elastic solids” (with
“short memory”!). This assumption, which will be taken as part of our

model, together with the consideration of (2.3), transforms (2.4) into

(2.6)  (pAii,v —@1) + a(Au, v, — ) + b(Ait,, v, — )+ [k, u(L,t)+

+ kL, 1)] [o(L) — a(L, )] + (FH | Fy |, |v| = [#]) =

> (Af, v — )+ F(t) [v(0) — (0, )], Vv,

L
where (u,,u,) = j u,(x) uy(x)dx.

0

Such a transformation of the equation is necessary because Coulomb’s
law does not give information about g when |g| < F | Fyl. °

If we define, for each u, the functional

Jw;-):H'O,L) - R

v —» yKF jLz(x)H(x +u—L)(x+u—L)|v(x)|dx,

0

with H'(0, L) being the usual Sobolev space, we can rewrite Fhe equilibr_iurn
condition (2.6), and the problem of the motion of the pile will be described
mathematically by:

2.7 u(x,0) =0,

(2.8) i(x, 0) =0,
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(2.9) (pAil, v—48) + a(Au, v, — 0 )+ blds v, — )+
+ [k, u(L,t) + k, (L, t)] - [v(L) — a(L, 1)] + Jw;0) = J(u, @t) =
> (Af,v —a)+ F(t)[v(0) — 2(0, )], Vv € H'(O, L).

Written in this form the “p'le driver problem” reduces to a meaningful
mathematical question: an initial value problem for a variational inequa-
lity of evolution type. To establish it, the physical information contained
in Coulomb’s dynamic friction law was fully used, as well as the conservation
law implicit in the principle of virtual powers. For the rest of this paper
we shall pursue answers to the question: what conditions on the data f and

F would guarantee existence, uniqueness and stability of solutions of
2.7 — (2.9)

3. An existence theory.

For the sake of simplicity we shall adopt in this section a system of
units in which a=b=k =k, =L=1Furthermore, we assume p(x)=
=A(x)=2(x)=1. We can easily see that we are not losing generality,
since the general situation can be handled under natural hypothesis for
those three given functions.

In respect to the notation we adopt the convention Q = (0,1) and
HY Q)= {re X(Q)|v e X(Q)}.

With the scalar product
1 1
(u,v); = u,v) + (u,v,) = J uvdx + J u v, dx,
. 0 0

H'(Q) is a Hilbert space. Functions in H'(Q) are continuous and it makes
sense to take u(y), yeQ.

If X is a Banach space with norm denoted by HX, we denote by
LP(0, T; X) the space of (classes of) measurable functions t — f(f) from
[0, T] > X (for the measure dr) such that

T P .-Tip
[J‘ [f(t)|xdt} =|f|LP(0,T;X)<w9 lfp#w’
0

ess sup |f(2)| x = |f] Lo 0.1.0) < 0. otherwise.
te(0.T)

This is a Banach space.
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At this point we mention a result that describes a situation we will
constantly encounter in the following. Let ¥ and H be two Hilbert spaces,
with V= H, V dense in H. Identifying H with its dual, H is then identified
with a subspace of the dual V' of ¥, whence V= H < V'. Let then v be
given by

(3.1) ve (0, T; V),%Lt'—eﬁ(o, T, V).

It is shown (see Lions-Magenes [4], Chap. 1) that
(3.2) “after possible modification on a set of measure
zero, the function t— v(f) is continuous from

[0,T] - H”.

The following theorem gives an existence theory for (27) — (2.9).

Theorem 3.1. Let

(3.3) £, fe IX0, o; IX(Q)),

(3.4) F,FelIX0,00;R), and F(0)=0.

Then, for any given T> 0, there exists a unique ue L*(0, T'; HY(Q)) such that

(3.5) ie (0, T; H'(Q)),
(3.6) iie L*(0, T; [X(Q),
(3.7) u(0) =0,

(3.8) i(0) =0,

(3.9) (i, 0 —8) + (u, v, — ) +

+ (u, v, — )+ [u(l, ) +al, )] [1(1) — w1, 1)] +
+ Ju;v)—J(u; i) =
> (fov —0) + F(¢) [1(0) — &0, )],

Yve H(Q), ae. te(0,T).
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Proof. An outline of our demonstration is the following:

Step | — Uniqueness;

Step 2 — Convex regularization of J and reduction of (3.9) to a

variational equation:
Step 3
Step 4 — Proof of the existence statements of the theorem.

Step 1. We assume tha.t u, and u, are two solutions and take u =
=u; —u, Choosing v=ii, in (3.9) written for u,, v=1, in (3.9) written

for u,, and adding the results, we obtain
(i, 1) + (0 ) + (i) + [u(l, )+ all, 0] a1, 1) <
Sl sim,) — Ju i) o s ay) — Jluss ).
Hence,

1

7i| 1
2 dt

X ind!
2 dr|

Y

u | 2@ + ] 20 + %uz(l,r)+

I:tlz(t) + 5
1

+ 4%(1,1) < yKFf [, (x, 0] =[x, 0[]
0

“[H(x +u; — 1) (x +u, —D—Hx+u,—1)(x+u,—1)]dx <

1
< 7yKF{|u|2(t) + || 2(0)},

where |f| = /(f. f). If we integrate from 0 to t:

(3.10) lie | 2(6) + u(L0) + |u,| () + 2 Jr (1, t)dt +

0

+2fotﬂx|2(t)dt§yKFJ {|u]*x)+ |i]*x)}de.

But, in view of

1

M(X, [) == u(la [) e J‘ ux(g, t)dc,

X

Solution of this new equation through Galerkin’s method:
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(3.11) Jl u?(x, t)dx-< 2[u*(1,t) + fl ul(, 1)d(].

0 0

By theorem 3.5 of [3],

1 1 1/2
(3.12) sup u(x,t) < C [j u?(x, tydx + J u(x, t)dx] , Vi,

xe[0,1] 0 0

with C independent of u. Hence (3.11) and (3.12) imply that

1 1 1
|u|1=\/(u,u)l=[f uzdx+f uidx]z,
0 0

1 1
[uz(l) + j u? dx] 2
0

are equivalent norms for H'(Q).
Carrying this information into (3.10) we get

and

|f“2(t)+|u|f(t)+f[l'4{f(r)dts
0

SCJI{|0|2(1)+]u|f(t)}dt,
0

so that, by Gronwall’s lemma,
[0]2(e) + |u|3(@) =0,

that is, u, = u,. It should be noticed that, at some point of this argument,
we made use of the initial conditions (3.7) and (3.8).

Step 2. For a given ¢ >0 we take functions 1/76(/1), (LSE(/{), convex and
sufficiently smooth, such that ¢,(4) = | 1] if |4| > ¢ and ¥ (2) = yFK H(2)A
if |A] =& Denoting the function ¥ [u(x)—(1—x)] by ¥, (u), we define

Ju;0) = J ¥ () d,(v)dx,
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for u,ve H'(Q), and consider an “approximate” regular problem substitu-
ting J by J, in (3.9). Such a problem is:

(3.13) u,€L(0, T; H'(Q)),
(3.14) u,eL*(0, T; H'(Q)),
(3.15) il,e[2(0, T; I*(Q),
(3.16) u(0) =0,
(3.17) ,0) = 0,
(3.18) (i, v — i) + (u,, v, —12,) +

+ (b, v, — i) + [u,(1, ) + 2,1, 0)] [w(1) — 8(1, )] +
+J(u;0) —J(u,; i) >
= (fiv—a,) + F(t) [v(0) — 2,0, )],

Vve HY(Q), ae. t ¢ (0, T).

Our claim is that in this new situation (3.18) is equivalent to a varia-
tional equation. Taking in (3.18) v=1d,+iw, 1>0, we H'(Q), dividing by
4, and carrying out the limit as 1—0, we get

(U W) + (o w,) + (i w,) + [0, (1, 1) + i (1, )] w(L)+ (W, () BL(3,), W) >
> (f, w) + F(t) w(0).
Since we could have taken —w in place of w, u_ satisfies
(3.19) (Hhy, W) + (U W) + (it w,) + [14,(1,0) + it (1, )] W(L) + (W, () §(01), w) =
= (f,w) + F(t) w(0), for any we H(Q), a.e. te (0, T).

Conversely, taking w=v—i, in (3.19), and summing J(u0)—J (u;0)
to both sides we reach (3.18) thanks to the convexity property

[¢.(0) - 6,()] — ¢.(1,) (0 —2,) > 0.
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Step 3. Now by Galerkin's technique we construct a solution for
problem (3.13) — (3.17), (3.19).

Let (V,, p,,1,) be a convergent approximation of H'(Q), that is,
(3:20) V, = R, N, integer, N, —» o as h]0;
(3.21) P,:V, - HYQ)
isomorphism from ¥, onto its closed range P, in H'(Q);
(3:22) r, :H(Q)—V,
linear continuous ‘operator from H'(Q) onto V;

(3.23) lim |v—p,r,v|, =0, YeeH (Q)

h—0

The Galerkin approximations to u, associated to the scheme (V,, p), 1)
are mappings u" : [0, T]—V,, such that )

(3.24)  (p,ii", p,v,) + (Dp,ul, Dp, v,) + (Dp, &, Dp, v,) + [p,u; (1, 1) +
+ pp (L )] p,v, (1) + (W (0, ) D1(p, B2, P, U, =

. (ja p). U;.) + F(t)ph Uh(O), v lﬁh & Vh’

(3.25) u"(0)=0,
(3.26) u"(0) =
where
0
s
Conditions (3.24) — (3.26) for u" represent a second order ordinary

differential system with dimension N, and the required initial data. In view
of the smoothness of the assoc1ated function, such a system has a unique
local solution which can be extended to [0,7] in case (u!.«) is bounded
on the interval. In the sequel we shall prove two a priori estimates (I and II)
for (3.24) which will fulfill that boundedness condition, so generating a
smooth u’(t), t&[0, T].

For estimate I we take v, =u" in (3.24), getting
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2
-+

p—

. 2 2
+ I Dp,i"

d
(3.27) S| it

d h
| ot 1

l\)!r—

b Do + [, r)]2+Ll V() 6,(p, i) p ik dx =
= (/. p1) + F(2) p, i2(0, ).
Now we observe that
| Pt | 30) < 3{[p,u(1, 0]* + | Dp,udt | 2(0)},
and also that we can always choose the regularizations so that
Vo (py ) = 0, ¢(p, i) p, it = 0.

Hence, integrating (3.27) from O to ¢t and using the initial conditions:
1, . 1 1 [
Z1mat PO + g nat 0 + 5 [0t o <
< [0 nt i+ 7o) it e <

f’ph dr+C1f {|f] %) + F?(v)} dr,

f0f any o> 0. .Observe in the last step the use of the trace theorem in
H'(Q) and the independence of the constant C! with respect to ¢, h and T

1 .
Now we choose o = c to obtain estimate I-

(3.28)

w2 h|z oh |12
|Ph“s |L1(0.T;L2m)) + |Ph“e ’Lmo,r;m(n» +] Py, ’L2(0,T;H1<m> =

= 6Cé {,fliz(o,oo;Lz(ﬂ)) -t ‘F ’iZ(O,oo; )}'

For estimate II we first differentiate equation (3.24) with respect to t:
(P, @i}, p, v)) + (Dp, i, Dp, v}) + (Dp, ii", Dp, v,) +

+ [p, 481, 2) 4 Py Hf(l» 0] py vi(1) +
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+ <7?tlﬂs(ph u) ¢,(p, 1Y), py Dh) + (Y, (P 1) dit ¢.(p, %), pyvy) =
= (£, p,v) + F(O)p,0,(0), v, € V,

and then take v, =ii", to get

1 1 d . . y
(32} s | pyitt |20 + — | Pttt |20 + | Dpyify | (6) +
1 d oh 2 oeh 2 ’ h oh I/ oh s*h
+ 5 [ 01 + [yiii(L 01 + Wy ) £y 62(py ), pyiEy) +

+ (W, (p, u?) % o.[p,#(0)], p,it") = (f, p,it") + F(2) p,ii"(0, 1).

Notice that we have

Wlpuit) 5 S0, o py o) =

= (. (5,1 Tim D[R+ Ajﬂ — ilpit0]

At—0

lim (phaﬁ(t + At) — phd:(t)> _

At—=0 At
= lim —— f ¥, (p, ) {¢.[p, it + At)] —
At—0

— ¢iLpy 0]} {[py it + AO] = [p, #(0)]} dx 20,

by the monotonicity of ¢/ and the positivity of . Furthermore,
lWi(4)| <yFK, |¢(H] <1

for any argument £, and thus (3.29) implies, after integrating from 0 to t

> it | 20) - > ALARCE -—-|1>p»u"|2 f) +
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('t

+ | | Dp,itt | *(v)dr + — [p,l (1,0] +

rt

+ [ph PP dv = yFKf | p,i" | (0) | p,it" | (r)de +

(., t o,
+ [ 17100 | @ + f |E@)| | p,i0, )| dr.
J 0 _
If we operate in this inequality through the trace theorem in H'(Q) and

Cauchy-Schwarz inequality we reach

InRI0+ ¢ |nit 30 + 5 | |nit| o <

t
< Lipit 2(0)+aj0fphﬁt|f(r)dr+

+C2J{’ph 2(‘z:)+|f|2(1:)+|F‘c)|2}d‘c,

so that, if we choose o = %, and take (3.28) into account, we get

(330) |p,iy[T(0) + | Pl [3(0) +§ | p,ii" > (0)de <
<3| p,it (O) + 6c;{f°°|f|z(f)dr+
6 0

; rwmvdr+6qU°°|f|2(T)dr rlp(rwd{]}
0 6 0 0 -

We emphasize the independence of the constants C} and C? on ¢, h and T.
6 6

But we still need a bound for |p,i"|(0). For this we evaluate (3.24)
at t=0 and take into consideration the initial conditions and hypothesis

(3.4) of the theorem, obtaining
(ph 1:42(0), Dy v;,) = (f(O), Dy, Uh)- v, € V;,
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Choosing v, = i"(0), we get

(3.31) | p,it| 0) < |1 (0)

which, combined with (3.30) gives estimate II:

(3.32)

e | 2 oh |2 [ w2
’phuzzl Loo,1;L2@) T |phus‘ Leo,1.H @) T 'phus\ L2(0,T;HY(Q))

<3[f]%0) +6 Ci{r 1f|2de +r | F(x)| 2de +
6 0 0

+6C! Ux |f] 2de + J | F(v)] zde}'
6 0 0

Estimates I and II tell us that the Galerkin approximations are well
defined on [0. T]. for any given 0 < T< oo, and much more, that

(i) phuh are all in a bounded set of L*(0, T} H(Q)),
(i) p,u" are all in a bounded set of L*(0, T: H'(Q)) n [0, T; H'(Q)),
(i) p,u" are all in a bounded set of L*(0, T; [*(Q)) n L*(0, T; H(Q)).

For a finite T, p,u" remains in a bounded set of I*(0, T: H'(Q)), this set
now depending on T. Hence p,u" and p,i" remain in a bounded set of
H'(Q,). where Q,=(0,T)x Q. If we invoke Rellich’s theorem (see [3])
we can pass to the limit in the dimension (h | 0) and conclude the existence

of a function u,eI*(Q,) such that i eI*(Q,) and

-h .
Pl = u, a.€. in Qg

,, .
(3.33) { ptfy > u, e in O
where we really mean convergence of a certain subsequence.

In view of (i) — (iii) we can further extract a subsequence, still indexed
by the same h, such that

pyut = u, weakly* in (0, T: H'(Q)),

p il > { weakly* in [*(0, T: H(Q))
h £

(3.34) weakly in I2(0, T: HY(Q)),

o weakly* in [°(0, T: [2(Q))
Putte = MY weakly in 120, T: H'(Q)).
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Hence, if we take the limit h |0 in

T T
J (p, i, pyryv) o(t)dt + J (Dp,u", Dp,r,v) a(t)dt +

0 0

0

T T

+ J (Dp, ", Dp,r,v) a(t)dt + J. [p,u'(1, 1) +
0

+ phl'l'é(ly Z)]phrhv(l) a(t)dt +

T
+ f W (pyu}) d(p, ), p,r,0) 2(0)dt =
0

T

= Jr(f, p,r,0) o(t)dt + f F(t)p,r,v(0) a(t)dt,

0 0
Voe H(Q), ae LY(0, T; R),

we obtain

0 0

(3.35) JT (i, v) a(t)dt + JT (Du,, Dv) a(t)dt +

+ N (D1, Do) o(t)dt + jT [u,(L,1) +a,(1,0)] (1) a(t)dt +

JO 0

~T

+ | Wu) (i), v)a(t)dt =

JO

s T

= (fiv)alt)dt + j FE(t) v(0) a(t) dt,

JO 0

Yve H(Q), ae 10, T: R),

since p,r,v — v strongly in H'(Q) and

lim ¢/(p, W) (p,ut) = U0 (u), ae. in Q.

h—0

On the other hand, for any function aeC'(0, T) with «(0)=1 and
o{T)=0, and ve H'(Q), we have

T

T
0= — (p,u’0),v) = J’ (p, i, v)ordt + J (p,u", v)o! dt =
0

0
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rT T

= | (4,v)dt t+ j (u, v)o' dt = — (u,(0), v),
Jo 0
~T T

0= — (p,i"0),v) = (p,it", v)audt + j (p, ", v)ol dt =

Jo 0
rT T

= (@, vadt + f (i1, v)o' dt = = (i1,(0), v),
JO 0

as hl0, that is, u(0)=1,(0)=0.
With this result and those expressed in formulas (3.34) and (3.35) we

conclude that the limit function u, is a “weak” solution of problem (3.13)-
(3.17), (3.19), the adjective being defined by (3.35).

We need then, following our proof program, to show now that u, is
really a “strong” solution in the sense of (3.19) or (3.18).

For this we take v — &, for v in (3.35), add [J(u,;v) = J (u,; )] under

T
the sign Jv to both sides, and use the convexity property of ¢, We reach:
0

.
(3.36) J (i, 0= a) + (v, d,) + (4,0, —d)+

X’ ex
0

+ [u( 1) + a1, 0] [o(1) = a,(1, )] +

+ J(u,;0) — J(u,;0)}a(r)dt

> JT {(fiv =)+ F(2) [v(0) — (0, )]} o(t)
0
VeeH'(Q)., ael'(0,T:R), a>0.

Now let s&(0, T) be fixed arbitrarily for the moment. We take the
family 0, of neighborhoods of s:

and let a(t) be defined by
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Then (3.36) yields
J {@, v) + (u,, v)+ @@, ,0v)+
Ok
+ [u(1,¢) + (1, )] v(1) + J (u,; v) — (f; v) —
~FOuO}a ~ [ {8+
Ok

+ (U, 8,) + (@, 6,) + [u(1, 1) + (1, )]a,(1, £) +

£x® &x?

+J (u,; ) — (f,0)— F@)uO,1)}dt >0,

from which again follows — denoting the measure of 0, by |0, | —

(3.37)<|Okl 'lj ii_dt, v) h <|Ok| "IJ u, dt, L‘X> +

0 0

+<| 0,| ‘IL u, dt, vx) i 0. =5 L [u,(1, 1) + 4,1, 1)]dt v(1) +
k k

+ yKF< [0, f % f Y (u)dt, d)s(v)) -
Ok

—(lOkl"f fdt,v)— |ok|-1f Fat (0) —
Ok Ok

- | Ok | T J‘ {(iie’ as) + (uax’ aex) + (ﬁex’ aex)+
Ok

+ [u,(1,0) + a1, )] a1, ) + J (u,; wl)i=i(f )=
— F(t)1,0, 1)} dt > 0.

But, in general, for a scalar-valued or vector-valued integrable function G,
we have, by a theorem of Lebesgue’s,

0] j G(t)dt > G(s), k> oo,
Ok

for almost all s.
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Therefore, we conclude from (3.37) that, except possibly for s in a set
of measure zero, we have

({7(5), v = it(5)) + (1o (8), v, — 8, (8)) F (1, (), v — 1, () +

+ [u (L, ) + (L, )] [v(1) — it (L, 5)] + T (us);v) —

= J (u(s); () = (f (), v = 1,(s)) + F(s) [v(0) = 2,00, 5)]
which is (3.18).

Step 4. We now are able to exhibit a function u with the desired
properties (3.5) — (3.9), by passing to the limit ¢ > 0 in the defining condi-
tions for u. In view of estimates I and II (the bounds are independent of
¢) we can extract from {u,} a subsequence, still denoted by {u,}, such that
there exists ue [°(0, T; HY(Q)) with

(

u —u weakly* in L0, T,H'(Q),
P weakly* in [*(0, T: H(Q)),
2 weakly in L%0, T: H'(Q)),
(3:38) < o [ weakly® in L0, T:L*(@),
: weakly in L0, T H'Q)),
u,—u  ae in Qg,
i, —> 0 ae in Qg,

\
by the same argument used in step 3 for the study of the convergence
p,u" > u. The function u is the candidate for solution.

Conditions (3.5), (3.6) are satisfied, and the initial conditions (3.7),
(3.8) are obtained for u with exactly the same argument in step 3 for u,. To
conclude the proof of the theorem we need then, finally, to show that u
satisfies (3.9).

Relation (3.18) yields, for any veL}(0, T; H'()),

(3.39) j {G@,v) + (u,,v,) + @, v,)+ [u(l, )+
+u,(1, 0] v(l, ) = (f,v — &) — F(t) [v(0, 1) — 2,0, t)]} dt +

T
+ J J(u,; v)dt > L|a |%(T) + L| u, |A(T) + L1,42(1, T) +
0 2 & 2 EX 2 &

Nonlinear problem in visco-elasticity 79

T T T
+J |a£x|2(t)dt+f a2(1,t)dt+J J(u,;0,)dt.
0

0 0

But, by the weak* lower semi-continuity property of the norm in a Banach
space and (3.38),

e—0

_ 1. 1 1 s
lim mfb|ue|2m a2+ Lwa +J || 2@t +
0

o [[et00a] 2 [S13170 + Lun e Lt

0
T T T

+J |, | 2(t)dt + j (1, t)dt = f {6, &) + (g, i) + (@, 0) +
0 0 0

+ [u(l, o) + (1, 0] (1, 1)} dt.

By (3.38) and the definition of ¥, and ¢,
i if T 1
J {J(u;0) = Ju;v)}dt = f J W )¢, v) —
0 o Jo

-yFKH(x+u—1)(x+tu—1)|v|}dxdt =

= j V() — ¥,(u)} ¢, (v)dx dt +

¥ j (60— |0l v waxar +

T 1
+f {Yw) —yFKH(x+u—1)(x+u—1)}|v|dxdt

0o Jo

goes to zero with ¢, since ¢, and y, are Lipschitz continuous with constants
independent of &. Also by (3.38) and the mentioned property of ¢, and ¥,

L {J(us ) — J(; 0)}dt = j Jl{l//a(ue)%(%)—

—yFKH(x+u—1)(x +u—1)|a| }dxdt =

L] L L {[Y, ) — v W] (0)+ [¢,G@,) — )] (u) +
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+ Y, () —yKFH(x +u—1)(x + u — 1)] ¢ ,(@) +
+ pKF[) — || TH( +u— 1) (x + u — 1)} dxdt - 0,
as ¢—0.

Therefore (3.39) gives, through (3.38),
T
(3:40) j {@o—0)+@wu,v, —0)+@,v, —u)+
0

+ [u(L, )+ @(1, )] [v(1, £) — (1, t)] + J(u;0) —
— J(u;8) — (f, v — i) — F(t) [0(0, £) — (0, £)]} dt > 0,
YvelX0, T; H'(Q)).

From (3.40) we pass to the pointwise inequality (3.9) by the same
procedure applied to relation (3.36) in step 3, now with

{a(t) if t¢0,,

v if te0,,

v(t) =

where v is any function in H'(Q).
Thus the proof of theorem 3.1 is brought to an end.

Remark. Since estimates I and II are also true for T = co, we actually
have:

ueI*0, o; HY(Q)),
(3.41) e [0, 0c0; HY(Q)) n I2(0, 00; H'(Q)),
iie [*(0, 0 ; IX(Q)) N X0, o, H(Q)).
Now we turn ourselves to the question of the asymptotic behavior of

the motion of the pile when t increases without bound. The following
stability result was obtained:

Theorem 3.2. Under the conditions on the data assumed in theorem 3.1,
the motion is stable and tends to rest as t — oo, in the sense phat

(3.42) | ul,(t) is bounded on [0, + ),

(3.43) |4],(t) > 0 as t - co.
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Remark. Claim (3.42) says that the I?(Q) norms of the displacement
and strain fields (a kind of “average” of the field on the pile) remain bounded
during all times, and (3.43) says that the velocity field and the rate of
deformation of the pile, measured for each t in the same I13(Q)-norm, decav
to zero as we proceed into the remote future. The claims allow us also to
infer the behavior of the stress field, in average, in that time region.

Proof. The first claim 1s a consequence of the basic estimate (3.28):
3 1
lu IL‘(O,x;Hltni) = \/676% Uflletu.ac;LZ-Qn + ’ F ’25(0_;0:@)]2 g
For the second, observe that
" . ©d
i(x, t,) — iix, t,) = L %u(x, dr, t,t, >0,
so that
la(t,) — ale,) ], < j |ii],(1)dx,

that is,

HM&»—MLmMzﬁWWWWH

31

Since by (3.41) iieI2(0, co; H'(Q)), given &> 0 arbitrary, there exists d >0
such that, if [t, —t,| < J then

2 1 12 L
J|mgmhsm—5pU‘wumm}<&

], () = |a],¢)] <e

hence

This tells us that |it| () is uniformly continuous on [0, + o). Therefore
(3.43) is true, because by (3.41) ||, is squareintegrable on [0, + o).
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