BOL. SOC. BRAS. MAT. VOL. 9, N.° 1 (1978), 89 _ 95 89
Adele rings of global field of positive characteristc
Stuart Turner

1. The zeta function, the adele ring, and the Jacobian variety.

Let k be a global field of characteristic p >0 with field of constants
F,. Let Q denote the set of places of k. For veQ let k, be the completion
of k at v and g, be the cardinality of the residue field of k,. For seC,
Re (s) > 1 the zeta function {, of k is given by the absolutely convergent
product {,(s) = [[ (1 —¢,7% L
reg
There exists 221 complete non-singular curve C defined over F, such

that K(C), the field of rational functions on C, is isomorphic to k. C is
unique up to F,-isomorphism. Let N(C), denote card C([Fq,,), the number
of F,rrational points on C. Let (. be the zeta function of C and set

d

T =q7 then {(s) = {(T) and i”%ﬂ = ) N(O),T""!. This power
n>1
series has radius of convergence ¢~ 1.
Finally, {. can be written
P(T)

1 T) = k
& D =T a=m

with P(T)e Z[T], deg P,(T)=2g where g is the genus of C. P, satisfies
the functional equation P(T) = ¢ T* P, <qlT> and P,(0) = 1.

Let k, denote the adele ring of k.

Theorem 1. Let K, k” be global fields of positive characteristic such
that P,, = P,,. Then k', and k’; are isomorphic topological rings.

Proof. Let P(T) be a polynomial which occurs as the numerator of
the zeta function of some global field k of positive characteristic. It suffices
to show that one can use P to construct a topological ring isomorphic to
k,. First, (deg P)/2 is the genus ¢ of k. Write P(T)=a, T* + ... + 1.
From the functional equation for P one sees that the cardinality of the
constant field of k is the positive integer ¢ such that ¢’ =a,,. Hence P
determines ¢ and gq.
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Let C be any complete non-singular curve defined over F, such that
) = P(T)
D) = T-na—q7)
of P, there can exist non-isomorphic C with this property.) Since

%ﬁm = Y N(C), T""' and since this power series defines an ana-

n>1

Iytic function in the disc | T| < ¢~', the N(C), are determined by P. For
n a positive integer define M(C), = card {xe C( F I x ¢ C( Fw), 0" n,
n #nj. The subfields of F, containing F, are of the form Fm with n’ n,
so it is easy to see that the set {N(C),}, ., determines M(C), As we have
seen, the N(C), can be determined from P.

For each positive integer n let r, be a complete eguicharacteristic discrete
valuation ring with residue field F_, By the Cohen structure theorem ([17],
Chapter VIII, §12) r, is isomorphic to F, [[X]]. Let k, be the quotient field
of . ket E 7., 1) r,,u, be complete discrete valuation rings isomorphic
tor,and k ,.....k, , be their quotient fields. Consider the sets

{kn,i}m:N and {rn,i}nsN *

l<i<M, 1<i<M,

. (The examples in §3 show that for some choices

" Form the restricted direct product D of the k,; with respect to the r, .
D is clearly isomorphic to k,.

Corollary. Let k', k” be global fields with field of constants F, such
that ,, = {,,. Then k', and k' are isomorphic topological rings.

Proof. The corollary follows immediately from the theorem and from

(1).

Remark. It can be shown that there exist algebraic number fields k’
and k” with the same ¢-function, but with non-isomorphic adele rings ([3],
Theorem 1).

Theorem 2. Let k, k' be global fields of positive characteristic such
that k, and k) are isomorphic topological rings. Then {, ={,, and P =P,

Proof. To prove the first assertion it suffices to show that one can deter-
mine {, from k,. Let M be a closed maximal ideal of k,, then there exists a
vy € Q such that k,/M and k, are isomorphic topological fields. Conversely,
given veQ, there exists a closed maximal ideal M, < k, such that k/M_ is
isomorphic to k, This correspondence between the closed maximal ideals
of k, and Q is one-to-one ([2], proof of lemma 7). Let r, be the maximal
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compact subring of k,, m, be the maximal ideal of r,, and g, = card (r,/m,).
Since {(s) = [] (1 —q,7%)" %, k, determines {,.

reQ

Let g be the cardinality of the field of constants-of k. Since P,(q %) =
=(1—-g7%(1 —q' %) {s), to prove the second assertion of the theorem it
suffices to show that one can determine ¢ from k,. The topology of k
the adele group of k, can be defined directly from the topology of k,,
without referring to k or its completions ([13], Chapter IV, §3, definition 2).
Let ||:k,” > IR,* be the continuous homomorphism defined by the Haar
module. Then g generates the image of || in R,*. ([13], Chapter IV, §3,
proposition 3; Chapter VII, §5, corollary 6.).

Remark. The same proof shows that two algebraic number fields with
isomorphic adele rings have the same zeta funtion.

Let k, kK be global fields with field of constants [Fq and C, C’ be
complete, non-singular curves defined over F, with their function fields
isomorphic to k and k" respectively. Let 4 =J(C) and B=J(C’) be their
Jacobian varieties. 4 and B are defined over F. Let n, € End 4 (resp.
ny € End B) be the Frobenius endomorphism of A4 (resp. B) and f, (resp. f,)
be the characteristic polynomial of 7,. Then P(T)=q?f,(T). Furthermore,
A is F -isogenous to B if and only if f, = f; ([10), theorem 1). Combining
this result with the corollary to theorem 1 and theorem 2 gives.

Proposition.  Let k, k' be global fields with field of constants F, Then
the following are equivalent:

) §=20-
i) J(C) and J(C') are F-isogenous.
iii) k, and k', are isomorphic topological rings.

In [11] it is shown that there exist infinitely many non-isomorphic singular
curves of genus two defined and irreducible over [Fpn, n odd, which have
the same zeta function.

2. The adelic theta function

It is not possible in general to reconstruct C from J(C). However, if
%(0) denotes the polarization of J(C) defined by a canonical divisor 6 (or
equivalently by a translation 6, of 0) on J(C), C can be reconstructed from
the principally polarized abelian variety (J(C), €(0)) ([7], [16]). In the
classical case where C is replaced by a compact Riemann surface M and
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J(C) by an algebrizable complex torus J(M) it is possible to choose the
canonical divisor 6 on J(M) so that 6 is “cut out” by the zeros of Riemann’s
theta function ([5], [6], [8]). We now show that it is possible to recover k
from k, in an analogous way.

Recall that k can be canonically identified with a discrete subfield of
k, which we also denote by k. Let E be the Pontryagin dual of k,. Let
T be the group of complex numbers of modulus one and <. > :k,x
k — T denote the canonical pairing. Let R be the maximal compact
subrmg of k, and ¢ be the characteristic function of R. Define

HkSkAXEAHC

B,(x, x*) = j Blx+ &) <& x* > dx(d),
k

where o is the Haar measure on k which gives each point measure one. 0,
is the adelic analogue of Riemann’s theta function ([15], §§ 16, 40). 6, is
continuous and since k is discrete

=) o(x+Y<¢ x*>

tek

Proposition.  Let = = {x*ek,|x*@@) =1 for aeF}. Let xek,
If there exists Eek such that x+§eR then 0,(x, x )—q<§ X > for
x*el,, and 0,(x,x*)=0 for x*¢ F > If there exists no ek such that
x+£eR then 0,(x,x*)=0 for all x ek

Proof. Let ek be such that x+¢éeR. Then x+ ¢+ aeR for all
aeF, and {'ek has the property x4+ & €R if and only if ¢ =¢+a for
some ae€ IFq. Hence

O(x. x*) = 3 (E+ax*y=<(Ex*) Y (a,x*

aeF, ae &q
4

for any x*eEA. If x*e‘qu*, this sum has the value (&, x*>. If x¢ [Fq*, this
sum is zero. The last assertion of the proposition is obvious.

Theorem. Let A be a topological ring and k, k' be global fields such
that k, and k), are isomorphic to A. Let ¢ :A— k, and YAk, be
isomorphisms of topological rings and b k > A, k’ — A be the dual
isomorphisms. Let 0, : A x A > C (resp. BA i sl X A — C) be the function
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03(p, d~1) (resp. 0204, Y). Let F and F' be the fields of constants of
k and k' respectively. If ¢~ F)= vy YF’) and 0 x, x%) = 6, (%, x*) for
all xep~ ' (k) Uy~ (k') and all x*e P~ 1(F) then (b Yky=y~ l(k)

Proof. Let F = d)“(F) =y YF’). By the propositon 06, =
= g{— x, x*) for each x*e [, so by the hypothesis 0 4 1% X*) = g{ = x, x*).
Using the proposition one sees that there exists £’ek’ such that 0, (%,
—q<lﬁ &), x*) for each x el o B0 (%% =y &) x*) for cash
x*e IFq*. However, the set of x* in A which induce the trivial character on
[Fq separate the cosets of F, in A. So Y~ }(&) = — x + a for some ae Fq. Hence
¢~ NK) = ¢y~ (k'), symmetrically ™ }(k') < (k).

3. Examples.

We now give two ways of constructing sets of isogenous, non-isomor-
phic cuves of genus one. By the proposition of 1. Such curves have the
same zeta function and the adele rings of their function fields are isomorphic.

Let jeFn nl, j¢F,. There exists an elliptic curve E defined over
F,n and unique up to F n-isomorphism with invariant j([4]). Let k be the
function field of E and k? be the image of k under the endomorphism
x—x? There is an elliptic curve E'” defined over Fn with function field
k% E“ has invariant j% Since j# 9 E and E'? are not isomorphic over
[F or over any other field containing F, Leti: E — E'9 be the morphism
determmed by the inclusion k?ck. i 1s a purely inseparable isogeny of
degree q.

The existence of non-isomorphic elliptic curves which are separably
isogenous can be shown using the general theory of abelian varieties over
finite fields. We begin by recalling the principal theorems.

Let A be an abelian variety defined over [Fq, n, be the Frobenius
endomorphism of 4 and f, be the characteristic polynomial of n,. f, is.a
monic polynomial degree 2 dim A4 with integer coeffients. The roots of

/4 have complex absolute value ¢'? ([15]). Since f,(n,)=0, n, may be

regarded as an algebraic integer determined up to conjugacy. For every
embedding p:Q(n,) > C, p(n,) has absolute value ¢'/?. Generally, an
algebraic integer 7 is called a Weil number for g if for every embedding
p : Q(n) - C, p(n) has absolute value ¢'/* ([9], [12]). There is a one-to-one
correspondence between the set of conjugacy classes of Weil numbers for
g and the set of isogeny classes of elementary abelian varieties defined over

([1], [91. [12]).

From now on we assume that A4 is elementary and ¢ = p". Let End A4
denote the ring of F,-endomorphisms of 4 and let E=(End 4) Q. E is a
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division algebra with center F = Q(n,). E has invariant 1/2 at each real
place of F invariant zero at each finite place of F prime to p, and invariant

oorrdd [F,:Q,] at a place v of F lying over p. Finally, 2 dim A =

Tk Patr @) o)

Let I be an ideal in End A4 and H(l) = " Ker a. I is called a kernel
ideal if I = {a|aH(I)=0} ([12],3.2). Let 1 J be kernel ideals. Then
A/yq, is [ -isomorphic to A/yy, if and only if I =1J for some invertible
A€E ([12], theorem 3.11). Let M be a maximal order in E. Then there is an
abelian variety B, F -isogeneous to 4, with End B ~ M ([12]) theorem 3.13).

Every ideal I « End B is a kernel ideal and the rank of H(I) equals the
reduced norm of I ([12], theorem 3.15); End B/y, is also a maximal order
([12], theorem 3.14).

Crriis e —1+ v=3 o —1_—2‘ V-3l
numbers for 8. Let A be an elementary abelian variety in the isogeny class

n and © are Welil

determined by % and 7 Z [7] is the maximal order in Q(,/ —31) and
(2) = p,p,, where

R e

2

(m)=p; and () =p3. Tate’s theorem shows that dim 4=1 and End
A x Q~Q(n). By Waterhouse’s theorems there exists an elliptic curve E
defined over [y and isogeneous to A such that End E = Z[n]. Since the
norm of p,, 1—1 2, is two, the isogenies i, : E—E/y,, and i, tE>E/g,n
are of degree two. As (1), p,, and p, are representatlves of the three ideal
classes of Q(,/ —31), no two of these curves are isomorphic over Fg. The
isogenies i, and i, may be inseparable, however theorem 5.3 of [12] 1mp11es
that thare exist separable isogenies from any one of these curves to any other.

References

[1] T. Honda, Isogeny classes of abelian varieties over finite fields, J. Math. Soc. Japan 20,
1968, 83-95.

[2] K. Iwasawa, On the rings of valuation vectors, Ann. Math 57, 1953, 331-356.

[3] K. Komatsu. On the adele rings of algebraic number fields, preprint.

[4] S. Lang, Elliptic Functions, Addison-Wesley, Reading, Mass, 1973, Appendix 1 by J. Tate.
[5] J. Lewittes, Riemann Surfaces and the theta functions, Acta Math. 111, 1964, 37-61.

[6] H. Martens, Three lectures on the classical theory of Jacobian varieties, Algebraic geometry,
Oslo, 1970: Wolters-Noodhoff, Groningen, 1972.

Adele rings of global fields 95

[7] T. Matsusaka, On a theorem of Torelli, AJM 80 (1958), 784-800.

[8] A Mayer, Generating curves on abelian varieties and Riemann’s theta-function, Ann.
Scuola Norm. Sup. Pisa, Ser. III, 19, 1965, 107-111.

[9] J. Tate, Classes d’isogénie des variétés abéliennes sur un corps fini, Sem. Bourbaki 21,
1968/69, no. 352.

[10] J. Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2, 1966,
134-144.

[11] S. Turner, Principal polarizations of abelian surfaces over finite fields, to appear.

[12] W. Waterhouse, Abelian varieties over finite fields, Ann. Scient. Ec. Norm. Sup, 4, t. 2,
1969, 521-560.

[13] A. Weil, Basic Number Theory, Die Grundlehren der math. Wissenschaften, Band 144,
Springer-Verlag, Berlin and New York, 1967.

[14] A. Weil, Courbes algébriques et varietés abéliennes, Hermann, Paris, 1971.

[15] A. Weil, Sur certains groupes d’opérateurs unitaires, Acta Math., 111, 1964, 143-211.

[16] A. Weil, Zum Beweis des Torellischen Satzes, Nachrichten der Akademie der Wissens-
chaften in Gottingen 2 (1957), 33-53.

[17] O. Zariski and P. Samuel, Commutative Algebra, Van Nostrand Princeton, 1960.

Departamento de Matematica

Pontificia Universidade Catoélica do Rio
de Janeiro

Rua Marqués de Sdo Vicente 209/263
Rio de Janeiro, Brasil



